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Abstract: In this paper, the spacelike tubular surface with Darboant is introduced in Minkowski 3-spac§.EI'hen, some
characterizations were investigated for special curvasisrtube with Darboux frame in Minkowski 3-space. Finallie compute the
Gaussian and mean curvature of tubular surface with Darbame.
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1 Introduction

A canal surface is defined as envelope of a non-parametef spheres, centered at a spine cueMg) with radiusr (t).
Whenr(t) is a constant function, the canal surface is the envelopenobang sphere and is called a tube or tubular
surface.

Canal surfaces are useful for representing long thin ohjedy., pipes, poles, ropes, 3D fonts or intestines of bodyal
surfaces are also frequently used in solid and surface nirglébr CAD/CAM. Representative examples are natural
quadrics, torus, tubular surfaces and Dupin cyclides.

Canal surfaces have wide applications in CAGD, such as eaiin of blending surfaces, shape reconstruction,
transition surfaces between pipes, robotic path planmitog (cf. @, 7,9]). Most of the literature on canal surfaces within
the CAGD context has been motivated by the observation dratlsurfaces with rational spine curve and rational radius
function is rational, and it is therefore natural to ask foethods which allow one to construct a rational
parameterizations of canal surfaces from its spine curdeadius function.

The canal surface can be considered as a generalization ofatssical notion of an offset of a plane curve. 28], the
analysis and algebraic properties of offset curves araudssd in detail. In]], Do Carmo discussed some geometrical
features of pipe surfaces. Moreover, by using pipe surfabes Carmo proved two very important theorems in
Differential Geometry concerning the total curvature ohap curves, namely Fenchel's theorem and Fary-Milnor
theorem. In p] Maekawa researched necessary and sufficient conditianthéoregularity of tube (tubular) surfaces.
Recently, Xu 1] are given a simple expression for the area and Gaussiaatcuevof canal surfaces. Also they proved
that developable canal surface is either a cylinder or a.cone
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In this paper, we consider a spacelike tubular surface i@ th Minkowski 3-space£Nith the spine spacelike center
curve given with Darboux frame in Minkowski 3-space. Thiperis organized as follows: Secti@ygives some basic
concepts of the Frenet frame and Darboux frame of a curvé.ilBo this section provides formulas of the curvatures
of surfaces in & Section3 tells about the spacelike tubular surfaces ihviith Darboux frame. We also obtain some
characterizations for some special curves on these typeacktike tubular surface.

2 Preliminaries

The Minkowski 3-space is three-dimensional Euclidean speiovided with the Lorentzian inner product
(U, V)L = —U1V1 + UpV2 + U3Vs,

whereu = (uz,Uz,us), V= (v1,V2,v3) and denoted byiEAny vectoru in Ef can be characterized as follows: the vector
u is called spacelike, lightlike or timelike ifu,u). > 0, (u,u). = 0 or (u,u), < O respectively. The norm of a vector
u € E is given by ||ul| = v/[(u,u)|. Similarly, any arbitrary curvex = a(s) : | — E; wheres is pseudo-arclength
parameter, is called a spacelike curve(#f’(s),a’(s)) > 0, timelike if (a’(s),a’(s)) < 0 and null (lightlike) if
(d'(s),a’(s)) =0anda’(s) #0forallsel.

The vectorsi = (ug, Uz, Us), V= (v1,V2,V3) € ES are orthogonal if and only ifu,v) = 0, and the Lorentzian cross product
is given by

UAV = (U3V2 — UpV3,U1V3 — UaV1, U1Vo — UpV1)

€1/\& = —€3, E2/\€3 = —€1, B3/\E = —€.

Let a be any unit speed spacelike curve with timelike principahmal N and spacelike binorm& and with Frenet-Serret
frame{t,n, b}, Frenet-Serret formulas of the curaecan be given as:

t/ 0 k(s) O t

n|l=|k(s) 0 1(9| [n],

of 0 1(s) O b
where(t,t) = (b,b)L =1, (n,n). = —1 and({t,n). = (n,b). = (t,b)L =0.

