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Abstract: In this work, we study the conditions between osculatinip €turves and ruled surfaces in Lorentzian space. For thdyst
we establish a system of differential equations charagteriboth spacelike and timelike ruled surfaces in Lore@mtzpace by using
the invariant quantities of osculating strip curves on tiveigruled surfaces. We obtain the solutions of these systenspecial cases.
Regarding to these special solutions, we give some reduiétadions between osculating strip curves and ruled sadan Lorentzian
space.
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1 Introduction

The theory of Klein geometry is of invariants of a transittvensformation group. The structure of the underlying Lie
group is an essential element in geometry. This fact can dmynseen in the theory of ruled surfaces. The first studies
from this perspective were made by W. Blaschke and E. Stuaynfain idea is to replace points by lines as fundamental
building blocks of geometric being§][

The relations between curves and ruled surfaces were fiuest diy Blaschke in3]. Blaschke established this relation by
means of Study theorem which works in dual space. By Study, nuégd surfaces are considered as spherical curves in
dual space. The conditions between curves and ruled ssrfgeee studied by establishing a system of differential
equations which determined ruled surfaces in Euclideacesipe[7].

Based on the thought "curve-surface strip”, the conditibesveen geodesic curves and ruled surfaces were dealt with
by Pekmen 10] by means of Blaschke invariants i8][ Later, Sisman wrote an MA dissertation about this peotl He
tried to solve the system of differential equations detaing ruled surfaces in dual Euclidean space by using the
invariants of the surface strip curves, he couldn’t obthangeneral solution of this system. But he had the solutigns b
provided that the surface strip curves were osculatingyature and geodesic strip curvel?]. After Sisman’'s MA
thesis, Pasinli took the subject into consideration by reia@ithe vanishing of Darboux invariant@] [ Also, Ayyildiz
studied the conditions between curves and semi-ruled cesfan Lorentz 3-space]. Then the conditions between
geodesic curves and ruled surfaces were studied in Loeenggiace by Ayyildizl]. Some interesting results between
curves and ruled surfaces were also obtained in dual Ldeengpace in4,5].

In this work, we study the conditions between osculating sturves and ruled surfaces in dual Lorentz sdﬁﬁeFor
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this study, we establish a system of differential equaticmaracterizing both spacelike and timelike ruled surfaces
dual Lorentz spac@? by using the invariant quantities of osculating strip cgrea the given ruled surfaces. We obtain
the solutions of these systems for special cases. Regadlihgse special solutions, we give some results of relation
between osculating strip curves and ruled surfaces in doaritz spac@)?.

2 Preliminaries

Let R? be the three-dimensional Minkowski space, that is, thestiienensional real vector spaé with the metric
(dx dx) =dx¢ + dx3 — dx,

where(xq, %2, %3) denotes the canonical coordinatesh An arbitrary vectox of Ef is said to be spacelike {f,x) > 0
or x = 0, timelike if (x,x) < 0 and lightlike or null if(x,x) = 0 andx # 0. A timelike or light-like vector inE$ is said to
be causal. Fok € E3 the norm is defined byx| = /[(x,X)], then the vectox is called a spacelike unit vector if
(x,x) = 1 and a timelike unit vector ifx,x) = —1. Similarly, a regular curve iEf can locally be spacelike, timelike or
null (lightlike), if all of its velocity vectors are spacké, timelike or null (lightlike), respectivelyg].

Dual numbers are given by the set
D = {X=x+&x";x,X* € R},

where the symbof designates the dual unit with the propef/= 0 for & # 0. Dual angle is defined B=06+ £6%,
wheref is the projected angle between two spearséinid the shortest distance between them. Th®s#tdual numbers
is a commutative ring the the operatiohsand-. The set

DP=DxDxD={¢=09+&¢"9,0" c E3}

is a module over the rin [15].

Foranya=a-+ £a*, b= b+ &b* € D3, the Lorentzian inner product éfandb is defined by
<ab>=<ab> +é(<a",b>+ <ab*>).

