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Abstract: In the setting of a general real Banach space, we prove taatutim of a monotone operatarof type (FPV) and a maximal
monotone operatds is maximal with donAnint domB # ¢ and either dorB is open or for ank € domAnint domB, ||x*|| < |B(x)],
X* € A(X).
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1 Introduction

In monotone operator theory, the most studied and celebgien problem concerns the maximal monotonicity of the
sum of two maximal monotone operators. In 1970, Rockafellaved it in reflexive space, i.e., the sum of two maximal
monotone operator& and B with domAnint donmB # ¢ (Rockafellar’'s constraint qualification) is maximal moooé
[1Q]. Therefore, it remains to study the sum theorem in nonriefespaces.

In [3], Borwein proves that the sum of two maximal monotone omesaf and B is maximal monotone with
int domAnint domB # @. In [2], Bauschke, Wang and Yao prove that the sum of maximal mordioear relation and
the subdifferential operator of a sublinear function withcRafellar’s constraint qualification is maximal monotoire
[15], Yao extend the results ir?] to the subdifferential operator of any proper lower semtewous convex function.
Yao [16] proves the that the sum of two maximal monotone operai@sdB satisfying the condition8 + Nm is of
type (FPV) and doynint donB # ¢ is maximal.

In [4], Borwein and Yao prove the maximal monotonicity of the sufraamaximal monotone linear relation and a
maximal monotone with the assumptions that domint domB # ¢. By relaxing the linearity from the result ofl],
Borwein and Yao §] prove the maximal monotonicity &+ B provided thatA andB are maximal monotone operators,
stafldomA) NintdomB # @ and A is of type (FPV). Also in @] raises a question for further research on relaxing
‘starshaped’ hypothesis on dofn

In this paper we will prove that the sum of a monotone operatoftype (FPV) and a maximal monotone operdias
maximal with the assumption that d&s open or for anyk € domAnint domB, ||x*|| < |B(X)|, wherex" € A(x). The
remainder of this paper is organized as follows. In Sectiowe provide some auxiliary results and notions which will
be used in our main results. In section 3, main results arepted.
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2 Basic notations and auxiliary results

Suppose thaX is a real Banach space with norih|| andUx := {x € X| ||x|| < 1} be the open unit ball ixX. X* is
the continuous dual oX andX andX* are paired by(x,x*) = x*(x) for x € X andx* € X*. A sequence; € X* is said
to beweak* convergence if there is somé € X* such thatx,(x) — x*(x) for all x € X and we denote it by-:. For a
given subse€ of X we denote interior o€ as inC, closure ofC asC and boundary o€ as bdryC. con\C, affC is the
convex and affine hull of. Theintrinsic core or relative algebraic interior of C is denoted byC [17] and is defined as
'C:={aeClvxeaff(C—C),36 > 0,YA €[0,6] :a+AxeC}. And

i {i C, ifaff Cis closed,
C:=

@, otherwise

For Oe CoreC iff [J)oAC = X. Also we denote the distance function by §s€) := infccc [|[x—¢f| and|C| = infeec ||C]|-
ForanyC,D C X,C—D={x—y|xeC, ye D}. LetA: X = X* be a set-valued operator (also known as multifunction or
point-to-set mapping) frorX to X*, i.e., for everyx € X, Ax C X*. Domain ofA is denoted as doA&r:= {x € X| Ax # @}

and range oA\ is ramA = {x* € Ax| x € domA}. Graph ofAis denoted as gra= {(x,x*) € X x X*| x* € Ax}. Ais said to

be linear relation if gra is a linear subspace. The set-valued mappging = X* is said to be monotone if

(X=y,X"=y") >0, V(xX),(yy")ecgraA

LetA: X = X* be monotone antk,x*) € X x X* we say thatx,x*) is monotonically related to gfaif

(X—y,X"—y") >0, V(y,y*) € graA.

