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Abstract: In this work, we study the conditions between osculating strip curves and ruled surfaces in Lorentzian space. For this study,
we establish a system of differential equations characterizing both spacelike and timelike ruled surfaces in Lorentzian space by using
the invariant quantities of osculating strip curves on the given ruled surfaces. We obtain the solutions of these systems for special cases.
Regarding to these special solutions, we give some results of relations between osculating strip curves and ruled surfaces in Lorentzian
space.
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1 Introduction

The theory of Klein geometry is of invariants of a transitivetransformation group. The structure of the underlying Lie

group is an essential element in geometry. This fact can be nicely seen in the theory of ruled surfaces. The first studies

from this perspective were made by W. Blaschke and E. Study. The main idea is to replace points by lines as fundamental

building blocks of geometric beings [6].

The relations between curves and ruled surfaces were first given by Blaschke in [3]. Blaschke established this relation by

means of Study theorem which works in dual space. By Study map, ruled surfaces are considered as spherical curves in

dual space. The conditions between curves and ruled surfaces were studied by establishing a system of differential

equations which determined ruled surfaces in Euclidean space in [7].

Based on the thought ”curve-surface strip”, the conditionsbetween geodesic curves and ruled surfaces were dealt with

by Pekmen [10] by means of Blaschke invariants in [3]. Later, Şişman wrote an MA dissertation about this problem. He

tried to solve the system of differential equations determining ruled surfaces in dual Euclidean space by using the

invariants of the surface strip curves, he couldn’t obtain the general solution of this system. But he had the solutions by

provided that the surface strip curves were osculating, curvature and geodesic strip curves [12]. After Şişman’s MA

thesis, Pasinli took the subject into consideration by not using the vanishing of Darboux invariants [9]. Also, Ayyıldız

studied the conditions between curves and semi-ruled surfaces in Lorentz 3-space [2]. Then the conditions between

geodesic curves and ruled surfaces were studied in Lorentzian space by Ayyıldız [1]. Some interesting results between

curves and ruled surfaces were also obtained in dual Lorentzian space in [4,5].

In this work, we study the conditions between osculating strip curves and ruled surfaces in dual Lorentz spaceD
3
1. For
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this study, we establish a system of differential equationscharacterizing both spacelike and timelike ruled surfacesin

dual Lorentz spaceD3
1 by using the invariant quantities of osculating strip curves on the given ruled surfaces. We obtain

the solutions of these systems for special cases. Regardingto these special solutions, we give some results of relations

between osculating strip curves and ruled surfaces in dual Lorentz spaceD3
1.

2 Preliminaries

LetR3
1 be the three-dimensional Minkowski space, that is, the three-dimensional real vector spaceR3 with the metric

〈dx,dx〉=dx2
1+dx2

2−dx2
3,

where(x1,x2,x3) denotes the canonical coordinates inR3. An arbitrary vectorx of E3
1 is said to be spacelike if〈x,x〉 > 0

or x= 0, timelike if 〈x,x〉 < 0 and lightlike or null if〈x,x〉 = 0 andx 6= 0. A timelike or light-like vector inE3
1 is said to

be causal. Forx ∈ E3
1 the norm is defined by‖x‖ =

√
|〈x,x〉|, then the vectorx is called a spacelike unit vector if

〈x,x〉 = 1 and a timelike unit vector if〈x,x〉 = −1. Similarly, a regular curve inE3
1 can locally be spacelike, timelike or

null (lightlike), if all of its velocity vectors are spacelike, timelike or null (lightlike), respectively [8].

Dual numbers are given by the set

D= {x̂= x+ ξ x∗;x,x∗ ∈ R} ,

where the symbolξ designates the dual unit with the propertyξ 2 = 0 for ξ 6= 0. Dual angle is defined aŝθ = θ + ξ θ ∗,

whereθ is the projected angle between two spears andθ ∗ is the shortest distance between them. The setD of dual numbers

is a commutative ring the the operations+ and·. The set

D
3 = D×D×D=

{
ϕ̂ = ϕ + ξ ϕ∗;ϕ ,ϕ∗ ∈ E

3
}

is a module over the ringD [15].

