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Abstract: In this article, it is shown that the combined use of exponential operators and special functions provides a powerful tool to
solve certain type of fractional PDEs. A system of space fractional partial differential equations is solved. The exponential operators
are powerful and effective method for solving certain singular integral equations and fractional partial differential equations with non-
constant coefficients. Constructive examples are also provided.
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1 Introduction and Preliminaries

We present a general method of operational nature to obtain solutions for several types of partial differential equations.

Definition 1. Laplace transform of function f(t) is as follows

L{ f (t)} =
∫ ∞

0
e−st f (t)dt := F(s). (1)

If L{ f (t)} = F(s), then L−1{F(s)} is given by

f (t) =
1

2π i

∫ c+i∞

c−i∞
estF(s)ds, (2)

where F(s) is analytic in the regionRe(s)> c.

Definition 2. If the functionΦ(t) belongs to C[a,b] and a< t < b,The left Riemann-Liouville fractional integral of order

α > 0 is defined as

IRL,α
a {Φ(t)}= 1

Γ (α)

∫ t

a

Φ(ξ )
(t − ξ )1−α dξ . (3)

The left Riemann-Liouville fractional derivative of orderα > 0 is defined as

DRL,α
a φ(x) = 1

Γ (1−α)
d
dx

∫ t
a

Φ(ξ )
(t−ξ )α dξ , (4)

It follows that DRL,α
a φ(x) exists for allΦ(t) belongs to C[a,b] ,and a< t < b .
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Note: A very useful fact about the R-L operators is that they satisfy semi group properties of fractional integrals.

The special case of fractional derivative whenα = 0.5 is called semi derivative.

Definition 3. The left Caputo fractional derivative of orderα (0< α < 1) of φ(t) is as follows

Dc,α
a φ(x) = 1

Γ (1−α)

∫ t
a

1
(t−ξ )α φ ′(ξ )dξ , (5)

Lemma 1.Let L{ f (t)}= F(s), then, the following identities hold true.

(1) L−1F(sβ ) = 1
2π

∫ ∞
0 f (τ)(

∫ ∞
0 e−tr−rβ (τcosβ π)sin(rβ τsinβ π))dr)dτ;

(2) L−1F(
√

s) = 1
(2t

√
tπ)

∫ ∞
0 e

ξ2

−4t f (ξ )dξ ;

(3) L−1(e−k
√

s) = k
(2
√

π)
∫ ∞

0 e
−sξ− k2

4ξ dξ ;

(4) e−ωsβ
= 1

π
∫ ∞

0 e−rβ (ωcosβ π)sin(ωrβ sinβ π)(
∫ ∞
0 e−sτ−rτdτ)dr;

Proof.See [1].

Lemma 2.The following exponential identities hold true.

(1) exp(±λ d
dt )Φ(t) = Φ(t±λ );

(2) exp(±λ t d
dt )Φ(t) = Φ(te±λ );

(3) exp(λ
√

t d
dt )Φ(t) = Φ((

√
t + λ

2 )
2);

(4) exp(λq(t) d
dt )Φ(t) = Φ(Q(F(t)+λ ));

where F(t) is primitive of 1
q(t) and Q(t) is inverse of F(t).

Proof.See [4].

The Laplace transform is useful tool in applied mathematics, for instance for solving singular integral equations, partial

differential equations,and in automatic control,where itdefines a transfer function.

Example 1.Let us consider the following non linear impulsive differential equation

(
√

Dt −a)y(t) = δ (x−λ ), (6)

Solution can be found using of part 3 of lemma (1), the above differential equation can be written as below

y(t) = 1
(
√

Dt−a)
δ (x−λ ),

from which we deduce

y(t) =
∫ ∞

0 dξ e−aξ√
a+ξ

e−ξDt δ (t −λ ),

finally,using elementary properties of Dirac delta function leads to the following solution

y(t) =
∫ ∞

0 dξ e−aξ√
a+ξ

δ (t − ξ −λ ) = e−a(t−λ)√
π(a+t−λ )

,

Example 2.Show that the following exponential identities hold true.