And a set valued mapping is said to maximal monotone K is monotone ané has no proper monotone extension(in
the sense of graph inclusion). In other woAdis maximal monotone if for angx, x*) € X x X* is monotonically related
to graA then (x,x*) € graA. We say thatA is of type (FPV) if for every open séf C X such thatU NndomA # ¢,

x € U and (x,x*) is monotonically related to glenU x X*, then (x,x*) € graA. Every monotone operators of type
(FPV) are maximal monotone operatoiS].

Let f : X —] — o0, +o0] be a function and its domain is defined as dam f~1(R). f is said to be proper if dofn+# @.
Let f be any proper convex function then the subdifferential afmer of f is defined as
of i X =z X* 1 x—= {X" € X*| (y—xx")+ f(x) < f(y),¥y € X}. Subdifferential operators are of type (FPVJ]. For
every x € X, the normal cone operator at x is defined Ky(x) = {x* € X*| supcc(c—xXx*) <0}, if x € C; and
Ne(x) = @, if x ¢ C. Also it may be verified that the normal cone operator is of tffeV) [13]. For x,y € X, we denote
[x,y] := {tx+ (1—t)y] 0<t <1} and star or center & as sta€ := {x € C| [x,c] CC, Vce C}[17].

We denote the projection map By : X x X* — X by P«(x,x*) = x. For any twoA andB monotone operators, the sum
operator is defined as+ B: X = X* : x— Ax+ Bx= {a" 4 b*| a* € Ax and b* € Bx}. It may be checked tha+ B is
monotone.

Fact 1. [8, Theorem 2.28] LetA: X = X* be monotone with intdof # @. Then A is locally bounded at

X € intdomA i.e., there exisd > 0 andK > 0 such that

sup |ly*|| <K, Vy e (x+ 8Ux) NndomA.
yrery
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Fact 2. [Fitzpatrick] [7, Corollary 3.9] LetA: X = X* be maximal monotone, arfg} : X x X* — (—o0, +00] defined by

Fa(x,x")= sup ((xa)+(ax’)—(aa’)),
(a,a*)egraA

which is the Fitzpatrick function associated with A. Thendoery(x,x*) € X x X*, the inequality(x, x*) < Fa(x,x*) is
true, and equality holds if and only (k,x*) € graA.

Fact 3. [14, Theorem 3.4 and Corollary 5.6], oi3 Theorem 24.1(b)] LefA B: X = X* be maximal monotone

operator. AssumeJ, . gA [Px(domFa) — Pc(domg)] is a closed subspace.Fhig > (.,.) on X x X*, thenA+B s
maximal monotone.

Fact 4. [17, Theorem 1.1.2(ii)] Le€ be a convex subset &f. If a € intC andx € C, then[a, x|C intC.

Fact 5. [Rockafellar]P, Theorem 1] or 13, Theorem 27.1 and Theorem 27.3] L&t X = X* be maximal monotone
with int domA # ¢. Then int donA = intdomA; and int donA anddomA is convex.

Fact 6. [6, Proposition 3.1] LefA: X = X* be of type (FPV), and leB : X = X* be maximally monotone. Suppose
that donANint donB # @. Let (z,Z°) € X x X* with z€ domB. ThenFa,5(z,Z°) > (2, Z*).

Fact 7. [1, Lemma 2.5] LeC be a nonempty closed convex subseXdcfuch that int £ ¢. Let ¢y € intC and suppose
thatz € X\ C. Then there exist €]0,1] such that co+ (1—A)ze bdryC.

Fact 8. [13, Theorem 44.2] LeA: X = X* be of type (FPV). Then

domA = con(domA) = P (donFa).

Fact 9. [6, Lemma 2.10] LetA: X = X* be monotone, and LeB : X = X* be maximally monotone. Let

(") € X x X*. Supposeg € domAnint domB and that there exists a sequetiag a;,)ner i graéAn (domB x X*) such
that (a,)ney cONverges to a point ifxg, Z[, while (z— an, &%) — . ThenFa, g(z,Z") = +oo.

