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Abstract: This paper presents a fuzzy programming approach for solving Interval Multiobjective Solid Transportation Problem
(IMOSTP). In real world application, IMOSTP appears to be more realistic than a conventional Solid Transportation Problem (STP)
as available data is uncertain. In such a problem the solution process is very complex. By applying the order relation on the intervals, it
is first transformed into a crisp multiobjective solid transportation problem. After determining the individual optimal solution of each
objective, a fuzzy programming approach is constructed to achieve the Pareto optimal solution of IMOSTP. Finally, a numerical
example is illustrated to demonstrate the feasibility of the presented solution procedure.
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1 Introduction

In the area of mathematical programming, Transportation Problem (TP) is one of the well-known problems. The

common mathematical type of TP can be expressed in the form ofa Linear Programming (LP) and can be efficiently

solved by applying different traditional mathematical programming methods. Practical procedures for solving TP

obtained from simplex algorithm were introduced in 1963 by Dantzig [1].

Many different methods [2,3] have been presented for solving TP. In TP, two types of constraints are investigated to be

source constraint and destination constraint. But in practical applications, besides these two constraints, we encounter the

third type of constraint, which is known as, transportationconstraint or product type constraint. This third constraint is a

different type of transportation modes (conveyances) suchas trucks, cargo flights, goods trains, ships, etc. In this

position, TP converts Solid Transportation Problem (STP).STP was introduced by Shell [4] and Haley [5] proposed the

MODI method to solve STP. Afterward, various author’s [6,7,8,9,10] have introduced various methods for solving STP

in crisp as well as in the uncertain environment.

In order to deal with uncertainty, fuzzy set theory has been extensively employed to illustrate vagueness and

impreciseness in a decision process. Fuzzy set theory previously presented by Zadeh [17]. Furthermore, the theory of

interval numbers is suited to discuss vagueness and uncertainty. Besides, in most of the mathematical programming

problems, the objectives, constraints or the parameters are determined on the basis of certain forecasting by experts with

their former practices. In such cases, each experiment can be easily illustrated with interval numbers.

The interval theory was first developed by Moore [11] and redefined by Moore in [12]. Ishibuchi and Tanaka [13]
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presented some order relation between intervals for solving interval linear programming problems by converting those

into a crisp multiobjective programming problem. Many authors [14,15,16] considered another order relations between

intervals for solving LP.

In this paper, a fuzzy programming approach based on the theory of interval numbers is employed to solve the IMOSTP.

In the first step, the considered interval multiobjective solid transportation problem is converted into a crisp MOSTP.

Then the best and worst solutions of each objective functionare determined. In next step, the method based on fuzzy

programming tries to reach the better compromise solution which simultaneously satisfied different objectives. Finally,

the results of recommended fuzzy approach are compared withthe existing fuzzy approach [18].

The rest of this paper is organized as follows. In section 2 and section 3, some preliminary data about interval

programming is presented and an IMOSTP is formulated in section 4.Then a fuzzy programming approach in section 5 is

constructed for solving IMOSTP. Finally, a numerical example is given to illustrate the efficiency of the proposed

method in Section 6.

2 Preliminaries

In this section, we will give some basic definitions and concepts about the theory of interval numbers and STP.

2.1 Interval Numbers

Definition 1. (Moore [11]) An interval number is a number whose exact value is unknown, but a range within which the

value lies is known. Interval number is a number with both lower and upper bounds X∈
[

x
−
, x̄
]

where x
−
≤ x̄.

The main arithmetic operations on interval numbers can be defined as follows.

Definition 2. (Moore [11]) Let

x̃1 =

[

x1
−
, x̄1

]

and x̃2 =

[

x2
−
, x̄2

]

be two closed interval numbers. The following notations canbe satisfied,

x̃1+ x̃2 =

[

x1−
+ x2−

, x̄1+ x̄2

]

x̃1− x̃2 =

[

x1−
− x̄2, x̄1− x2−

]

x̃1∗ x̃2 =

[

min

(

x1
−

x2
−
,x1
−

x̄2, x̄1x2
−
, x̄1x̄2

)

,max

(

x1
−

x2
−
,x1
−

x̄2, x̄1x2
−
, x̄1x̄2

)]

x̃1÷ x̃2 =

[

x1−
, x̄1

]

1
[

x̄2,x2−

] .