(1) exp(− k2

2t
d
dt )Φ(t) = Φ(

√

t2− k2);

(2) exp(−kt2 d
dt )Φ(t) = Φ( t

k+t );
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Let us take− k2

2 = λ andq(t) = 1
t then we get 1

q(t) = t andF(t) = t2
2 whereF(t) is primitive of 1

q(t) . Q(t) inverse ofF(t)

is Q(t) =
√

2t. Now, direct application of part 4 of lemma 2 leads to the following

exp(− k2

2t
d
dt )Φ(t) = Φ(

√

t2+2λ) = Φ(
√

t2− k2),

Let us take−t2 = q(t) then 1
q(t) =− 1

t2
from which we getF(t) = 1

t whereF(t) is primitive of 1
q(t) . Q(t) inverse ofF(t) ,

therefore, we getQ(t) = 1
t .In view of part 4 of lemma 1.2, one has

exp(−kt2 d
dt )Φ(t) = Φ( t

k+t ).

Example 3.Let us solve the following fractional Volterra equation of convolution type. The Laplace transform provides

a useful technique for the solution of such fractional singular integro- differential equations.

λ
∫ t

0 cosh(a(t − ξ ))Dαφ(ξ )dξ = ( t
a)

µ
2 Iµ(2

√
at) φ(0) = 0,

Solution. Upon taking the Laplace transform of the given integral equation, we obtain

sα Φ(s) sλ
(s2−a2)

= e
a
s

s1+µ ,

solving the above equation, leads to

Φ(s) = (s2−a2)e
a
s

(aλ )s2+α+µ ,

or equivalently

Φ(s) = (s2e
a
s−a2e

a
s )

(aλ )s2+α+µ ,

at this point, taking inverse Laplace transform term wise, after simplifing we obtain

φ(t) = 1
aλ (

t
a)

α+ν
2 Iα+µ(2

√
at)− a

λ (
t
a)

(α+µ+2)
2 Iα+ν+2(2

√
at),

Note:Iη(.), stands for modified Bessel’s function of first kind of orderη .

Corollary 1. Let us consider the following singular integral equation

exp(−ηxm) =
∫ ∞

0
ξ νe−ξ g(xξ µ)dξ . (7)

the above integral equation has the following formal solution

g(x) = Jν( m
√ηx : mµ),

Where Jν(. : .) stands for the Bessel-Wright function of orderν.

Note:The special function of the form defined by the series representation

Jν (x : µ) =
∞

∑
n=0

(−1)n

n!Γ (1+ν +nµ)
(x)n

is known as Bessel- Maitland function or the Bessel- Wright function.It has a wide application in the problem of physics,

chemistry, applied sciences.
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Proof.Let us rewrite the right hand side of the above equation(7) as below

exp(−ηxm) = (

∫ ∞

0
dξξ νe−ξ µ Dxg(x)). (8)

in relation (8), we used the following exponential identity

Φ(λ kx) = Φ(ekln(λ )x) = Φ(eln(λ )kx) = eln(λ )kxDxΦ(x) = λ kxDxΦ(x),

thus,it follows that

exp(−ηxm) = (

∫ ∞

0
ξ νe−ξ µ Dxdξ )g(x). (9)

At this point, we may rewrite relation (9) in terms of Gamma function as follows

exp(−ηxm) = (

∫ ∞

0
ξ νe−ξ µ Dxdξ )g(x) = Γ (1+ν + xµDx)g(x). (10)

From the above operational relationship and Taylor expansion of the exponential function results in

g(x) =
∞

∑
n=0

(−1)n

Γ (1+ν + µxDx)
((η)

1
mx)nm

. (11)

g(x) =
∞

∑
n=0

(−1)n

Γ (1+ν +mnµ)
( m
√

ηx)mn= Jν( m
√

ηx : mµ).

Corollary 2. Let us consider the following singular integral equation

xνexp(x) = (

∫ ∞

0
ξ νe−ξ g(xξ )dξ ), (12)

the above integral equation has the following formal solution

g(x) = I2ν(2
√

x),

where I2ν(2
√

x), stands for the modified Bessel function of first kind of orderν .