Fact 10. [6, Lemma 2.12] LefA: X = X* be of type (FPV). Suppose € domA but thatz ¢ domA. Then there exists a
sequencéan, &) nenin graA so that(an)ney coOnverges to a point ifxg, z and(z— ap, aj;) — +oo.

Fact 11. [The Banach-Alaoglu Theoereml], Theorem 3.15] The closed unit ball XT, B is weak star compact.

Fact 12. [16] Let A: X = X* be maximally monotone armke domA\ domA. Then for every sequencen )nery in domA
such thatz, — z, we have lim_.« inf||A(zy)|| = +o.

Proof. Suppose to the contrary that there exists a sequgpeeA(z,, ) andL > 0 such that sypy |7, || < L. By Fact2,
there exists a weak* convergent subr(z;g,)[;@ of z, such thaiz; —, z, € X*. By [5, Fact 3.5], we havéz z,) € graA,
which is a contradiction to our assumption tag domA.

Fact 13. [6, Lemma 2.11] LeAA: X = X* be of type (FPV), and LeB : X = X* be maximally monotone. Lé, z") €

X x X*. Supposeg € domAnint dormB. Assume that there exists a seque(&gncn in domAndomB andf € [0, 1] such
thata, — Bz+ (1— 3)xo anda, € bdry donB ThenFag(z Z") = 4.
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Fact 14. [16, Proposition 3.1] LetA: X = X* be of type (FPV), and LeB : X = X* be maximally monotone. Let

(z,Z") € X x X*. Supposeg € domAnint donB. Assume that there exists a sequef&gncy in domAN [domB\ donB]
andp € [0,1] such thaty, — Bz+ (1— B)x ThenFa,s(z2,Z°) > (z,Z°).

3 Our main results

We first prove the useful results which play an important tolprove our main results.

Lemma 1. Let A be any subset of X, 0 € intA = intA and A is convex. Then x € A if and only if x € int(1+ €)A for every
O<e<l

Proof. First we show thalA C (1+ €)A, for every 0< € < 1. Let z€ A and assume on the contrary that there exist
0<e<lsuchthar¢ (1+¢)Ai.e., ﬁ ¢ A. By Fact2 and hypothesigz € intA=intA, V0 <t < 1. In particular,
fort = Fla < 1 we havez ¢ Awhich is a contradiction. Now we show thatC int(1+ ¢)A. Letx € A. If x € intA, then
clearlyx € int(1+ €)A. If x € bdryA, then we showx € int(1+£)A. On the contrary, ik € bdry(1+¢)Ai.e., 7 € bdryA

for somee. By 0 € intA andx € A and Fact, tx € intA,YO <t < 1. Fort = Flg, tx € bdryA which is a contradiction.
Hence x € int(1+ €)A for every 0< € < 1. Converselyx € int(1+ €)A, for every 0< € < 1. Fore = %,n =123,..

X €int(1+ %)A: intA,. Thence, there exigt (x,rn) C An. Choosey, € A, such thay, € U (x,rp) andr, such that, — 0

asn — o. Sinceyy, € A, then there existg, € A such thay, = (1+ )x, which impliesx, = li”l — X. Hencex € A.
n

The proof of the following Lemma closely follows the lines of the proof 06] Proposition 3.2].

Lemma?2. Let A: X = X* be of type (FPV), and let B : X = X* be maximally monotone. Let (z,Z*) € X x X*, Xp €
domAndonB and donB is open. Assume that there exists (an)ney € domAN bdry donB such that it convergesto a point
in [Xo,Z. Then Fayg(z,Z") > (z,Z").