When X∈
[

x
−
, x̄
]

is an interval number, its absolute value is the maximum of the absolute value of its endpoints:

|x|= max
(∣

∣

∣x−

∣

∣

∣ , |x̄|
)

.
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Definition 3. The center xc and xw of an interval number of X∈
[

x
−
, x̄
]

,

xc =
1
2

[

x
−
+ x̄
]

xw =
1
2

[

x̄− x
−

]

.

It is easily verifiable that̄x= xc+xw and x
−
= xc−xw.Also, Ishibuchi and Tanaka [13] defined the following order relations

between intervals.

Definition 4. (Ishibuchi and Tanaka [13]) Let

x̃=
[

x
−
, x̄
]

and ỹ=

[

y
−
, ȳ

]

are two closed interval numbers and then the order relation≤LR is defined as,

x̃≤LRỹ⇔ x
−
≤ y

−
and x̄≤ ȳ

x̃≤LRỹ⇔ x
−
≤LR y

−
and x̄ 6= ȳ.

Definition 5. (Ishibuchi and Tanaka [14]) The order relation≤CW between two interval numbers

x̃=
[

x
−
, x̄
]

and ỹ=

[

y
−
, ȳ

]

is defined as,

x̃≤CWỹ⇔ xC ≤ yC and xW ≤ yW.

x̃≤CWỹ⇔ x̃≤CW ỹ and x6= y.

The order relations≤CW and≤LR never conflicts with each other. Similarly, Ishibuchi and Tanaka [13] introduced≤∗
LR

and≤∗
CW .

2.2 Solid transportation problem

Suppose that there aremsources,n destinations andl conveyances. The idea of the STP is to design a transportation plan

so that the transportation cost is minimized. In order to develop the interval programming model for the STP, the following

concepts are satisfied,

i = {1,2, ...,m} index of origins.

j = {1,2, ...,n} index of destinations.

k= {1,2, ..., l} index of conveyances or different modes of transportation.

xi jk = amount ofkth type of commodity transported from theith origin to jth destination.

ci jk = the variable cost per unit amount ofkth type of commodity transported from theith origin to jth destination

which is independent of the amount of the commodity transported.

ai the total quantity ofkth type of commodity received byjth destination from all the sources.

b j the total quantity ofkth type of commodity available at theith origin to be supplied to all destinations.
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ek the total quantity of all types of commodities to be suppliedfrom ith origin to be jth destination.

In fact, in a transportation problem, the total amount transported from origini is no more thanai. Thus, the first

constraint can be formulated as
n

∑
j=1

l

∑
k=1

xi jk ≤ ai , i = 1,2, ...,m.

Also, the total amount transported fromm origins should satisfy the demand of destinationj. Then the second constraint

can be formulated as
m

∑
i=1

l

∑
k=1

xi jk ≥ b j , j = 1,2, ...,n.

Furthermore, the total amount transported by conveyancek is no more than its transportation capacity. Thus, the last

constraints can be given as
m

∑
i=1

n

∑
j=1

xi jk ≤ ek,k= 1,2, ..., l .

Then, the mathematical model of a STP can be formulated as follows:































































min

(

m
∑

i=1

n
∑
j=1

l
∑

k=1
ci jkxi jk

)

s.t.











































n
∑
j=1

l
∑

k=1
xi jk ≤ ai , i = 1,2, ...,m

m
∑

i=1

l
∑

k=1
xi jk ≥ b j , j = 1,2, ...,n

m
∑

i=1

n
∑
j=1

xi jk ≤ ek, k= 1,2, ..., l

xi jk ≥ 0, ∀i jk.