Proof.Let us rewrite the left hand side of the above equation as below

xνexp(x) = (
∫ ∞

0
dξe−ξ ξ xDx+ν)g(x), (13)

and treating the derivative operator as a constant, the evaluation of the integral yields

g(x) = Γ −1(1+ν + xDx)(x
ν exp(x)), (14)

after writing Taylor expansion of exponential function, one gets

g(x) =
∞

∑
n=0

(1)
n!Γ (1+ν + xDx)

(x)n+ν =
∞

∑
n=0

(1)
n!Γ (1+2ν +n)

(x)n+ν = I2ν(2
√

x). (15)
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Note: From operational relation(xDx)xn = nxn we get the following identity

g(cxDx)x
n = g(cn)xn

. (16)

andg(x) has Taylor series expansion.

Lemma 3.The following exponential operator identity holds true

(
d
dt
)(−

ν
m)exp(λ

d
dt
)Φ(t) =

1
Γ ( ν

m)

∫ ∞

0

Φ(t +λ − ξ )
m
√

(ξ )m−ν
dξ . (17)

Proof.Let us introduce the following integral

I(p) =
1

Γ ( ν
m)

∫ ∞

−λ

exp(−pξ )
m
√

(λ + ξ )m−ν
dξ . (18)

By making the change of variableλ + ξ = ζ in the above integral we get

I(p) =
1

Γ ( ν
m)

∫ ∞

0

exp(pλ − pζ)
m
√

(ζ )m−ν
dζ , (19)

after simplifying,one gets

I(p) =
exp(λ p)

Γ ( ν
m)

∫ ∞

0

exp(−pζ )
m
√

(ζ )m−ν
dζ , (20)

or,
I(p) = exp(λ p)

m
√

(p)ν ,

Let us choosep= d
dt ,we obtain

(
d
dt
)(−

ν
m)exp(λ

d
dt
)Φ(t) =

1
Γ ( ν

m)

∫ ∞

0

Φ(t +λ − ξ )
m
√

(ξ )m−ν
dξ . (21)

Special case. Form= 3,ν = 2 , we obtain

( d
dt )

− 2
3 exp(λ d

dt )Φ(t) = 1
Γ ( 2

3 )

∫ ∞
0

Φ(t+λ−ξ )
3
√

ξ
dξ .

Lemma 4.The following second order exponential operator relationshold true.

(1) exp(r( ∂
∂x)

2)Φ(x) = 1
(2r

√
π)

∫ ∞
0 e−

u2
4r (Φ(x+ iu)+Φ(x− iu))du, (22)

(2) exp(kx( ∂
∂x)

2)Φ(x) = 1
(2kx

√
π)

∫ ∞
0 e−

u2
4kx(Φ(x+ iu)+Φ(x− iu))du. (23)

Proof.Let us consider the following elementary integral

r
√

π exp(−(b2−a2)r) =
∫ ∞

0
e−

u2
4r cos(au)cosh(bu)du. (24)

By integration by parts one can easily find the value of the integral and after some manipulations we obtain

exp(−(b2−a2)r) =
1

(4r
√

π)

∫ ∞

0
e−

u2
4r (exp(iau)+exp(−iau))(exp(bu)+exp(−bu))du, (25)
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(1) In the above integral relation, we seta= ( ∂
∂x), b= 0 to obtain

exp(r(
∂
∂x

)2)Φ(x) =
1

(2r
√

π)

∫ ∞

0
du(e−

u2
4r (exp(iu)(

∂
∂x

)+exp(−iu)(
∂
∂x

))Φ(x), (26)

by using lemma 1, we get finally

exp(r( ∂
∂x)

2)Φ(x) = 1
(2r

√
π)

∫ ∞
0 e−

u2
4r (Φ(x+ iu)+Φ(x− iu))du.