Proof. Assume to the contrary
FA+B(sz*) < <sz*>' (1)

By the necessary translation if necessary, we can suppagth 0 € domANint donB and(0,0) € graAngraB. By the
assumption that, there exists0B3 < 1 such that

a,— Bz (2)
Since Oc int domB and by () Fact2, we have
0<B<1 andpBz#0. )
Sincea, € domA we set
Yo := Bz and 4)

By 0 € int donB and @), there exists & pp < ||yo|| such that
poUx C domB. 5)
Now we show that there exis< &, € [1—1,1[ such that
H, C domB (6)

where
Hn == &nBz+ (1 — &) poUx. (7)

(© 2016 BISKA Bilisim Technology



NTMSCI 4, No. 4, 188-197 (2016)www.ntmsci.com BISKA 192

By Fact2 and Fac®, we have for everg < (0,1),

sBz+ (1—s)poUx C int domB = int domB.
Hence 6) holds.
Sinceay — Yo and &Sz = vy, (say) by ), un — Yo. Then we can suppose that

[unll < llyoll +1 <[z +1, VneN (by(4)). (8)
Next we show that there existan, an*)nen in graAn (Hy x X*) such that

(z—an,a") = —Kollay|| ©)

whereKp = %(2||z|| +2). Sinced,z = vy € Hy anday;, € X*, then we consider two cases.

Casel. (Un, &) € graA. Take(an,an") := (Un, ).

(z—Un,ap)

> —||z— unlll|aql|

> —(2]Z] +2)] ||| by equatior8).

—Kollan|- (10)

<Zi évna évn*>

Y

Hence 0) holds.

Case 2. (un,a)) ¢ gréA. By Fact2 and by the assumption, € domA, we get uy = &,z € domA. Therefore,

HnNdomA # @. Since(un, &) ¢ graA andu, € Hp, by using(FPV) property there existéan, a,") € graAn (Hy x X*)
such that

Thus, we have

(Un—an,a" —ay) > 0=-(Un—an,an") > (Un—an,ay)

=(0nBz 5nl3an+6nl3an an,an") > (Un—an, &)
=(nB(z— &) — (1—nB)an,a") > (un—an,ap)
(OnB(z—an),an") > (1—nB)(@n,@n") + (Un— an, ay).

=
Sincefl < &, < 1, (0,0) € graA and(&n,a,") € graA, applying monotonicity oA, we have
(BB(Z—an),@n") > (Un—Bn,al) = (2~ Bn ") > M< 0~ an, 3.
(2 a0a") = — = |un— a1
) - 5nB n an

(2B E) > %an—aﬁwllllaél\- (11)
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Sinceuy, &, € Hy, then we have,, — yp and we can suppose that

@]l < llyoll +1< [z +1, VneN. (12)
Appealing to equationl(l), we have
(2~ &) = - (@2 + 2l
— —Kollag].

SincePBz € bdry donB and by hypothesis, we haz € donB\ dormB. Then by Fac® we have,
inf {|B(Hn) | = Kollag|In. (13)

Sincea, € Hy, equation €) implies thata, € int domB anda, € domA. Again sinced, € Hy, then takeb) € B(&,) by (13),

[[ball = nKollan]l- (14)
We Compute
FA+B(Za Z*) = SUp [<a"n7z*> + <Z_ éiﬁva\'ﬂ*> + <Z_ gnv b:]>]
{an" +bre(A+B)(an)}
> [(@n,Z') +(z—an,@") + (z— an, ). (15)

By (9) and (L4), we have

Fai8(zZ) > [(8n,Z') + (z— @, &") + (z— @, by)]
=Fai8(27') > (@n,7") — Kol[an[[n+ (z— &, by)

F 7z z Kollaj "
~ PR (i) -t (o ) 19
By Banach-Alaoglu Theorermi [, Theorem 3.15], there existveeak* convergent subnémg—%u) of (Hg_é\l) such that
by oy
wa — Uy, € X™. a7
Using (17) and taking limit in (L6) along the subnet, we haye— 8z u;) <0
(z,uy) <0. (18)
On the other hand, sinceddint domB by using Fac®, there exist > 0 andM > 0 such that
sup [ly*]| <M, Vye eUx. (19)

y*eBy
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Since(an, by,) € graB, then we have