For anyâ= a+ ξ a∗, b̂= b+ ξ b∗ ∈ D
3, the Lorentzian inner product of̂a andb̂ is defined by

< â, b̂>=< a,b>+ξ (< a∗,b>+< a,b∗ >).

The dual spaceD3 together with this Lorentzian inner product is called the dual Lorentzian space and is denoted byD
3
1

[14]. For ϕ̂ 6= 0, the norm‖ϕ̂‖ of ϕ̂ is defined by

‖ϕ̂‖=
√
< ϕ̂ , ϕ̂ >.

A dual vectorω̂ = ω + ξ ω∗ is called dual spacelike vector if〈ω̂ , ω̂〉 > 0 or ω̂ = 0, dual timelike vector if〈ω̂, ω̂〉 < 0

and dual null (lightlike) vector if〈ω̂, ω̂〉= 0 for ω̂ 6= 0. Therefore, an arbitrary dual curve which is a differential mapping

ontoD3
1 can locally be dual spacelike, dual timelike or dual null if its velocity vector is dual spacelike, dual timelike or

dual null, respectively. Also, for the dual vectorsâ, b̂∈ D
3
1, Lorentzian vector product of these dual vectors is defined by

â× b̂= a×b+ ξ (a∗×b+a×b∗),

wherea×b is the classical cross product according to the signature(+,+,−) [14].
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In D
3
1, the dual Lorentzian unit sphere is given as

S2
1 = {ϕ̂ = ϕ + ξ ϕ∗;‖ϕ̂‖= (1,0);ϕ ,ϕ∗ ∈ R

3
1,ϕ spacelike},

and the dual hyperbolic unit sphere is defined as

H2
0 = {ϕ̂ = ϕ + ξ ϕ∗;‖ϕ̂‖= (1,0);ϕ ,ϕ∗ ∈ R

3
1,ϕ timelike}.

The oriented timelike and spacelike lines inE3
1 are presented by timelike and spacelike unit vectors with three components

in D
3
1, respectively. A differentiable curve onH2

0 corresponds to a timelike ruled surface while a differentiable curve on

S2
1 corresponds to any ruled surface [14].

Theorem 1. (E. Study) The oriented lines in R3 are in one-to-one correspondence with the points of the dualunit sphere

A.A= 1 in D3 [11].

A differentiable curve A(u) on the dual unit sphere, depending on a real unit parameter u, represents a differentiable

family of straight lines in R3 : a ruled surface. The lines A(u) are the generators or rulings of the surface.

The distribution parameter of the ruled surface determinedby

X(t) = x(t)+ ξ x∗(t)

is defined by

δ =
〈x′(t),x∗′(t)〉
〈x′(t),x′(t)〉

=
p∗

p
. (1)

If δ = 0, p∗ = 0 then the ruled surface is a developable surface [3].

Let a curveα(s) on a surfaceM in Lorentz space be given by the arc-length parameter. The Frenet trihedron which

belongs to this curve differs as follows:

The Frenet formulae of a spacelike curve with timelike principal normal are given as




T ′

N′

B′


=




0 κ 0

κ 0 τ
0 τ 0







T

N

B


 , (2)

where〈T,T〉 = 1, 〈N,N〉 = −1, 〈B,B〉 = 1, 〈T,N〉 = 〈T,B〉 = 〈N,B〉 = 0 andκ andτ are curvature and torsion of the

spacelike curve, respectively [14].

The Frenet formulae of a timelike curve are given as




T ′

N′

B′


=




0 κ 0

κ 0 τ
0 −τ 0







T

N

B


 , (3)

where〈T,T〉 = −1, 〈N,N〉 = 1, 〈B,B〉 = 1, 〈T,N〉 = 〈T,B〉 = 〈N,B〉 = 0 andκ andτ are curvature and torsion of the

spacelike curve, respectively [14].
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According to Lorentzian causal characters of the surfaceSand the curveα(s) on S, the Darboux derivative formulae are

given as follows:

(i) If both the curve and surface are spacelike ones, then theformulae are




η ′
1(s)

η ′
2(s)

η ′
3(s)


=




0 ρg ρn

−ρg 0 τg

ρn τg 0







η1(s)

η2(s)

η3(s)


 , (4)

(ii) If both the curve and surface are timelike ones, then theformulae are




η ′
1(s)

η ′
2(s)

η ′
3(s)


=




0 ρg ρn

ρg 0 −τg

ρn τg 0







η1(s)

η2(s)

η3(s)


 . (5)

In these formulae,ρg,ρn andτg are called the geodesic curvature, the normal curvature, and the geodesic torsion,

respectively [14].

