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Abstract: In the setting of a general real Banach space, we prove that the sum of a monotone operatorA of type (FPV) and a maximal
monotone operatorB is maximal with domA∩ int domB 6= φ and either domB is open or for anyx ∈ domA∩ int domB, ‖x∗‖ ≤ |B(x)|,
x∗ ∈ A(x).
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1 Introduction

In monotone operator theory, the most studied and celebrated open problem concerns the maximal monotonicity of the

sum of two maximal monotone operators. In 1970, Rockafellarproved it in reflexive space, i.e., the sum of two maximal

monotone operatorsA andB with domA∩ int domB 6= φ (Rockafellar’s constraint qualification) is maximal monotone

[10]. Therefore, it remains to study the sum theorem in nonreflexive spaces.

In [3], Borwein proves that the sum of two maximal monotone operators A and B is maximal monotone with

int domA∩ int domB 6= φ . In [2], Bauschke, Wang and Yao prove that the sum of maximal monotone linear relation and

the subdifferential operator of a sublinear function with Rockafellar’s constraint qualification is maximal monotone. In

[15], Yao extend the results in [2] to the subdifferential operator of any proper lower semicontinuous convex function.

Yao [16] proves the that the sum of two maximal monotone operatorsA andB satisfying the conditionsA+NdomB
is of

type (FPV) and domA∩ int domB 6= φ is maximal.

In [4], Borwein and Yao prove the maximal monotonicity of the sum of a maximal monotone linear relation and a

maximal monotone with the assumptions that domA∩ int domB 6= φ . By relaxing the linearity from the result of [4],

Borwein and Yao [6] prove the maximal monotonicity ofA+B provided thatA andB are maximal monotone operators,

star(domA) ∩ int domB 6= φ and A is of type (FPV). Also in [6] raises a question for further research on relaxing

‘starshaped’ hypothesis on domA.

In this paper we will prove that the sum of a monotone operatorA of type (FPV) and a maximal monotone operatorB is

maximal with the assumption that domB is open or for anyx ∈ domA∩ int domB, ‖x∗‖ ≤ |B(x)|, wherex∗ ∈ A(x). The

remainder of this paper is organized as follows. In Section 2, we provide some auxiliary results and notions which will

be used in our main results. In section 3, main results are presented.
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2 Basic notations and auxiliary results

Suppose thatX is a real Banach space with norm,‖.‖ andUX := {x ∈ X | ‖x‖ < 1} be the open unit ball inX . X∗ is

the continuous dual ofX andX andX∗ are paired by〈x,x∗〉 = x∗(x) for x ∈ X andx∗ ∈ X∗. A sequencex∗n ∈ X∗ is said

to beweak∗ convergence if there is somex∗ ∈ X∗ such thatx∗n(x) → x∗(x) for all x ∈ X and we denote it by⇁w∗ . For a

given subsetC of X we denote interior ofC as intC, closure ofC asC and boundary ofC as bdryC. convC, affC is the

convex and affine hull ofC. The intrinsic core or relative algebraic interior of C is denoted byi C [17] and is defined as
i C := {a ∈C|∀x ∈ aff(C−C),∃δ > 0,∀λ ∈ [0,δ ] : a+λ x ∈C}. And

ic C :=





i C, if aff C is closed,

φ , otherwise
.

For 0∈ CoreC iff
⋃

λ>0λC = X . Also we denote the distance function by dist(x,C) := infc∈C ‖x−c‖ and|C|= infc∈C ‖c‖.

For anyC,D ⊆ X ,C−D = {x−y| x ∈C, y ∈ D}. Let A : X ⇒ X∗ be a set-valued operator (also known as multifunction or

point-to-set mapping) fromX to X∗, i.e., for everyx ∈ X , Ax ⊆ X∗. Domain ofA is denoted as domA := {x ∈ X | Ax 6= φ}
and range ofA is ranA = {x∗ ∈ Ax| x ∈ domA}. Graph ofA is denoted as graA = {(x,x∗) ∈ X ×X∗| x∗ ∈ Ax}. A is said to

be linear relation if graA is a linear subspace. The set-valued mappingA : X ⇒ X∗ is said to be monotone if

〈x− y,x∗− y∗〉 ≥ 0, ∀(x,x∗),(y,y∗) ∈ graA.

Let A : X ⇒ X∗ be monotone and(x,x∗) ∈ X ×X∗ we say that(x,x∗) is monotonically related to graA if

〈x− y,x∗− y∗〉 ≥ 0, ∀(y,y∗) ∈ graA.