(@h—Yy,by—y"y >0, VyeelUx,y €B(y),neN
(@n,bp) — (y,b) + (@ —y,—y") >0 vye eUx,y" € B(y),neN
=(an,b) — (v, by > —(||an]| + €)M, Vye eUx,neN
=(an,bp) > €llb| — ([[@nll +- €)M, VneN

D\ (E]+eMm
< ||b*||> e el (20)

Using (17) and taking limit in @0) along the subnet, we havgz v}) > € > 0 which contradict to 18). Hence
FA+B(Z Z*) <Z Z*>

Proposition 1. Let A: X = X* be of type (FPV), and let B : X = X* be maximally monotone. Let (z,Z") € X x X*,
%o € domAndomB and for every x € domAnint domB, ||x*|| < |B(X)], X* € A(X) holds. Assumethat there exists (an)nen €
domAnbdry donB such that it convergesto a point in [Xo, 2. Then Fa,g(z2*) > (2,Z").

Proof. Assume to the contrary
FAJrB(ZaZ*) < <ZaZ*>' (21)

By the necessary translation if necessary, we can suppabgth 0 € domAnint donB and(0,0) € graAngraB. By the
assumption that, there exists03 < 1 such that
an — Bz (22)

Since Oc int domB and by @1) Fact2, we have
0<B<1 andBz#0. (23)
By the similar argument of Lemn there exist§an, 8" )ner in graAN (Hy x X*) such that

(z—anh,a") > —Kollay| (24)

whereKg = B%(2||z|| +2). Sincefz € bdry donB we consider two cases:
Case 1. Bz ¢ donB. By the same argument of Lemr2awe obtain a contradiction.
Case 2. Bz € donmB. Sincef3z € bdry donB. Takey; € N—(Bz) such that

(Yo, Bz—y) >0, foreveryy € int domB. (25)

Thus,tyg € Nm(ﬁz),w > 0. Sincef3z € dom A we again consider the following two subcases:

Subcase 1. Sz € domA. Since 0< int domB then by @5), we have

¥5,2 > 0. (26)

SinceB is maximally monotone. Byl[3 Lemma 28.5]|B =B+ Nm andBz € domAndonmB. Then we compute

Fa+8(22') > sud(z— Bz A(B2)) + (z— Bz B(B2) +tyo) + (7', B2)].
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Thus,
A(Bz)
t

B(B2)

B(B2) {z'.B2)
. :

FA+B(Za z )
t t

> sup|(z— Bz Y+ {z— Bz, +Yo) +

By (21), lettingt — o we have(z— Bz y;) < 0 and sincg8 < 1 we obtain
(zYo) <0,

which contradicts t0Z6).

Subcase 2. Bz ¢ domA. SetU, := Bz+ tUx. SinceBz € domA we have dorANU, # @. Since(Bz,Bz") ¢ graA. By
using (FPV) property oA, there exist3an, an") € graAn (Un x X*) such that

(Bz—a,p7 — &) <0
which implies that
(Bz—an,an") > (Bz—an,BZ')
~e-ama) - P e > (pz-ape)

(1-B)
B

Since(0,0) € graA and(d,,ay") € graA. By monotonicity ofA, (a,,a,") > 0. Appealing to the above equation, we have

~ ~x

=(z—ap,an") >

(@n,a") + (Bz—an, BZ').