A ruled surface in dual space is represented by the followingdual unit vectorial fuction

−→
X (t) = x(t)+ ξ x∗(t), (6)

whereξ = (0,1) is the dual unit. Let the vectors

X1(t) = x1(t)+ ξ x∗1(t),

X2(t) =
X′

1(t)∥∥X′
1(t)

∥∥ =
X′

1(t)
P

,

X3(t) = X1(t)×X2(t)

(7)

be a trihedron depending on the ruled surface inD
3
1. This trihedron is called as Blaschke trihedron. It differsaccording to

the causal character of ruled surface as follows:

(i) If the ruled surface is a spacelike surface, then the Blaschke derivative formulae are




X′
1(t)

X′
2(t)

X′
3(t)


=




0 P 0

−P 0 Q

0 Q 0







X1(t)

X2(t)

X3(t)


 , (8)

(ii) If the ruled surface is a timelike surface, then the Blaschke derivative formulae are




X′
1(t)

X′
2(t)

X′
3(t)


=




0 P 0

P 0 Q

0 −Q 0







X1(t)

X2(t)

X3(t)


 . (9)

In equations (8), (9), the dual invariants of ruled surfacesare

P= p(t)+ ξ p∗(t), Q= q(t)+ ξ q∗(t),

whereP= ‖X′
1(t)‖ ,Q= 〈X′

2(t),X3(t)〉 [1].

Let Sandα be a surface and a curve, respectively, inE3
1. The points of the curveα and the tangent vectors of the surface
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Sat the same points which constitutes a geometric being are called as strip [13].

Strips which satisfy the conditionρn = 〈η ′
1,η3〉= 0 are called osculating strips [3].

If the moments of the Darboux vector at the pointα(s) are taken with respect to origin in the coordinate system

(O;x,y,z), the dual unit vectors which are defined as

Xi(s) = ηi(s)+ ξ η∗
i (s) = ηi(s)+ ξ (α(s)×ηi(s)),1≤ i, j ≤ 3 (10)

form the base{X1(s),X2(s),X3(s)} in dual Lorentz space and these vectors have the following property

〈
Xi(s),Xj (s)

〉
=

{
ε(Xi) if i = j

0 if i 6= j.

When the pointα(s) traces the curveα in Lorentz space, the dual unit vectorX1(s) generates the surface in dual Lorentz

space. The frame

{X1(s),X2(s),X3(s)}

belonging to the generatorX1(s) is the Blaschke trihedron of the surface.

3 The characterizations between spacelike osculating strip curves and spacelike ruled surfaces

in D
3
1

In this condition, we choose both the curveα and the ruled surfaceX1 as a spacelike curve and a spacelike surface,

respectively. The vectorα(s) is written with respect to Darboux vector is

α(s) = m(s)η1(s)+n(s)η2(s)+ k(s)η3(s), (11)

wherem= m(s),n= n(s),k= k(s).

Hence we obtain the following relations

X1(s) = η1(s)+ ξ [−k(s)η2(s)−n(s)η3(s)],

X2(s) = η2(s)+ ξ [k(s)η1(s)+m(s)η3(s)],

X3(s) = η3(s)+ ξ [−n(s)η1(s)+m(s)η2(s)].

(12)

If the coefficientsm(s),n(s),k(s) are found, then the spacelike ruled surfaceX1(s) can be determined with respect to the

invariants of the curveα(s). Differentiating (11) with respect tos, and then substituting (4) in it gives





m′(s)+ρgn(s)+ρnk(s) = 1,

m(s)ρg+n′(s)+ k(s)τg = 0,

m(s)ρn+n(s)τg+ k′(s) = 0.