(2) In the above integral relation, we setr = kx a= ∂
∂x , b= 0 to obtain

exp(kx(
∂
∂x

)2)Φ(x) =
1

(2kx
√

π)

∫ ∞

0
du(e−

u2
4kx(exp(iu)(

∂
∂x

)+exp(−iu)(
∂
∂x

))Φ(x), (27)

by using lemma 1, we arrive at

exp(kx(
∂
∂x

)2)Φ(x) =
1

(2kx
√

π)

∫ ∞

0
e−

u2
4kx(Φ(x+ iu)+Φ(x− iu))du. (28)

Corollary 3. Let us consider the following Fredholm singular integral equation

exp(−ηx2) =

∫ ∞

−∞
e−ξ 2

φ(x+2ξ
√

λ)dξ , (29)

the above integral equation has the following formal solution

Φ(x) =
exp(−λx2(5−4λη)

1−4λη )√
πλ (1−4λ π)

,

Proof.Let us rewrite the right hand side of the above equation as below

exp(−ηx2) =

∫ ∞

−∞
dξ e−ξ 2

e−2
√

λξDxΦ(x), (30)

and treating the derivative operator as a constant, the evaluation of the integral yields

Φ(x) =
1√
π

e−λ D2
x exp(−ηx2), (31)

at this point, using relation (22) , one has

Φ(x) =
1√
π

1
(2λ

√
π)

∫ ∞

0
e−

u2
4λ (exp(−η(x+ iu)2)+exp(−η(x− iu)2))du, (32)

or,

Φ(x) =
exp(−λx2)

(2λ π
)

∫ ∞

0
exp(−((

1
4λ

)−η)u2)cos2xudu, (33)
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from which and after some easy calculations, we get

Φ(x) =
exp(−λ x2(5−4λ η)

1−4λ η )
√

πλ (1−4λ π)
, (34)

2 Evaluation of Certain Integrals

The main purpose of this section is to introduce the use of exponential differential operator technique for evaluation of

certain types of integrals. WhereEα ,β (. : .) stands for the Mittag-Leffler function with parametersα,β .

Note:The special function of the form defined by the following series representation

Eα ,β (x) =
∞

∑
n=0

(1)
n!Γ (β +nα)

(x)n

is known as Mittag - Leffler function with two papameters.It has a wide application in the problem of physics,

chemistry,engineering, applied mathematical sciences.

Lemma 5.Considering the integral

I0 = I(x,α,β ) =
∫ ∞

0
Eα ,β (

x
(k2+ t2)µ )dt, (35)

as a function with parametersα ,β , show thatI(x,α,β ) satisfies the following relationship

I0 =
∫ ∞

0
Eα ,β (

x
(k2+ t2)µ )dt =

k
√

π
2

∞

∑
n=0

1
n!Γ (β +nα)

Γ (µ(n+ν)−0.5)
Γ (µ(n+ν))

(k−2µx)n
, (36)

Proof.By making a change of variablet = ky ,and lettingx= k2µ r , we get

I0 = k
∫ ∞

0
Eα ,β (

r
(1+ y2)µ )dy, (37)

The above integral can be written in the following operational form

I0 = k
∫ ∞

0
Eα ,β (

r
(1+ y2)µ )dy= k(

∫ ∞

0
(

1
1+ y2)

µrDr dy)Eα ,β (r), (38)

after evaluation and simplifying the right hand side integral, this last result leads to

I0 = k
∫ ∞

0
Eα ,β (

r
(1+ y2)µ )dy=

k
√

π
2

Γ (µrDr −0.5)
Γ (µrDr)

Eα ,β (r). (39)

By using Taylor expansion of the Mittag-Leffler function with parametersα,β , one has

I0 =
k
√

π
2

∞

∑
n=0

1
n!Γ (β +nα)

Γ (µrDr −0.5)
Γ (µrDr)

(r)n
, (40)

finally,

I0 =
k
√

π
2

∞

∑
n=0

1
n!Γ (β +nα)

Γ (µ(n+ν)−0.5)
Γ (µ(n+ν))

(k−2µx)n
. (41)
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3 Fokker-Planck equation

The classical Fokker-Planck equation is a linear parabolicequation which describes the time evolution of probability

distribution of a stochastic process defined on a Euclidean space. The Fokker-Planck equation provides a very useful tool

for modelling a wide variety of stochastic phenomena arising in physics,,chemistry, biology, finance, traffic flow, etc.