The dual spac®3 together with this Lorentzian inner product is called thaldiorentzian space and is denotedIby
[14]. For @ # 0, the norm||@|| of ¢ is defined by

18l =v<8,6>.

A dual vector® = w+ éw* is called dual spacelike vector (£, @) > 0 or @ = 0, dual timelike vector if(@, @) < 0
and dual null (lightlike) vector if &, @) = 0 for @ # 0. Therefore, an arbitrary dual curve which is a differentialpping
onto]DDE can locally be dual spacelike, dual timelike or dual nultsf velocity vector is dual spacelike, dual timelike or
dual null, respectively. Also, for the dual vect@sB € Df, Lorentzian vector product of these dual vectors is defined by

axb=axb+&(@ xb+axb?),

wherea x b is the classical cross product according to the signdture-, —) [14].
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In D?, the dual Lorentzian unit sphere is given as
S={0=0+&¢%118] = (1,0);4,¢" € R}, ¢ spacelikg,
and the dual hyperbolic unit sphere is defined as

HE={$ =0 +&¢% 18] = (1,0);¢,0" € R}, ¢ timelike}.

The oriented timelike and spacelike Iines‘E]flare presented by timelike and spacelike unit vectors withetkomponents
in ]D)f, respectively. A differentiable curve dﬂg corresponds to a timelike ruled surface while a differdriiacurve on
S corresponds to any ruled surfadel].

Theorem 1. (E. Study) The oriented lines irPRre in one-to-one correspondence with the points of the doilsphere
AA=1inD3[11].

A differentiable curve A(u) on the dual unit sphere, depagdin a real unit parameter u, represents a differentiable
family of straight lines in R : a ruled surface. The lines A(u) are the generators or ralafghe surface.

The distribution parameter of the ruled surface determimed
X(t) = x(t) + Ex*(1)

is defined by

oew)
O= WX @)

If & =0, p* =0 then the ruled surface is a developable surfagte [

Let a curvea(s) on a surfaceM in Lorentz space be given by the arc-length parameter. Theetitrihedron which
belongs to this curve differs as follows:

The Frenet formulae of a spacelike curve with timelike ppatnormal are given as

T O0kO T
N|=[kOT| |N|, (2)
B’ 0tr0||B

where(T,T) =1, (N,N) = -1, (B,B) =1, (T,N) = (T,B) = (N,B) = 0 andk andt are curvature and torsion of the
spacelike curve, respectivel{].

The Frenet formulae of a timelike curve are given as

T’ 0kO T
N|=|k 01||N], 3
B 0-10 B

where(T,T) = -1, (N,N) =1, (B,B) =1, (T,N) = (T,B) = (N,B) = 0 andk andt are curvature and torsion of the
spacelike curve, respectively4].
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According to Lorentzian causal characters of the surfaard the curvex(s) on S, the Darboux derivative formulae are
given as follows:

() If both the curve and surface are spacelike ones, thefotiheulae are

ni(s) 0 pgpn| | M(s
nys) | =|—pg 0 1g | | N2(s) | > 4)
n3(s) pn Tg O | | N3(s)

(ii) If both the curve and surface are timelike ones, therftieulae are

ni(s) 0 pg pn n1(s)
nys) | =|pg 0 —Tg| | N2(s) | - )
N5(s) PnTg O | [na(s)

In these formulaepg, pn and 1y are called the geodesic curvature, the normal curvatuckttengeodesic torsion,
respectively 14].

A ruled surface in dual space is represented by the followirg unit vectorial fuction
X () =x(t) + &x (1), (6)

whereé = (0,1) is the dual unit. Let the vectors

XZ(t) = ’ H = ) (7)

be a trihedron depending on the ruled surfac@inThis trihedron is called as Blaschke trihedron. It diffacsording to
the causal character of ruled surface as follows:

(i) If the ruled surface is a spacelike surface, then thedlls derivative formulae are

X1 (1) 0OPO X1(t)
Xt) | =|-POQ| | X(t)], (8)
X5(t) 0 QO | Xs(t)

(i) If the ruled surface is a timelike surface, then the Blase derivative formulae are

X! (t) 0P 0] [X()
Xt | =[P 0 Q| |X() 9)
X5(t) 0-QO0] [Xat)

In equations (8), (9), the dual invariants of ruled surfaaes
P=p(t)+<p*(t), Q=q(t) +&a"(t),
whereP = [[X{(t)]|,Q = (X3(t), Xs(t)) [1].