(13)

Since the condition for the curveα to be an osculating strip curve, that isρn = 0, the equation (13) becomes





m′(s)+ρgn(s) = 1,

m(s)ρg+n′(s)+ k(s)τg = 0,

n(s)τg+ k′(s) = 0.

(14)
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We will study the sytem of differential equations (14) for certain special cases as follows:

Case 1. If m(s) = 0, the curveα is located in affine subspace combined with the vector spaceSp{η2(s),η3(s)} at the

pointα(s), then the system (14) turns into 



ρgn(s) = 1,

n′(s)+ k(s)τg = 0,

n(s)τg+ k′(s) = 0.

(15)

From (15)2 and (15)3, we have

k′′(s)−
τ ′g
τg

k′(s)− τ2
gk(s) = 0. (16)

If we change the parameter ast =
s∫
0
τgds, we obtain

d2k
dt2

− k= 0. Thus the solution ofk is as follows:

k= c1e
(

s∫

0
τgds)

+ c2e
−(

s∫

0
τgds)

,
(17)

wherec1 andc2 are real constants. Also from (15)1, it is clear that

n(s) =
1
ρg

. (18)

Rewriting (17) and (18) in (11), we obtain the curveα as

α(s) =
1
ρg

η2(s)+ [c1e
(

s∫

0
τgds)

+ c2e
−(

s∫

0
τgds)

]η3(s). (19)

Thereby, Blaschke vectors of the spacelike ruled surfaceX1(s) are determined by the invariants of Darboux trihedron as

follows:

X1(s) = η1(s)+ ξ [−[c1e
(

s∫

0
τgds)

+ c2e
−(

s∫

0
τgds)

]η2(s)−
1
ρg

η3(s)],

X2(s) = η2(s)+ ξ [c1e
(

s∫

0
τgds)

+ c2e
−(

s∫

0
τgds)

]η1(s),

X3(s) = η3(s)+ ξ [−
1
ρg

η1(s)].

(20)

Thus we can give the following result.

Corollary 1. The curveα is determined by (19) and the Blaschke vectors of spacelike ruled surface X1(s) are determined

by the invariants of Darboux trihedron as in (20).

If c1 = c2 = 0, the equation (20) becomes

X1(s) = η1(s)+ ξ [−
1
ρg

η3(s)],

X2(s) = η2(s),

X3(s) = η3(s)+ ξ [−
1
ρg

η1(s)].

(21)
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Differentiating (21)1 and (21)3 with respect to s, and then using (8), we have

p= ρg, p∗ =−
τg

ρg
, q= τg, q∗ = 1. (22)

Corollary 2. The real and dual parts of the dual invariants of spacelike ruled surface X1 are obtained as in (22).

Case 2. If n(s) = 0, the curveα is located in affine subspace combined with the vector space Sp{η1(s),η3(s)} at the

pointα(s), hence the system (14) turns into





m′(s) = 1,

m(s)ρg+ k(s)τg = 0,

k′(s) = 0.

(23)

From (23)1 and (23)3, we have

m= s+ c1, k= c2 (24)

and also from (23)2, we obtain a ratio between the geodesic torsion and the geodesic curvature as

ρg

τg
=−

c2

s+ c1
.

Rewriting (24) in (11), we obtain the curveα as

α(s) = (s+ c1)η1(s)+ c2η3(s). (25)

Thereby, Blaschke vectors of the spacelike ruled surface X1(s) are determined by the invariants of Darboux trihedron as

follows:
X1(s) = η1(s)+ ξ [−c2η2(s)],

X2(s) = η2(s)+ ξ [c2η1(s)+ (s+ c1)η3(s)],

X3(s) = η3(s)+ ξ [(s+ c1)η2(s)].

(26)

Thus we can give the following result:

Corollary 3. The curveα is determined by (25) and the Blaschke vectors of spacelike ruled surface X1(s) are determined

by the invariants of Darboux trihedron as in (26).

If c1 = c2 = 0, the equation (20) becomes

X1(s) = η1(s),

X2(s) = η2(s)+ ξ (sη3(s)),

X3(s) = η3(s)+ ξ (sη2(s)).