Given the importance of the Fokker-Planck equation, different analytical and numerical methods have been proposed for

its solution.As it is well known the stationary solution of Fokker-Planck equation can be given in a closed form if the

condition of a detailed balance holds. The study of the time-dependent solution is a much more complicated problem. In

this section,the space fractional Fokker-Planck equation(42) with a general time-dependence and a special x-dependence

of the drift and diffusion coefficients has been studied analytically.

Lemma 6.Let us consider the following space- fractional Fokker-Planck equation

ut +α(

√

∂
∂x

x
∂
∂x

)u+λxνu(x) = 0, (42)

u(x,0) = f (x). (43)

Proof.In order to obtain a solution for equation (42)-(43) in view of [2],[3] first by solving the first order PDE with respect

to t, and applying the initial condition (43), we get the following relationship

u(x, t) = exp(−λ txν)exp(−at(
∂
∂x

x
∂
∂x

)0.5) f (x), (44)

In order to find the result of the action of exponential operator, we make use of lemma 1 ,by choosingω = at,s= ( ∂
∂xx ∂

∂x),

to obtain

u(x, t) = exp(−λ txν)exp(−at(
∂
∂x

x
∂
∂x

)0.5) f (x), (45)

or

(i) u(x, t) = exp(−λ txν) 1
π
∫ ∞

0 e−rλ (atcos0.5π) sin(atr0.5sin0.5π)(
∫ ∞

0 dτe−rτ−τ ∂
∂xx ∂

∂x f (x))dr;

(ii) Let us takef (x) = exp(−qx),

u(x, t) = exp(−λ txµ)
1
π

∫ ∞

0
e−r0.5(atν+1cos0.5π) sin(atr0.5sin0.5π)(

∫ ∞

0
dτe−rτ−τ ∂

∂xx ∂
∂x exp(−qx))dr;

then after some manipulation, and using the following operational relationship [5]

exp(−τ
∂
∂x

x
∂
∂x

)exp(−qx) =
∞

∑
n=1

Ln(qx,τ), (46)

we get the formal solution as below,

(iii) u(x, t) = exp(−λ txν) 1
π
∫ ∞

0 sin(πa
√

r)(
∫ ∞

0 dτe−rτ−τ ∂
∂xx ∂

∂x exp(−qx))dr;

(iv) in view of relation (45)we get,

u(x, t) = exp(−λ txν)
1
π

∫ ∞

0
sin(πatν+1√r)(

∫ ∞

0
e−rτ

∞

∑
n=1

Ln(qx,τ)dτ)dr. (47)

At this point, in order to simplify the above relationship, we consider the following - well known relationship for

Laguerre polynomials of two variable as below.

∞

∑
n=1

Ln(x,τ) =
1

1− τ
exp(

x
1− τ

), (48)
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the above double integral (46) may be simplified as following

(v) u(x, t) = exp(−λ txν) 1
π
∫ ∞

0
1

1−τ exp( qx
1−τ )dτ)(

∫ ∞
0 e−τr sin(πa

√
r)dr; thus the result will become

u(x, t) = exp(−λ txν)
a
√

π
2

∫ ∞

0

1
τ(1− τ)

exp(
qx

1− τ
− πa2

4τ
)dτ . (49)

4 Main results

Operational methods provide fast and universal mathematical tool for obtaining solution of PDEs or even FPDEs.

Combination of integral transforms, operational methods and special functions give more powerful analytical instrument

for solving a wide range of engineering and physical problems.This section is devoted to study exponential operators and

their applications in solving certain boundary value problems, such as Laguerre heat equation of order 2λ with

non-constant coefficient.