(z—an,a") = (Bz—an, 7). (27)

Sincef3z € bdry donB. By 0 € int donB, Fact2 and Lemmal, we haveBz € int(1+ £)donB, for every 0< € < 1. Since
an — Bz Thence, there existy € N such tha@, € int(1+ €)donmB, VYn > ng. Thus, for every 0< € < 1, @, € int(1+

€)domB, Vn > ng. Thereforea, € donmB Vn > ng. By Fact2, we havea, € domB. Sinced, € domA anda, — 3z then
by Fact2, we havea, € int domB Thus,a, € domAnint domB and hence by hypothesis, there exists shineB(an),

such that|a,"|| < ||bj||. By Fact2, ||ah*|| — +. Hencel||bj|| > n|/a;|| for all n € N andaj, € X* That is (L4) of Lemma
2 holds. Then by the same argue of Lemnae obtain a contradiction. Henégg(z,z") > (z,7").

Proposition 2. Let A: X = X* be of type (FPV), and let B : X = X* be maximally monotone with (i) donB is open or
(i) for every x € domAnint domB, ||x*|| < |B(x)|, X* € A(X) holds and domAnint domB # ¢. Suppose that there exists
(z2,Z") € X x X* such that Fa;g(z Z*) < (2, Z*). Then z< domA.

Proof. By the necessary translation if necessary, we can suppas@dhdomAnint domB and(0,0) € graANgraB. We
assume to the contrary that
z¢ domA. (28)

By using equationZ8) and Fac®, we have there exigtn, & )nen in graA and 0< A < 1 such that
(z—ap,a;) — +o anda, — Az (29)
Now we consider the following cases.

Case 1. There exists a subsequencgaf)ncn in domB.
We can suppose that, € donB for everyn € N. Thus by29 and Fact2, we haveFa g(zz") = 4+, which is a
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contradiction to the hypothesis tHat 5(z, Z*) < (z,z*).

Case 2. There exists; € N such thas,, ¢ donB for everyn > n;.

Now we suppose that, ¢ domB for everyn € N. Sincea, ¢ domB, by Fact2 and Fac®, there exist$3, € [0,1] such
that
Bran € bdry donB. (30)

By equation 29), we can suppose that
Bran — Pz (31)

Since Oc int donB then by @8) and Fac®, we have
0<B<1l (32)

If (i) holds then by Lemm&, we haveFa g(z,Z°) > (z,z*) and if (ii) hold. By Propositiorl, Fa,g(z z*) > (z,Z") which
is a contradiction. Hence by combining all the above casedave proved thate domA.

Theorem 1. [Main result] Let A B: X = X* be maximally monotone with (i) donmB is open or (ii)for every x € domAn
int domB, ||x*|| < |B(X)|, X* € A(x) holds and domAnNint domB # ¢@. Assume that A is of type (FPV). Then A+ B is
maximally monotone.

Proof. By the necessary translation if necessary, we can suppasedtdomAnint donB and(0,0) € graAngraB. From
Fact2, we have dom C Px(dona) and donB C Px(donmFg). Thus,

0 € CordConvdomA) — ConydonB)].
Hence
L A (Px(donFa) — P (donFg)) = X.
A>0
Thus, by FacR it is sufficient to prove that
FA+B(ZaZ*) > <ZaZ*>7 V(Z,Z*) € X x X" (33)
Let (z,z*) € X x X*. On the contrary assume that
FAJFB(Z,Z*) < <Z,f>. (34)
Then by equation34) Proposition2 and Fact we have
ze domA\ donB. (35)
Sincez € domA, there existsan, a;;)nen in graA such that

ah—z (36)

By (35), an ¢ donB for all but finitely many termsy,. We can suppose that ¢ donB for all n € N. By Fact2 and Fact
2, there exist$3, €]0,1] such that
Bnan € bdry domB. (37)
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By (36) and € [0,1] we have
Bran — Bz (38)

By (37) and 85) we have (< 3 < 1. If (i) hold, by Lemma2, we have a contradiction and if (ii) hold, by Propositibrwe
obtain a contradiction. Thus, we halg,g(z,z*) > (z,z") for all (z,z*) € X x X*. HenceA+ B is maximally monotone.
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