(1)

In problem (1), we need to minimize the total cost of transportation. We assume that the unit costs, the capacity of each

origin, destination and conveyance are all constant and denotedci jk ,ai ,b j ,ek.

3 Interval solid transportation problem

In practical applications, transportation cost, supplies, destinations and conveyances of a transportation plan is uncertain

as it depends on various factors such as efficiency of transportation modes, etc. Thus, in such conditions, DM is not sure

to make a decision about the transportation plan. Therefore, in problem (1), we assume that all coefficients of problem are

independent interval variables. Hence, IMOSTP can be formulated as follows,

min

(

m
∑

i=1

n
∑
j=1

l
∑

k=1
c̃i jkxi jk

)

s.t.











































n
∑
j=1

l
∑

k=1
xi jk ≤ ãi, i = 1,2, ...,m

m
∑

i=1

l
∑

k=1
xi jk ≥ b̃ j , j = 1,2, ...,n

m
∑

i=1

n
∑
j=1

xi jk ≤ ẽk,k= 1,2, ..., l

xi jk ≥ 0,∀i jk,

(2)
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wherec̃i jk , ãi , b̃ j , ẽk are interval coefficients of a STP denoted as ˜ci jk =
[

ci jk , c̄i jk
]

, ãi− = [ai , āi ] , b̃ j− =
[

b j , b̄ j
]

, and

ẽk = [ek, ēk] , respectively.

4 Interval multi objective solid transportation problem

Employing the above assumptions for the STP, the multiobjective model of STP with interval numbers is formulated as

follows,

minZ1 =

(

m

∑
i=1

n

∑
j=1

l

∑
k=1

c̃1
i jkxi jk

)

minZ2 =

(

m

∑
i=1

n

∑
j=1

l

∑
k=1

c̃2
i jkxi jk

)

· · ·

. . .

. . .

minZp =

(

m

∑
i=1

n

∑
j=1

l

∑
k=1

c̃p
i jkxi jk

)

s.t.











































n
∑
j=1

l
∑

k=1
xi jk ≤ ãi , i = 1,2, ...,m

m
∑

i=1

l
∑

k=1
xi jk ≥ b̃ j , j = 1,2, ...,n

m
∑

i=1

n
∑
j=1

xi jk ≤ ẽk,k= 1,2, ..., l

xi jk ≥ 0,∀i jk

(3)

Hossein et al. [19] recommended a solution process to optimize the interval multiobjective programming problems. The

method converted an interval linear programming method into two equivalent models for its lower bound and upper

bound. Thus, they get different optimal solutions for each objective function. Therefore, this paper formulates a fuzzy

programming based on interval arithmetic to optimize the interval multiobjective solid transportation problems,

simultaneously. By using the order relation≤∗
RC on the interval numbers, the supply and the conveyance constraints of

the a STP can be constructed as,
n

∑
j=1

l

∑
k=1

xi jk ≤ āi , i = 1,2, ...,m

n

∑
j=1

l

∑
k=1

xi jk ≤ (ãi)C, i = 1,2, ...,m

(4)

m

∑
i=1

n

∑
j=1

xi jk ≤ ēk, k= 1,2, ..., l

m

∑
i=1

n

∑
j=1

xi jk ≤ (ẽk)C, k= 1,2, ..., l .

(5)
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By using the order relation≤∗
LC , the demand constraint can be constructed as,

m

∑
i=1

l

∑
k=1

xi jk ≥ bj , j = 1,2, ...,n

m

∑
i=1

l

∑
k=1

xi jk ≥
(

b̃ j

)

C
, j = 1,2, ...,n.

(6)

If the objective is to minimizeZr (x) , (r = 1,2, ..., p) the solution of model (3) can be found as the set of efficient optimal

solutions of the following programming problem subject to supply, demand and conveyance constraints:

min(Zr
C (x) , Z̄

r (x)) , (r = 1,2, ..., p) (7)

where,Z̄r (x) is the upper bound of objective function with interval numbers andZr
C (x) is its center of objective function

with interval numbers.