LetSanda be a surface and a curve, respectivel;Efm The points of the curve and the tangent vectors of the surface
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Sat the same points which constitutes a geometric being #szlees strip 13].
Strips which satisfy the conditioo, = (n7,ns) = 0 are called osculating strip3][

If the moments of the Darboux vector at the poinfs) are taken with respect to origin in the coordinate system
(O;x,Y,2), the dual unit vectors which are defined as

Xi(s) = ni(s) +&ny(s) = ni(s) + &(a(s) x ni(s)),1 <i,j <3 (10)

form the basg X;(s), X2(s), X3(s)} in dual Lorentz space and these vectors have the followiogegity

(X%(s),Xi(s)) = {é(i)f i);f ,' |

When the pointx(s) traces the curve in Lorentz space, the dual unit veci(s) generates the surface in dual Lorentz
space. The frame

{X1(8), X2(8), X3(8) }

belonging to the generato (s) is the Blaschke trihedron of the surface.

3 The characterizations between spacelike osculating strip curves and spacelikeruled surfaces
inD3

In this condition, we choose both the cureand the ruled surfac¥; as a spacelike curve and a spacelike surface,
respectively. The vectar (s) is written with respect to Darboux vector is

a(s) =m(s)n(s) +n(s)nz(s) +k(s)na(s), (11)
wherem= m(s),n = n(s),k =Kk(s).

Hence we obtain the following relations

S)rlg(S)], (12)

If the coefficientan(s),n(s), k(s) are found, then the spacelike ruled surf&gés) can be determined with respect to the
invariants of the curver(s). Differentiating (11) with respect tg and then substituting (4) in it gives

() + pgn(s) + pok(s) =
m(s)pg + 1 (5) +K(9)Tg
M(S)pn+N()Tg +K'(9)

)

1
0, (13)
0.

Since the condition for the cunae to be an osculating strip curve, thatds= 0, the equation (13) becomes

m'(s) +pgn(s) =1,
m(s)pg + 1 (s) +k(S)Tg = 0, (14)
n(s)tg+ kK (s) =0.
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We will study the sytem of differential equations (14) forteén special cases as follows:

Case 1. If m(s) =0, the curven is located in affine subspace combined with the vector sBafgx(s),ns(s)} at the
pointa (s), then the system (14) turns into
pgn(s) =1,
n'(s) +k(s)1g =0, (15)
n(s)1g+K(s) =0.
From (15) and (15}, we have

K'(s) — T—ék’(s) —12k(s) =0 (16)
Tq 9 '

2

s k
If we change the parameterias: [14ds we obtain% —k=0. Thus the solution df is as follows:
0

(7r ds) 7(7'r ds)
k:cleog +coe 0° , 17)

wherec; andc; are real constants. Also from (45)t is clear that

n(s) = —. 18
= (18)
Rewriting (17) and (18) in (11), we obtain the cuveas
1 (Jrgds (109
a(s) = —nz2(s)+[cieo ’ +coe © ’ 1n3(s). (29)

Pg

Thereby, Blaschke vectors of the spacelike ruled surfa¢s) are determined by the invariants of Darboux trihedron as
follows:

(jr ds) —(jr ds)
Xa(8) = M(8) + &[—[cre® " +coe 0 ]nz<s>—pign3<s>1,
Jrods  —(frgds 20
(s = a9+ £l e 6 s (20)
X3(s) = n3(s)+ E[—p—gnl(S)]-

Thus we can give the following result.

Corollary 1. The curven is determined by (19) and the Blaschke vectors of spacelikel surface X(s) are determined
by the invariants of Darboux trihedron as in (20).