Definition 1.A surface M in the Minkowski 3—spa£ is said to be spacelike, timelike surface if, respectivetyihduced
metric on the surface is a positive definite Riemannian metarentz metric. In other words, the normal vector on the
spacelike (timelike) surface is a timelike (spacelike}mef®H].

Letgp:U CE?— Ef, ¢(U)=Mandy:| Cc R— U be a spacelike embedding and a regular curve, respectiven we
have a curver on the surfac® which is defined byx (s) = ¢(y(s)) and sincep is a spacelike embedding, we have a unit
timelike normal vector field) along the surfac& which is defined by = m—igu. SinceM is a spacelike surface,we
can choose a future directed unit timelike normal vectodfighlong the surfachl. Hence we have a pseudoorthonormal
frame {T,n,{} which is called the Lorentzian Darboux frame along the curvehere{(s) = T(s) x n(s) is a unit

spacelike vector. The corresponding Frenet formulae tfad

T 0 Knkg| |T
nN{=1]kn 014 n 1)
' —KgTg O 4
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wherekn(s) = —(T'(s),n(s)), Kg(s) = (T'(s),{(s)) and1g4(s) = —({'(s),n(s)) are geodesic curvature, the asymptotic
curvature, and the principal curvature @fon the surfaceM in ES respectively, and is arc-length parameter @f. In
particular, the following relations hold:

<T7T> = <Z;Z> = 1) <’7;’7> = _15
(T,n)=(n,{) =({,T) =0,
TAn=4{,nNN{=-T,{AT=n.

Both kn andkg may be positive or negative. Specifically, is positive ifa curves towards the normal vectgr andkg is
positive if o curves towards the tangent normal vedor

LetX.u,v) be a local parametrization ™. The tangent vectors to the parametric curves of the suhaaee

aX oX
Xi=o5 %= (2)
The unite normal vector field oM is given by
XuAXy
N=_—"°—, 3
Yo%l 3)
whereA means the cross product iﬁ.EI’he first fundamental coefficients are given by
g1 = (Xu, Xu),  G12= (Xu, Xv), Q22 = (X, Xy). (4)
The second fundamental coefficients
hir = (N, Xuu), hi2=(N,Xov) ha2= (N, X). (5)
The Gaussian and mean curvature are givertby [
K — hy1hzo — h2, _ 11922 — 212012+ hpo011 ©)
011022 — 9%, 2(011922 — 92,)

Let the center curve(u) be on the surfac®!. Since the characteristic circles of canal surface lie & lane which
is perpendicular to the tangent of center cucye), we can write spacelike tubular surface with Darboux framehe
Minkowski 3-space Eas

X(u,v) = c(u) +r ({ (u) coshv+ n(u) sinhv), (7

wheren is the unit normal of the surfadé along the curve(u).

3 Characterization of special curves on spacelike tubularwface with Darboux frame

In this section, we investigate the relation between patanteirves and special curves such as geodesics, asymptotic
curves and lines of curvature on the spacelike tubular sedaen by Eqn. 7).

Theorem 1For the regular spacelike tubular surface with Darboux @ra’mﬁ and given by Eqgn. 7).

(i) v-parameter curves are geodesics,
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(i) u-parameter curves are geodesics if and onkgifk, and g satisfy the following conditions

. 1 .
KnCOShV — Kgsinhv — rknkgcosh &+ > r(Kﬁ + Ké) sinh2a/+r ré =0, ®)
!

(Kg

KnTg) COShv — (K, — KqTg) sinhv = 0.
Proof. The tangent space to the spacelike tubular sufacfven by Eqgn. 7) at an arbitrary poinp of M is spanned by