If the original objective is to maximizeZr (x) ,(r = 1,2, ..., p) the solution of model (3) can be found as the set of

efficient solutions of the following objective problem:

max(Zr (x) ,Zr
C (x)) ,(r = 1,2, ..., p) (8)

where,Zr (x) is the upper bound of interval objective function andZr
C (x) is its center.

The construction method, the objective function of IMOSTP (3) is transformed into deterministic objective functions.

Then, each objective function optimizes subject to constraints set as a single programming problem, individually. In the

other words, for each objective function of IMOSTP (3), the range of objective functions are generated as

Zr
opt =

[

Zr
opt (x) , Z̄

r
opt (x)

]

,(r = 1,2, ..., p) .

Definition 6. The function Z: Rn → I , I ∈ R is called a closed and bounded interval function on the Rn and defined as

Zr (x) =

[

m

∑
i=1

n

∑
j=1

l

∑
k=1

cr
i jkxi jk ,

m

∑
i=1

n

∑
j=1

l

∑
k=1

c̄r
i jkxi jk

]

where
m

∑
i=1

n

∑
j=1

l

∑
k=1

cr
i jkxi jk and

m

∑
i=1

n

∑
j=1

l

∑
k=1

c̄r
i jkxi jk

are the lower limit and the upper limit of interval respectively. Then, we have for all xi jk ∈ X, (X is the feasible region of

problem)
m

∑
i=1

n

∑
j=1

l

∑
k=1

cr
i jkxi jk ≤

m

∑
i=1

n

∑
j=1

l

∑
k=1

c̄r
i jkxi jk , (r = 1,2, ..., p) .

Definition 7. A transportation plan x0 ∈ X is a Pareto optimal solution of interval problem, if and only if there is no other

x∈ X such that
m

∑
i=1

n

∑
j=1

l

∑
k=1

c̃r
i jkxi jk ≤

m

∑
i=1

n

∑
j=1

l

∑
k=1

c̃r
i jkx0

i jk
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for all (r = 1,2, ..., p.) and
m

∑
i=1

n

∑
j=1

l

∑
k=1

c̃r
i jkxi jk ≺

m

∑
i=1

n

∑
j=1

l

∑
k=1

c̃r
i jkx0

i jk

for at least r= 1,2, ..., p.

5 A Fuzzy programming for IMOSTP

Now, consider therth objective function of IMOSTP (3) and then, if objective of IMOSTP (3) is a maximization problem,

its membership function using the previous range of optimalobjective functions can be determined as follows:

µ r(x) =











1, Zr (x)≥ Z̄r
opt

Z̄r (x)−Zr
opt

Z̄r
opt−Zr

opt
, Z̄r (x)≤ Z̄r

opt

(9)

where the increasing of̄Zr (x) will increase the membership degreeµ r(x).

In the same way, for minimization type objective, the membership function can be determined as follows:

µ r(x) =











1, Z̄r (x)≤ Zr
opt

Z̄r
opt−Zr (x)

Z̄r
opt−Zr

opt
, Zr

opt ≤ Z̄r (x)
(10)

where the decreasing of̄Zr (x) will increase the membership degreeµ r(x).

After determined the membership function (10), IMOSTP (3) is transformed to the single interval solid transportation

problem as follows:
max

{

µ1,µ2, ...,µ p}

s.t.







































































































































µ r ≤ 1,(r = 1,2, ..., p)

n

∑
j=1

l

∑
k=1

xi jk ≤ āi, i = 1,2, ...,m,

n

∑
j=1

l

∑
k=1

xi jk ≤ (ãi)C, i = 1,2, ...,m

m

∑
i=1

l

∑
k=1

xi jk ≥ b j , j = 1,2, ...,n,

m

∑
i=1

l

∑
k=1

xi jk ≥
(

b̃ j

)

C
, j = 1,2, ...,n

m

∑
i=1

n

∑
j=1

xi jk ≤ ēk,k= 1,2, ..., l ,

m

∑
i=1

n

∑
j=1

xi jk ≤ (ẽk)C,k= 1,2, ..., l

xi jk ≥ 0,∀i jk,

(11)
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whereµ r ,(r = 1,2, ..., p) are interval functions.