If c1 = ¢, = 0, the equation (20) becomes

Xa(8) = Na(s) + z[pig%(s)],
Xo(S) = 12(9). (21)
Xa(s) n3<s>+z[pignl<s>1
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Differentiating (21) and (21} with respect to sand then using (8), we have

T
p=pg P'=—-20=14q =1 (22)
Py

Corollary 2. The real and dual parts of the dual invariants of spacelikedwsurface X are obtained as in (22).

Case 2. If n(s) =0, the curveq is located in affine subspace combined with the vector spafr:18),n3(s)} at the
pointa(s), hence the system (14) turns into

m(s) =1,
m(s)pg +K(s)Tg =0, (23)
K(s)=0
From (23) and (23}, we have
m=s+c1, k=0 (24)

and also from (23), we obtain a ratio between the geodesic torsion and the géodesvature as

P ©
Tg s+c1
Rewriting (24) in (11), we obtain the cureeas
a(s) = (s+c1)na(s) +cans(s). (25)

Thereby, Blaschke vectors of the spacelike ruled surfacs) dre determined by the invariants of Darboux trihedron as
follows:

Xi(s) = Na(s) + & [—cana(9)],
Xa(s) = n2(s) + &[c2na(s) + (s+c1)ns(9)], (26)
X3(s) = na(s) +&[(s+c1)n2(9)]-

Thus we can give the following result:

Corollary 3. The curven is determined by (25) and the Blaschke vectors of spacellke surface X(s) are determined
by the invariants of Darboux trihedron as in (26).

If c1 = ¢ = 0, the equation (20) becomes

Xl(s) = ’71(3 )
Xa(s) = N2(s) + & (sn3(9)), (27)
X3(s) = ns(s) + & (sn2(s)

Differentiating (27) and (27} with respect to sand then using (8), we have

P=pg, P*=0,0=Tg, 0" =1 (28)
Thus we can give the following result.
Corollary 4. The real and dual parts of the dual invariants of spacelikedwsurface X are obtained as in (28).

From (28) and (1), we get the following result.
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Corollary 5. If c; = ¢ = 0, then the spacelike ruled surface generated by the linis & developable surface.

Case 3. If k(s) =0, the curvea is located in affine subspace combined with the vector spafg:18),n2(s)} at the
pointa(s), then the system (14) turns into

m(s) + pgn(s) = 1,
m(s)pg+n'(s) =0, (29)
n(s)tg =0.
From (29) and (29}, we have )
m’(s) + Z—Z(l m(s)) — pgm(s) = 0. (30)

S
If we change the parameter ast [ pgds in (30) we obtain
0

d?m Py
— —m= —.
dt2 o
Thus the solution of m is as follows:
(fogds  (~fpgds :
m=ced  +ce o  + D21 1(f%), (31)
- g
where g and ¢ are real constants. Also from (29)it is clear that
n(s) =0. (32)
Rewriting (31) and (32) in (11), we obtain the curwveas
(Jogds  (~fpgds 1 )
a(s)=[cied " +ce 0 4 o2 1(7%)]n1(s), (33)
- g
- dpg d
where g,c; € R, pg = W,D = G-

Thereby, Blaschke vectors of the spacelike ruled surfa¢s) are determined by the invariants of Darboux trihedron as

follows:
X1(s) = m(s),

(Jogds  (feds 1 p
= 0 0 - (—-=-=

XZ(S) '72(S)+E[Cle +Ce + D2 — 1( pg,)]n3(s)a (34)
(esdS  (lesds 1 py

X3(s) = n3(s) + &[cre © +coe + 02— 1( p3>]’72(s)-
9

Thus we can give the following result.

Corollary 6. The curven is determined by (33) and the Blaschke vectors of spacelikel surface X(s) are determined
by the invariants of Darboux trihedron as in (34).
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If c; = ¢, =0, the equation (34) becomes

Xu(s) = m(s),
Py
Py

Xa(s) = N2(s) + E[Dz(
Py

X3(s) = n3(s) + E[Dz(pg)]nz( S).

)In3(s), (35)

Differentiating (35) and (35} with respect tcs, and then using (8), we have
P=pg, pP*=0,9=1g,q" =0. (36)
Thus we can give the following result.
Corollary 7. The real and dual parts of the dual invariants of spacelikedwsurface X are obtained as in (22).
From (36) and (1), we get the following result.