Xy = (1—rKgcoshv+rkqsinhv) T + (rrgcostv)n + (rgsinhv)Z, ©
Xy = (rcoshv)n + (rsinhv){.
Hence the second partial derivatives of the parametricesuave given as follows:
Xuu = (rkphsinhv —rkgcoshv — rkgrgsinhv+ rkargcostv) T
+ (Kn -+ rkZsinhv — rkakq coshv + rrgcoshv+ rrgsinhv)n
+ (kg — rK§c03m+ rKnKgSinhv+rtjsinhv + rrgcosh/) l (10)
Xuv = (rkncoshv —rkgsinhv) T + (r1gsinhv)n + (rtgcoshv){
Xw = (rsinhv)n + (rcoshv){.
Thereafter, from equation8) (9) and (L0) we obtain
N = —(sinhv)n — (coshv), (11)

and
w = NAXy = (rsinhvcostv)T — (rsinhvcoshv) T =0,

. 1 .
A =NAXyy= — (KnCOShv — rknKg cosh & — kgsinhv + 5 r(K3+KZ)sinhd+r1))T

+ r coshv(kp sinhv — kg coshv — kgTg sinhv + knTgsinvcoshv) n

/

—rsinhv(kpsinhv — kg

coshv — KgTgsinhv+ knTgsinvcoshv) .

Sincew = 0, this imply thatv-parameter curves are geodesics. Also, becaugeandn are linearly independent, this
means thak = 0 if and only if

KnCOSHV — IKnKgCOSh & — Kgsinhv + 31 (k2 + ng) sinhd/+r1y =0,

i
g

—rsinhv(k}sinhv — K

r coshv(kj,sinhv — k) coshv — kgTg sinhv+ K, Tg sinvcoshy),

!

4COShv — KgTgsinhv+ knTgsinvcoshv) = 0.

Thus from the last two equations, we have
(Kg— KnTg) cOShV — (Kp — KgTg) Sinhv = 0.

Thenkg, kn andtg hold the Eqgn. §).

As a consequence of the above theorem we obtain the followesgt;
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Corollary 1. Let c(u) be a spacelike geodesic on the surfatevith Darboux frame in Minkowski 3-space§EIf u-
parameter curves are also geodesicX@nv), then the curvatures andt of c(u) satisfy the following equation

K (rk sinhv+ 2)sinhv —r12 = p,

wherep is a constant.

Proof. Since the center cunau) is a geodesic, theky = 0, kn = K and1g = 1. From Eqgn. §), we get

K(rksinhv+1)coshv+r1’ =0,

— k'sinhv — kTcoshv = 0.
Eliminating coslv from the previous two equations, we obtain
rkk’sintfv+ k’sinhv—rrt’ = 0. (12)
By integrating Eqn.12), it follows that
rk2sint?v+ 2k sinhv—rt? = p.

Corollary 2. Let the center curve(u) be an asymptotic spacelike curve on the surfitavith Darboux frame in
Minkowski 3-space & If u-parameter curves are also asymptotic curveX @nv), then the curvatures andt of c(u)
satisfy the following equation

K(rk coshv— 2)coshv+r12 = i,

wherep is a constant.

Proof. Since the center cunetu) is an asymptotic curve o, thenk, = 0, kg = k andtg = 1. So, from Eqn. §), we get

K(rk coshv —1)sinhv+r1’ =0,

k' coshv— kTsinhv = 0.

Eliminating sinhv from the two previous equations, we obtain

rkk’costfv— k’'coshv+rtr’ = 0. (13)
By integrating Eqn.13), it follows that

rk2costfv— 2k coshv+r12 = .

Theorem 2.For the regular spacelike tubular surface with Darboux ﬁreimrEf and given by Eqn.7).

(i) v-parameter curves cannot be asymptotic curves,
(i) u-parameter curves are asymptotic curves if and onk(if, v) is generated by a moving sphere with the radius

function .
. Knsinhv — kgcoshv B (14)
- 18— (KnSinhv— kgcostw)2 H

such thatu is constant
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Proof. From equationsy), (10) and (L1), we get

hao = (N, Xy) = —r costfv+rsintPv = —r #£ 0,

, : (15)
h11 = (N, Xuu) = (KnSinhv — Kgcoshv) [1+ r(kasinhv — kgcoshv)] —rtg.
Thenhy, # 0, implies thaw-parameter curves cannot be asymptotic curves. Also, sipegameter curves are asymptotic
curves, thertn;1 = 0, which leads to )

Knsinhv — kgcoshv

r =
2 i 2
¢ — (Knsinhv — Kgcoshv)

=H,

such thatu is constant.