This problem is further transformed into the following equivalent form:

max
k

∑
r=1

µ r

s.t.







































































































































µ r ≤ 1,(r = 1,2, ..., p)

n

∑
j=1

l

∑
k=1

xi jk ≤ āi , i = 1,2, ...,m,

n

∑
j=1

l

∑
k=1

xi jk ≤ (ãi)C, i = 1,2, ...,m

m

∑
i=1

l

∑
k=1

xi jk ≥ b j , j = 1,2, ...,n,

m

∑
i=1

l

∑
k=1

xi jk ≥
(

b̃ j

)

C
, j = 1,2, ...,n

m

∑
i=1

n

∑
j=1

xi jk ≤ ēk,k= 1,2, ..., l ,

m

∑
i=1

n

∑
j=1

xi jk ≤ (ẽk)C,k= 1,2, ..., l

xi jk ≥ 0,∀i jk

(12)

Here, the objective function of the above model is convertedto the single objective function using simple weighted sum

function
k
∑

r=1
wr µ r ,wr ∈ [0,1] .

Definition 8.(Dalman et. al. [9]) Assume that the constraint set of a fuzzy programming model (12) is X. A x0 ∈ X is an

efficient to the fuzzy problem (12) if there does not exist other solution x∈X such thatµ r (x)≥ µ r (x0) andµk (x)≥ µk (x0)

at least one k.

6 A Numerical example

In order to show the applications of the models, we apply the interval transportation model to a multiobjective coal

transportation problem and give an optimal transportationplan. For the convenience of description, we summarize the

problem as follows. Suppose that there are two coal mines to supply the coal for three cities, and two kinds of

conveyances are available to be determined i.e. train and cargo ship. Here, the decision maker should make a

transportation plan for the next month such that the transportation cost minimized, simultaneously. To illustrate the

recommended solution procedures for an MOSTP, let us consider the following data;

Interval transportation cost for 1.st objective ˜c1
i jk =

[

c1
i jk , c̄

1
i jk

]

;

c1
i jk =













c(1)111 c(1)112 c(1)121

c(1)122 c(1)131 c(1)132

c(1)211 c(1)212 c(1)221

c(1)222 c(1)231 c(1)232













=













13/2 10 5

7 11 8

9 21/2 13/2

7 12 15













, c̄1
i jk =













c̄(1)111 c̄(1)112 c̄(1)121

c̄(1)122 c̄(1)131 c̄(1)132

c̄(1)211 c̄(1)212 c̄(1)221

c̄(1)222 c̄(1)231 c̄(1)232













=













10 14 10

11 15 13

14 14 17/2

11 33/2 17













,
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Interval transportation cost for 2.st objective ˜c2
i jk =

[

c2
i jk , c̄

2
i jk

]

;

c2
i jk =













c(2)111 c(2)112 c(2)121

c(2)122 c(2)131 c(2)132

c(2)211 c(2)212 c(2)221

c(2)222 c(2)231 c(2)232













=













19/2 12 13/2

13/2 21/2 27/2

12 15 8

10 13 27/2













, c̄2
i jk =













c̄(2)111 c̄(2)112 c̄(2)121

c̄(2)122 c̄(2)131 c̄(2)132

c̄(2)211 c̄(2)212 c̄(2)221

c̄(2)222 c̄(2)231 c̄(2)232













=













25/2 29/2 11

10 12 14

13 19 13

27/2 17 31/2













,

The following notations ˜ai , b̃ j and ẽk for eachi = 1,2, ..,m; j = 1,2, ..,n; k = 1,2, .., l are used to express the interval

supply capacities, the interval demands, and the interval transportation capacities, respectively.