(27)

Differentiating (27)1 and (27)3 with respect to s, and then using (8), we have

p= ρg, p∗ = 0, q= τg, q∗ = 1. (28)

Thus we can give the following result.

Corollary 4. The real and dual parts of the dual invariants of spacelike ruled surface X1 are obtained as in (28).

From (28) and (1), we get the following result.
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Corollary 5. If c1 = c2 = 0, then the spacelike ruled surface generated by the line X1 is a developable surface.

Case 3. If k(s) = 0, the curveα is located in affine subspace combined with the vector space Sp{η1(s),η2(s)} at the

pointα(s), then the system (14) turns into 



m′(s)+ρgn(s) = 1,

m(s)ρg+n′(s) = 0,

n(s)τg = 0.

(29)

From (29)1 and (29)3, we have

m′′(s)+
ρ ′

g

ρg
(1−m′(s))−ρ2

gm(s) = 0. (30)

If we change the parameter as t=
s∫
0
ρgds in (30), we obtain

d2m
dt2

−m=
ρ ′

g

ρ3
g
.

Thus the solution of m is as follows:

m= c1e
(

s∫

0
ρgds)

+ c2e
(−

s∫

0
ρgds)

+
1

D2−1
(−

·
ρg

ρ3
g
), (31)

where c1 and c2 are real constants. Also from (29)3, it is clear that

n(s) = 0. (32)

Rewriting (31) and (32) in (11), we obtain the curveα as

α(s) = [c1e
(

s∫

0
ρgds)

+ c2e
(−

s∫

0
ρgds)

+
1

D2−1
(−

·
ρg

ρ3
g
)]η1(s), (33)

where c1,c2 ∈ R,
·

ρg =
dρg

dt
,D = d

dt .

Thereby, Blaschke vectors of the spacelike ruled surfaceX1(s) are determined by the invariants of Darboux trihedron as

follows:
X1(s) = η1(s),

X2(s) = η2(s)+ ξ [c1e
(

s∫

0
ρgds)

+ c2e
(−

s∫

0
ρgds)

+
1

D2−1
(−

·
ρg

ρ3
g
)]η3(s),

X3(s) = η3(s)+ ξ [c1e
(

s∫

0
ρgds)

+ c2e
(−

s∫

0
ρgds)

+
1

D2−1
(−

·
ρg

ρ3
g
)]η2(s).

(34)

Thus we can give the following result.

Corollary 6. The curveα is determined by (33) and the Blaschke vectors of spacelike ruled surface X1(s) are determined

by the invariants of Darboux trihedron as in (34).
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If c1 = c2 = 0, the equation (34) becomes

X1(s) = η1(s),

X2(s) = η2(s)+ ξ [
1

D2 (
ρ ′

g

ρg
)]η3(s),

X3(s) = η3(s)+ ξ [
1

D2 (
ρ ′

g

ρg
)]η2(s).

(35)

Differentiating (35)1 and (35)3 with respect tos, and then using (8), we have

p= ρg, p∗ = 0, q= τg, q∗ = 0. (36)

Thus we can give the following result.

Corollary 7. The real and dual parts of the dual invariants of spacelike ruled surface X1 are obtained as in (22).

From (36) and (1), we get the following result.

Corollary 8. If c1 = c2 = 0, then the spacelike ruled surface generated by the line X1 is a developable surface.

4 The characterizations between timelike osculating strip curves and timelike ruled surfaces in

D
3
1

In this condition, we choose both the curveα and the ruled surfaceX1 as a timelike curve and a timelike surface,

respectively. The vectorα(s) is written with respect to Darboux vector as

α(s) = m(s)η1(s)+n(s)η2(s)+ k(s)η3(s), (37)

wherem= m(s),n= n(s),k= k(s).

Hence we obtain the following relations

X1(s) = η1(s)+ ξ [−k(s)η2(s)+n(s)η3(s)],

X2(s) = η2(s)+ ξ [−k(s)η1(s)+m(s)η3(s)],

X3(s) = η3(s)+ ξ [n(s)η1(s)+m(s)η2(s)].