Corollary 8. If c; = ¢ = 0, then the spacelike ruled surface generated by the linis 4 developable surface.

4 The characterizations between timelike osculating strip curves and timelike ruled surfacesin
D}

In this condition, we choose both the curgeand the ruled surfac¥; as a timelike curve and a timelike surface,
respectively. The vectar(s) is written with respect to Darboux vector as

a(s) =m(s)na(s) +n(s)nz(s) + k(s)ns(s), 387)

wherem=m(s),n = n(s),k = k(s).

Hence we obtain the following relations

X1(8) = N1(s) + &[—k(s)na(s) +n(s)ns(s)],
Xa(8) = N2(8) + & [=k(s)na(s) + m(s)n3(s)], (38)
X3(8) = N3(8) + £ [n(s)n1(s) + m(s)n2(s)]

If the coefficientam(s),n(s),k(s) are found, then the timelike ruled surfaXg(s) can be determined with respect to the
invariants of the curver(s). Differentiating (37) with respect tg and then substituting (5) in it gives

() + pgn(s) + pok(s) =
m(s)pg+11(9) +k(S)7g
M(S)on — N(9)Tg +K ()

)

1
0, (39)
0.

Since the condition for the cuna to be a osculating strip curve, thatds = 0, the equation (39) becomes

m'(s) + pgn(s) = 1,
m(s)pg +1V(9) +k(8)Ty = (40)
—n(s)rg+K(s) =0.
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We will study the sytem of differential equations (40) forteén special cases as follows:

Case 1. If m(s) =0, the curven is located in affine subspace combined with the vector sBafgx(s),ns(s)} at the
pointa (s), then the system (40) turns into
pgn(s) =1,
n'(s) +k(s)1g =0, (41)
—n(s)1g+K(s) =0.
From (41)» and (41}, we have

.[-l
K’(s) — T—gk’(s) +12k(s) = 0. (42)

9

S d’k
If we change the parameterias: [14ds we obtainw + k= 0. Thus the solution df is as follows:
0

S S
k = ¢ coq [ Tgds) + casin( [ Tgds), (43)
0 0

wherec; andc; are real constants. Also from (41)t is clear that

n(s) = Py’ (44)
Rewriting (43) and (44) in (37), we obtain the cunveas
a(s) = p—lgnz(s) +[c1 cos(Zngs) + czsin(ngds)]ng(s). (45)

Thereby, Blaschke vectors of the timelike ruled surfAgés) are determined by the invariants of Darboux trihedron as
follows:

X1(8) = Ma(s) + é[—[qcos(ngdsa + CzSin(ZngS)]nz(S) T p—lgrn(s)],
Xo(S) = 12(8) + € Hqcos(.Zmds) + czsin(.Z“rgdsﬂm(s)], (46)
Xa(8) = M15(8) + €[ = (9).
Py
Thus we can give the following result.

Corollary 9. The curver is determined by (45) and the Blaschke vectors of the timalilled surface X(s) are determined
by the invariants of Darboux trihedron as in (46).

If c; = ¢y =0, the equation (46) turns

1
Xu(s) = m(s) + E[p—gns(SH,
Xa(s) = na(s), (47)
1
X3(s) = na(s) + &[—na(s)].
Py
Differentiating (47) and (47} with respect tes, and then using (9), we have
* Tg *
P=pg P'=—,0=-Tg, 0 = -1 (48)

Pg

Corallary 10. The real and dual parts of the dual invariants of the timeliked surface X are obtained as in (48).
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Case2.If n(s) =0, the curvex is located in affine subspace combined with the vector sBae (s), n3(s)} at the point
a(s), then the system (40) turns into

m(s) =1,
m(s)pg +K(s)Tg =0, (49)
K(s)=0
From (49) and (49}, we have
m=s+cC1, K=¢Cp (50)

and also from (49) we obtain a ratio between the geodesic torsion and the geardesature as

P ©
Tg S+cr
Rewriting (50) in (37), we obtain the cureeas
a(s) = (s+c1)na(s) +cana(s). (51)

Thereby, Blaschke vectors of the timelike ruled surfigés) are determined by the invariants of Darboux trihedron as
follows:
X1(8) = N1(8) + &[—Cana(9)],
8) = N2(8) + §[—C2N1(s) + (s+c1)na(s)]; (52)
X3(s) = na(s) + &[(s+ca)na(s)]-

Thus we can give the following result.