ã1 = [
45
2
,27], ã2 = [30,36]→ intervalparameterso f supplies,

b̃1 = [15,
41
2
], b̃2 = [

37
2
,
47
2
], b̃3 = [

27
2
,
39
2
]→ intervalparameterso f demands,

ẽ1 = [
95
2
,52], ẽ2 = [52,

115
2

]→ intervalparameterso f transportationcapacities.

Appliying the above information, the IMOSTP can be formulated as follows:

minZ1(x) =
2

∑
i=1

3

∑
j=1

2

∑
k=1

[

c1
i jk , c̄

1
i jk

]

xi jk

minZ2(x) =
2

∑
i=1

3

∑
j=1

2

∑
k=1

[

c2
i jk , c̄

2
i jk

]

xi jk

s.t.



















































































































































3

∑
j=1

2

∑
k=1

x1 jk ≤ ã1 = [
45
2
,27], ( j = 1,2,3) ,(k= 1,2)

3

∑
j=1

2

∑
k=1

x2 jk ≤ ã2 = [30,36], ( j = 1,2,3) ,(k= 1,2) ,

2

∑
i=1

2

∑
k=1

xi1k ≥ b̃1 = [15,
41
2
], (i = 1,2) ,(k= 1,2)

2

∑
i=1

2

∑
k=1

xi2k ≥ b̃2 = [
37
2
,
47
2
], (i = 1,2) ,(k= 1,2)

2

∑
i=1

2

∑
k=1

xi3k ≥ b̃3 = [
27
2
,
39
2
],(i = 1,2) ,(k= 1,2)

2

∑
i=1

3

∑
j=1

xi j 1 ≤ ẽ1 = [
95
2
,52], (i = 1,2) ,( j = 1,2,3)

2

∑
i=1

3

∑
j=1

xi j 2 ≤ ẽ2 = [52,
115
2

], (i = 1,2) ,( j = 1,2,3)

xi jk ≥ 0, i = 1,2., j = 1,2,3,k= 1,2.

(13)
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According to minimization type (7), the above problem transformed into the following equivalent deterministic MOSTP

as follows,

minZ̄1(x) =
2

∑
i=1

3

∑
j=1

2

∑
k=1

c̄1
i jkxi jk ,

minZ1
C(x) =

2

∑
i=1

3

∑
j=1

2

∑
k=1

(

c1
i jk + c̄1

i jk

2

)

xi jk ,

minZ̄2(x) =
2

∑
i=1

3

∑
j=1

2

∑
k=1

c̄2
i jkxi jk ,

minZ2
C(x) =

2

∑
i=1

3

∑
j=1

2

∑
k=1

(

c2
i jk + c̄2

i jk

2

)

xi jk

s.t



















































































































































3

∑
j=1

2

∑
k=1

x1 jk ≤ ā1 = 27,
3

∑
j=1

2

∑
k=1

x1 jk ≤ ã1C = 99/2,

3

∑
j=1

2

∑
k=1

x2 jk ≤ ā2 = 36,
3

∑
j=1

2

∑
k=1

x2 jk ≤ ã2C = 33,

2

∑
i=1

2

∑
k=1

xi1k ≥ b1 = 15,
2

∑
i=1

2

∑
k=1

xi1k ≥ b̃1C = 71/2,

2

∑
i=1

2

∑
k=1

xi2k ≥ b2 = 37/2,
2

∑
i=1

2

∑
k=1

xi2k ≥ b̃2C = 42/2,

2

∑
i=1

2

∑
k=1

xi3k ≥ b3 = 27/2,
2

∑
i=1

2

∑
k=1

xi3k ≥ b̃3C = 33,

2

∑
i=1

3

∑
j=1

xi j 1 ≤ ē1 = 52,
2

∑
i=1

3

∑
j=1

xi j 1 ≤ ẽ1C = 199/2,

2

∑
i=1

3

∑
j=1

xi j 2 ≤ ē2 = 115/2,
2

∑
i=1

3

∑
j=1

xi j 2 ≤ ẽ2C = 219/2.

xi jk ≥ 0, i = 1,2., j = 1,2,3.,k= 1,2.