(38)

If the coefficientsm(s),n(s),k(s) are found, then the timelike ruled surfaceX1(s) can be determined with respect to the

invariants of the curveα(s). Differentiating (37) with respect tos, and then substituting (5) in it gives





m′(s)+ρgn(s)+ρnk(s) = 1,

m(s)ρg+n′(s)+ k(s)τg = 0,

m(s)ρn−n(s)τg+ k′(s) = 0.

(39)

Since the condition for the curveα to be a osculating strip curve, that isρn = 0, the equation (39) becomes





m′(s)+ρgn(s) = 1,

m(s)ρg+n′(s)+ k(s)τg = 0,

−n(s)τg+ k′(s) = 0.

(40)
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We will study the sytem of differential equations (40) for certain special cases as follows:

Case 1. If m(s) = 0, the curveα is located in affine subspace combined with the vector spaceSp{η2(s),η3(s)} at the

pointα(s), then the system (40) turns into 



ρgn(s) = 1,

n′(s)+ k(s)τg = 0,

−n(s)τg+ k′(s) = 0.

(41)

From (41)2 and (41)3, we have

k′′(s)−
τ ′g
τg

k′(s)+ τ2
gk(s) = 0. (42)

If we change the parameter ast =
s∫
0
τgds, we obtain

d2k
dt2

+ k= 0. Thus the solution ofk is as follows:

k= c1cos(
s∫
0
τgds)+ c2sin(

s∫
0
τgds), (43)

wherec1 andc2 are real constants. Also from (41)1, it is clear that

n(s) =
1
ρg

. (44)

Rewriting (43) and (44) in (37), we obtain the curveα as

α(s) =
1
ρg

η2(s)+ [c1cos(
s∫
0
τgds)+ c2sin(

s∫
0
τgds)]η3(s). (45)

Thereby, Blaschke vectors of the timelike ruled surfaceX1(s) are determined by the invariants of Darboux trihedron as

follows:

X1(s) = η1(s)+ ξ [−[c1cos(
s∫
0
τgds)+ c2sin(

s∫
0
τgds)]η2(s)+

1
ρg

η3(s)],

X2(s) = η2(s)+ ξ [−[c1cos(
s∫
0
τgds)+ c2sin(

s∫
0
τgds)]η1(s)],

X3(s) = η3(s)+ ξ [
1
ρg

η1(s)].

(46)

Thus we can give the following result.

Corollary 9. The curveα is determined by (45) and the Blaschke vectors of the timelike ruled surface X1(s) are determined

by the invariants of Darboux trihedron as in (46).

If c1 = c2 = 0, the equation (46) turns

X1(s) = η1(s)+ ξ [
1
ρg

η3(s)],

X2(s) = η2(s),

X3(s) = η3(s)+ ξ [
1
ρg

η1(s)].

(47)

Differentiating (47)1 and (47)3 with respect tos, and then using (9), we have

p= ρg, p∗ =
τg

ρg
, q=−τg, q∗ =−1. (48)

Corollary 10. The real and dual parts of the dual invariants of the timelikeruled surface X1 are obtained as in (48).
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Case 2. If n(s) = 0, the curveα is located in affine subspace combined with the vector spaceSp{η1(s),η3(s)} at the point

α(s), then the system (40) turns into 



m′(s) = 1,

m(s)ρg+ k(s)τg = 0,

k′(s) = 0.

(49)

From (49)1 and (49)3, we have

m= s+ c1, k= c2 (50)

and also from (49)2, we obtain a ratio between the geodesic torsion and the geodesic curvature as

ρg

τg
=−

c2

s+ c1
.

Rewriting (50) in (37), we obtain the curveα as

α(s) = (s+ c1)η1(s)+ c2η3(s). (51)

Thereby, Blaschke vectors of the timelike ruled surfaceX1(s) are determined by the invariants of Darboux trihedron as

follows:
X1(s) = η1(s)+ ξ [−c2η2(s)],

X2(s) = η2(s)+ ξ [−c2η1(s)+ (s+ c1)η3(s)],

X3(s) = η3(s)+ ξ [(s+ c1)η2(s)].

(52)

Thus we can give the following result.

Corollary 11. The curveα is determined by (51) and the Blaschke vectors of timelike ruled surface X1(s) are determined

by the invariants of Darboux trihedron as in (52).