Corollary 3. Letu-parameter curves be asymptotic curves on the spacelikéafudurfaceX (u,v) with Darboux frame in
ES and given by Eqn.7).

(i) If the center curvee(u) is a geodesic on the surfabg then

K sinhv
12 — Kk2sinkv

(i) If the center curvee(u) is an asymptotic curve on the surfade then

B K coshv
k2cosHv— 12

(iii) If the center curvec(u) is a line of curvature on the surfabg then

r= ! =
 KgCOShv—Knsinhv

.

Proof. From Theoren?2, sinceu-parameter curves are asymptotic curve, then from Egh vwe have

Knsinhv — kgcoshv IJ
12 — (KnSinhv — kgcoshv)?

(i) Since the center curve(u) is a geodesic on the surfabk So,kg = 0, kh = kK and1g = 7. If we replace these in
Eqgn. (L4) we get
ksinhv
12— K2sintfv
(if) Since the center curvg(u) is an asymptotic curve on the surfade thenk, = 0, kg = kK and1g = 1. If we replace
these in Eqn.X4) we get

B K coshv
k2cosHv— 12

. K .
If we take for exampler = 0, it follows thatr = i constant and therefore the center curis®) become

Mannheim curve. In this situation, whitgu) is a Mannheim curve, the-parameter curve = 0; X(u,0) = c(u) +
r{ (u) is an asymptotic curve on the tububétu, v).
(iii) Since the center curve(u) is a line of curvature on the surfabg thenty = 0. If we put this in Eqn. 14) we get

r= ! =
 KgCOShv— Knsinhv

.
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Theorem 3.The parameter curves of spacelike tubular surfge v) with Darboux frame in Minkowski 3-spac§lﬁre
lines of curvature if and only if the center cure@u) is a line of curvature on the surfabé

Proof. From equationss), (9) and (L0O) we obtain

g12= (Xu, Xv) = r21gsintfv — rrgcosttv = —r?gg, (16)
h12 = (N,Xoy) = —ITgCOSIV+rigsintfv = —rrg.

According to theorem of line of curvature, the parametewesiron surface are also lines of curvature if and only if
012 = h1o = 0. Theng;> = hio = 0 implies thatrg = 0 that means the curve centgu) is a line of curvature oM.

Theorem 4.Let X(u,Vv) be a regular spacelike tubular surface with Darboux framdiimkowski 3-space %

(i) If the center curvee(u) is a geodesic on the surfabg then the Gaussian and mean curvature of tubular surface
given by Eqn. 7) are as follows:

B K sinhv

~ r(1+rksinhv)’
_2rksinhv+1
~ 2r(1+rksinhv)

(i) If the center curvec(u) is an asymptotic curve on the surfade then the Gaussian and mean curvature of tubular
surface given by Egn7j are as follows:

B K coshv

~ r(rkcostv—1)’
_ 2rkcoshv—1
~ 2r(rkcostv—1)

Proof. From equations4), (6), (15) and (L6) we obtain

011 = (1—rKgcoshv+ rkssinhv)? — r2zg,
2

Qo2 = —TI%,

and the Gaussian and mean curvaturedtu,v) are

B Knsinhv — kgcoshv
 r[1+r(knsinhv— kgcoshv)|’

r (knsinhv — kgcoshv) + 1
2 [1+r(KqSinhv— Kkgcostv)|

respectively.

(i) Since the center curvg{u) is a geodesic on the surfabk So,kg = 0, kn = K and g = T. If we substitute these
above then the Gaussian and mean curvature of tubular sugiaen by

B K sinhv

~ r(1+rksinhv)’
_2rksinhv+1
— 2r(1+rksinhv)
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(i) Because the center curwgu) is an asymptotic curve on the surfade thenk, =0, kg = K and1g = 1. Then it

gathers that
B K coshv
~ r(rkcostv—1)’
_ 2rkcoshv—1
~ 2r(rkcostw—1)
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