(14)

SolvingminZ1
C; minZ̄1; minZ̄2 andminZ2

C problems as a single programming problem and then the optimal results in the

first step are determined as minZ1
C = 468.4375;minZ̄1

= 603.75 and minZ2
C = 609.4375; minZ̄2 = 677.

Thus, the range of interval objective values in the originalproblem are calculates as minZ1
opt = [468.4375,603.75] and

minZ2
opt = [609.4375,677]. According to minimization type of the membership function of each objective function can

be determined as follows,

µ1(x) =











1, Z1 (x)≤ 468.4375

603.75−Z1 (x)
603.75−468.4375

, 468.4375≤ Z1 (x)

and

µ2(x) =











1, Z2 (x)≤ 609.437

677−Z2 (x)
677−609.4375

, 609.4375≤ Z2 (x) .

c© 2016 BISKA Bilisim Technology



NTMSCI 4, No. 4, 114-127 (2016) /www.ntmsci.com 124

The problem based on the model (11) is transformed into an interval linear programming problem as follows,

max



















603.75−
2
∑
i=1

3
∑
j=1

2
∑

k=1

[

c1
i jk , c̄

1
i jk

]

xi jk

603.75−468.4375
,

677−
2
∑
i=1

3
∑
j=1

2
∑

k=1

[

c2
i jk , c̄

2
i jk

]

xi jk

677−609.4375



















s.t.







































































































































































































603.75−
2
∑

i=1

3
∑
j=1

2
∑

k=1

[

c1
i jk , c̄

1
i jk

]

xi jk

603.75−468.4375
≤ 1,

677−
2
∑
i=1

3
∑
j=1

2
∑

k=1

[

c2
i jk , c̄

2
i jk

]

xi jk

677−609.4375
≤ 1,

3

∑
j=1

2

∑
k=1

x1 jk ≤ ā1 = 27,
3

∑
j=1

2

∑
k=1

x1 jk ≤ ã1C = 99/2,

3

∑
j=1

2

∑
k=1

x2 jk ≤ ā2 = 36,
3

∑
j=1

2

∑
k=1

x2 jk ≤ ã2C = 33

2

∑
i=1

2

∑
k=1

xi1k ≥ b1 = 15,
2

∑
i=1

2

∑
k=1

xi1k ≥ b̃1C = 71/2,

2

∑
i=1

2

∑
k=1

xi2k ≥ b2 = 37/2,
2

∑
i=1

2

∑
k=1

xi2k ≥ b̃2C = 42/2

2

∑
i=1

2

∑
k=1

xi3k ≥ b3 = 27/2,
2

∑
i=1

2

∑
k=1

xi3k ≥ b̃3C = 33

2

∑
i=1

3

∑
j=1

xi j 1 ≤ ē1 = 52,
2

∑
i=1

3

∑
j=1

xi j 1 ≤ ẽ1C = 199/2,

2

∑
i=1

3

∑
j=1

xi j 2 ≤ ē2 = 115/2,
2

∑
i=1

3

∑
j=1

xi j 2 ≤ ẽ2C = 219/2.

xi jk ≥ 0, i = 1,2., j = 1,2,3.,k= 1,2.

(15)

Then, this problem is transformed to the following crisp linear programming problem based on model (12) and model (8).

max



















603.75−
2
∑

i=1

3
∑
j=1

2
∑

k=1
c1

i jkxi jk

603.75−468.4375
+

603.75−
2
∑

i=1

3
∑
j=1

2
∑

k=1

(

c1
i jk+c̄1

i jk
2

)

xi jk

603.75−468.4375

+

677−
2
∑
i=1

3
∑
j=1

2
∑

k=1
c2

i jkxi jk

677−609.4375
+

603.75−
2
∑
i=1

3
∑
j=1

2
∑

k=1

(

c2
i jk+c̄2

i jk
2

)

xi jk

603.75−468.4375


















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s.t.































































































































































































































