If c1 = c2 = 0, the equation (52) becomes

X1(s) = η1(s),

X2(s) = η2(s)+ ξ (sη3(s)),

X3(s) = η3(s)+ ξ (sη2(s)).

(53)

Differentiating (53)1 and (53)3 with respect tos, and then using (9), we have

p= ρg, p∗ = 0, q=−τg, q∗ =−1. (54)

Thus we can give the following result.

Corollary 12. The real and dual parts of the dual invariants of the timelikeruled surface X1 are obtained as in (54).

From (54) and (1), we get the following result.

Corollary 13. If c1 = c2 = 0, then the timelike ruled surface generated by the line X1 is a developable surface.

Case 3. If k(s) = 0, the curveα is located in affine subspace combined with the vector spaceSp{η1(s),η2(s)} at the point

α(s), then the system (40) turns into 



m′(s)+ρgn(s) = 1,

m(s)ρg+n′(s) = 0,

−n(s)τg = 0.

(55)
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From (55)1 and (55)3, we have

m′′(s)+
ρ ′

g

ρg
(1−m′(s))−ρ2

gm(s) = 0. (56)

If we change the parameter ast =
s∫
0
ρgds in (56), we obtain

d2m
dt2

−m=
ρ ′

g

ρ3
g
.

Thus the solution ofm is as follows:

m= c1e
(

s∫

0
ρgds)

+ c2e
(−

s∫

0
ρgds)

+
1

D2−1
(−

·
ρg

ρ3
g
), (57)

wherec1 andc2 are real constants. Also from (55)3, it is clear that

n(s) = 0. (58)

Rewriting (57) and (58) in (37), we obtain the curveα as

α(s) = [c1e
(

s∫

0
ρgds)

+ c2e
(−

s∫

0
ρgds)

+
1

D2−1
(−

·
ρg

ρ3
g
)]η1(s), (59)

wherec1, c2 ∈ R,
·

ρg =
dρg

dt
,D =

d
dt
.

Thereby, Blaschke vectors of the timelike ruled surfaceX1(s) are determined by the invariants of Darboux trihedron as

follows:
X1(s) = η1(s),

X2(s) = η2(s)+ ξ [c1e
(

s∫

0
ρgds)

+ c2e
(−

s∫

0
ρgds)

+
1

D2−1
(−

·
ρg

ρ3
g
)]η3(s),

X3(s) = η3(s)+ ξ [c1e
(

s∫

0
ρgds)

+ c2e
(−

s∫

0
ρgds)

+
1

D2−1
(−

·
ρg

ρ3
g
)]η2(s).

(60)

Thus we can give the following result.

Corollary 14. The curveα is determined by (59) and the Blaschke vectors of timelike ruled surface X1(s) are determined

by the invariants of Darboux trihedron as in (60).

If c1 = c2 = 0, the equation (60) becomes

X1(s) = η1(s),

X2(s) = η2(s)+ ξ [
1

D2−1
(

ρ ′
g

ρg
)]η3(s),

X3(s) = η3(s)+ ξ [
1

D2−1
(

ρ ′
g

ρg
)]η2(s).

(61)

Differentiating (61)1 and (61)3 with respect tos, and then using (9), we have

p= ρg, p∗ = 0, q= τg, q∗ = 0. (62)
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Thus we can give the following result.

Corollary 15. The real and dual parts of the dual invariants of the timelikeruled surface X1 are obtained as in (62).

From (62) and (1), we get the following result.

Corollary 16. If c1 = c2 = 0, then the timelike ruled surface generated by the line X1 is a developable surface.

5 Conclusion

In this paper, the conditions between osculating strip curves and ruled surfaces were studied in dual Lorentz spaceD
3
1. For

this study, a system of differential equations characterizing both spacelike and timelike ruled surfaces were established in

dual Lorentz spaceD3
1 by using the invariant quantities of osculating strip curves on the given ruled surfaces. Then the

solutions of these systems were obtained for special cases.Regarding to these special solutions, some results of relations

between osculating strip curves and ruled surfaces were given in dual Lorentz spaceD3
1.
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