Lemma 7.Let us consider the following space- fractional Laguerre Heat equation

t−(2k+1)

2(k+1)
ut = σ(

∂ λ

∂xλ +(α +1− x))2u+ δxνu(x, t), (50)

u(x,0) = φ(x), 1.5≤ λ < 2. (51)

Proof. In order to obtain a solution for equation (50) in view of [2],[3] first by solving the first order PDE with respect to

t, and applying the initial condition (51), we get the following relationship

u(x, t) = exp(δ t2(k+1)xν)exp(
√

σ t(k+1)((
∂ λ

∂xλ +(α +1− x))2φ(x), (52)

In order to find the result of the action of exponential operator, we can use the following well known elementary integral

exp(η)2 =
1√
π

∫ +∞

−∞
exp(−u2−2ηu)du, (53)

by choosingη =
√

σ t(k+1)(( ∂ λ

∂xλ +(α +1− x) ,to obtain

u(x, t) = exp(δ t2(k+1)xν)
1√
π

∫ +∞

−∞
(du)exp(−u2−2u(

√
σ t(k+1)(

∂ λ

∂xλ +(α +1− x))φ(x), (54)

after simplifying, we arrive at

u(x, t) =
exp(δ t2(k+1)xν )√

π

∫ +∞

−∞
(du)exp(−u2−2u(

√
σ t(k+1)(α +1− x))exp(−2u

√

β t(k+1)(
∂
∂x

)λ )φ(x), (55)

At this point,in order to find the result of the action of exponential operator, we may use part 4 of lemma 1 by setting;

w= 2u
√

σ t(k+1) ands= ∂
∂x to obtain

exp(−2u
√

σ t(k+1)(
∂
∂x

)λ )φ(x) =
1
π

∫ ∞

0
e−rβ (wcosβ π)sin(wrβ sinβ π)(

∫ ∞

0
(e−rτ−τ( ∂

∂x)φ(x))dτ)dr, (56)
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thus, it follows that

exp(−2u
√

σ t(k+1)(
∂
∂x

)λ )φ(x) =
1
π

∫ ∞

0
e−rβ (wcosβ π)sin(wrβ sinβ π)(

∫ ∞

0
(e−rτ)φ(x− τ))dτ)dr, (57)

substitution of the above result in (55),leads to the following formal solution to the space fractional Laguerre heat equation

as below

u(x, t) =
exp(δ t2(k+1)xν )

π
√

π

∫ +∞

−∞
e−u2−2u

√
σt(k+1)(α+1−x)

∫ ∞

0
e−rβ (wcosβ π)sin(wrβ sinβ π)(

∫ ∞

0
e−rτ φ(x− τ)dτ)drdu, (58)

Let us consider the special case:λ = 1.5 , φ(x) = exp− (bx), σ = δ = 1,k= 0, we get the following heat equation

1
2t

ut = (
∂ 3

2

∂x
3
2

+(α +1− x))2u+ xνu(x, t), (59)

u(x,0) = exp(−bx). (60)

with the formal solution as below

u(x, t) =
exp(t2xν)

π
√

π

∫ +∞

−∞
e−u2−2ut(α+1−x)

∫ ∞

0
sin(wr1.5sin1.5π)(

∫ ∞

0
e−rτ exp(−bx+bτ)dτ)drdu, (61)

if we carry out the integration and simplify the results, it follows that

u(x, t) =−exp(t2xν −bx)

π
√

π

∫ +∞

−∞
e−u2−2ut(α+1−x)(

∫ ∞

0

1
r −b

sin(2utr
√

r)dr)du, (62)

5 Conclusion

Operational methods provide fast and universal mathematical tool for obtaining solution of PDEs or even FPDEs.

Combination of integral transforms, operational methods and special functions give more powerful analytical instrument

for solving a wide range of engineering and physical problems. The paper is devoted to study exponential operators and

their applications in solving certain boundary value problems. The main purpose of this work is to develop methods for

solving singular integral equations,certain space fractional Lagurre heat equation. We note that within such a new frame

work as we have described and developed in this article, the extensive usage of the exponential operator method opens up

new and powerful possibilities, which be more deeply explored in the future publications.
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