603.75−
2
∑
i=1

3
∑
j=1

2
∑

k=1
c̄1

i jkxi jk

603.75−468.4375
≤ 1,

603.75−
2
∑
i=1

3
∑
j=1

2
∑

k=1

(

c1
i jk+c̄1

i jk
2

)

xi jk

603.75−468.4375
≤ 1,

677−
2
∑
i=1

3
∑
j=1

2
∑

k=1
c̄2

i jkxi jk

677−609.4375
≤ 1,

603.75−
2
∑
i=1

3
∑
j=1

2
∑

k=1

(

c2
i jk+c̄2

i jk
2

)

xi jk

603.75−468.4375
≤ 1,

3

∑
j=1

2

∑
k=1

x1 jk ≤ ā1 = 27,
3

∑
j=1

2

∑
k=1

x1 jk ≤ ã1C = 99/2,

3

∑
j=1

2

∑
k=1

x2 jk ≤ ā2 = 36,
3

∑
j=1

2

∑
k=1

x2 jk ≤ ã2C = 33

2

∑
i=1

2

∑
k=1

xi1k ≥ b1 = 15,
2

∑
i=1

2

∑
k=1

xi1k ≥ b̃1C = 71/2,

2

∑
i=1

2

∑
k=1

xi2k ≥ b2 = 37/2,
2

∑
i=1

2

∑
k=1

xi2k ≥ b̃2C = 42/2

2

∑
i=1

2

∑
k=1

xi3k ≥ b3 = 27/2,
2

∑
i=1

2

∑
k=1

xi3k ≥ b̃3C = 33

2

∑
i=1

3

∑
j=1

xi j 1 ≤ ē1 = 52,
2

∑
i=1

3

∑
j=1

xi j 1 ≤ ẽ1C = 199/2,

2

∑
i=1

3

∑
j=1

xi j 2 ≤ ē2 = 115/2,
2

∑
i=1

3

∑
j=1

xi j 2 ≤ ẽ2C = 219/2.

xi jk ≥ 0, i = 1,2., j = 1,2,3.,k= 1,2.

(16)

Applying the weighted sum method, this equivalent model canbe easily solved by Maple 18 optimization toolbox and

then, the following results are obtained;

xi jk =













x111 x112 x121

x122 x131 x132

x211 x212 x221

x222 x231 x232













=













8.25 0 0

0 0 16.5

9.5 0 21

0 0 0













The optimal ranges of each objective function in the IMOSTP are determined as minZ1
opt = [407.625,608.500] and

minZ2
opt = [583.125,730.625].

There are several effective fuzzy methods for solving multiobjective programming problems. By using fuzzy method of
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paper [18], the results are as:

xi jk =













x111 x112 x121

x122 x131 x132

x211 x212 x221

x222 x231 x232













=













4.714 0 0

3.536 0 16.5

13.036 0 17.464

0 0 0













,

Moreover, The optimal ranges of each objective function is as follows; minZ1
opt = [418.232,631.482] and

minZ2
opt = [586.661,721.786].

Hence, the above results mean that the presented solution procedures can be considered as an efficient approach for

solving problems of this type.

7 Conclusions

In this paper, a fuzzy programming approach presented for solving Interval Multiobjective Solid Transportation Problem

(IMOSTP). Usually, the decision maker encounters inadequate information to define a precise value in a practical

application. In this case, the decision maker has to estimate these inadequate values. And also, the uncertainty of interval

numbers is a strong characteristic for expressing of realistic systems and provide a powerful structure for representing

the system’s information as interval numbers, in place of crisp numbers. Also, this structure presents flexibility in

expressing the uncertain systems. To reduce the complexities arising from uncertainty, the order relation between

intervals is applied and therefore the multiobjective model based on the interval numbers is transformed to the crisp

multiobjective programming problem. Then maximizing the sum of membership functions associated with different

interval objectives, single objective programming problem obtained. Thus it is solved easily by Maple 18 optimization

toolbox. So the efficiency of the presented procedures is proved.
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