Corallary 11. The curven is determined by (51) and the Blaschke vectors of timelilersurface X(s) are determined
by the invariants of Darboux trihedron as in (52).

If c; = ¢, =0, the equation (52) becomes

Xu(s) = m(s),
Xa(s) = N2(s) + & (sn3(9)), (53)
X3(s) = n3(s) + & (sn2(s)

Differentiating (53) and (53} with respect te, and then using (9), we have

P=pg P*=0,0=-Tg, 0" = -1 (54)
Thus we can give the following result.
Corollary 12. The real and dual parts of the dual invariants of the timelikked surface X are obtained as in (54).
From (54) and (1), we get the following result.

Corollary 13. If c; = ¢; = 0, then the timelike ruled surface generated by the linés>a developable surface.

Case3. If k(s) =0, the curven is located in affine subspace combined with the vector sBag: (s), n2(s)} at the point
a(s), then the system (40) turns into
m(s) +pgn(s) = 1,
m(s)pg+1(s) =0, (55)
—n(s)1g=0.
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From (55) and (55}, we have
Pg

m’(s) +
(s) %%

(1—1i(s)) — p2m(s) = O. (56)

S
If we change the parameterias: [pgdsin (56), we obtain
0

d?m Py
— —Mm= —.
dt2 [
Thus the solution ofmis as follows:
(Jpads  (~Jegdy 1 !
m=ced  +ce o  + 52 1(f%), (57)
- g
wherec; andc; are real constants. Also from (25)t is clear that
n(s) = 0. (58)
Rewriting (57) and (58) in (37), we obtain the cunveas
(Jrad9  (“Jpgdy 1 )
a(g) =i tee Ot gy (- oRIm(s) (59)
- g
- dpg d
h R =—=D=—.
wherecy, ¢ € R, py qt ai

Thereby, Blaschke vectors of the timelike ruled surfAgés) are determined by the invariants of Darboux trihedron as

follows:
X1(s) = m(s),

(Jods  (-Jods 1 pg
Xo(s) =M2(8) +&[cre® " +ce O+ o5 1(*p—3)]03(3), (60)
(Jogds (ol 1 pg

Xa(s) = Ma(8) + et e o+ mpa (— )l
Thus we can give the following result.

Corollary 14. The curvex is determined by (59) and the Blaschke vectors of timelilegrsurface X(s) are determined
by the invariants of Darboux trihedron as in (60).

If c; = ¢, =0, the equation (60) becomes

Xu(s) = m(s),

Xo(8) = 12(8) + &[5 1(2—;>m3<s>, 1)
X = 1) + £l (Ina(s).

Differentiating (61) and (61} with respect tes, and then using (9), we have

p=pg, p*=0,9=T1g, q" =0. (62)

(© 2016 BISKA Bilisim Technology
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Thus we can give the following result.
Corollary 15. The real and dual parts of the dual invariants of the timelikked surface X are obtained as in (62).
From (62) and (1), we get the following result.

Corollary 16. If c; = ¢, = 0, then the timelike ruled surface generated by the linés>a developable surface.

5 Conclusion

In this paper, the conditions between osculating stripesiand ruled surfaces were studied in dual Lorentz sJD%chr
this study, a system of differential equations charadiagiboth spacelike and timelike ruled surfaces were estaédi in
dual Lorentz spac@)f by using the invariant quantities of osculating strip csrea the given ruled surfaces. Then the
solutions of these systems were obtained for special cRsgmrding to these special solutions, some results ofopfat
between osculating strip curves and ruled surfaces weengivdual Lorentz spad@f.
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