And a set valued mappingA is said to maximal monotone ifA is monotone andA has no proper monotone extension(in

the sense of graph inclusion). In other wordsA is maximal monotone if for any(x,x∗) ∈ X ×X∗ is monotonically related

to graA then (x,x∗) ∈ graA. We say thatA is of type (FPV) if for every open setU ⊆ X such thatU ∩ domA 6= φ ,
x ∈ U and (x,x∗) is monotonically related to graA∩U × X∗, then (x,x∗) ∈ graA. Every monotone operators of type

(FPV) are maximal monotone operators [13].

Let f : X →]−∞,+∞] be a function and its domain is defined as domf := f−1(R). f is said to be proper if domf 6= φ .
Let f be any proper convex function then the subdifferential operator of f is defined as

∂ f : X ⇒ X∗ : x 7→ {x∗ ∈ X∗| 〈y− x,x∗〉+ f (x) ≤ f (y),∀y ∈ X}. Subdifferential operators are of type (FPV)[13]. For

every x ∈ X , the normal cone operator at x is defined byNC(x) = {x∗ ∈ X∗| supc∈C〈c − x,x∗〉 ≤ 0}, if x ∈ C; and

NC(x) = φ , if x 6∈C. Also it may be verified that the normal cone operator is of type(FPV) [13]. For x,y ∈ X , we denote

[x,y] := {tx+(1− t)y| 0≤ t ≤ 1} and star or center ofC as starC := {x ∈C| [x,c]⊆C, ∀c ∈C}[17].

We denote the projection map byPX : X ×X∗ → X by PX(x,x∗) = x. For any twoA andB monotone operators, the sum

operator is defined asA+B : X ⇒ X∗ : x 7→ Ax+Bx = {a∗+ b∗| a∗ ∈ Ax and b∗ ∈ Bx}. It may be checked thatA+B is

monotone.

Fact 1. [8, Theorem 2.28] LetA : X ⇒ X∗ be monotone with int domA 6= φ . Then A is locally bounded at

x ∈ int domA, i.e., there existδ > 0 andK > 0 such that

sup
y∗∈Ay

‖y∗‖ ≤ K, ∀y ∈ (x+ δUX)∩domA.
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Fact 2. [Fitzpatrick] [7, Corollary 3.9] LetA : X ⇒ X∗ be maximal monotone, andFA : X ×X∗ → (−∞,+∞] defined by

FA(x,x
∗) = sup

(a,a∗)∈graA
(〈x,a∗〉+ 〈a,x∗〉− 〈a,a∗〉),

which is the Fitzpatrick function associated with A. Then for every(x,x∗) ∈ X ×X∗, the inequality〈x,x∗〉 ≤ FA(x,x∗) is

true, and equality holds if and only if(x,x∗) ∈ graA.

Fact 3. [14, Theorem 3.4 and Corollary 5.6], or [13, Theorem 24.1(b)] LetA,B : X ⇒ X∗ be maximal monotone

operator. Assume
⋃

λ>0λ [PX(domFA)−PX(domFB)] is a closed subspace. IfFA+B ≥ 〈., .〉 on X ×X∗, thenA+B is

maximal monotone.

Fact 4. [17, Theorem 1.1.2(ii)] LetC be a convex subset ofX . If a ∈ intC andx ∈C, then[a,x[⊂ intC.

Fact 5. [Rockafellar][9, Theorem 1] or [13, Theorem 27.1 and Theorem 27.3] LetA : X ⇒ X∗ be maximal monotone

with int domA 6= φ . Then int domA = intdomA; and int domA anddomA is convex.

Fact 6. [6, Proposition 3.1] LetA : X ⇒ X∗ be of type (FPV), and letB : X ⇒ X∗ be maximally monotone. Suppose

that domA∩ int domB 6= φ . Let (z,z∗) ∈ X ×X∗ with z ∈ domB. ThenFA+B(z,z∗)≥ 〈z,z∗〉.

Fact 7. [1, Lemma 2.5] LetC be a nonempty closed convex subset ofX such that intC 6= φ . Let c0 ∈ intC and suppose

thatz ∈ X \C. Then there existsλ ∈]0,1[ such thatλ c0+(1−λ )z ∈ bdryC.

Fact 8. [13, Theorem 44.2] LetA : X ⇒ X∗ be of type (FPV). Then

domA = conv(domA) = PX(domFA).

Fact 9. [6, Lemma 2.10] LetA : X ⇒ X∗ be monotone, and LetB : X ⇒ X∗ be maximally monotone. Let

(z,z∗) ∈ X ×X∗. Supposex0 ∈ domA∩ int domB and that there exists a sequence(an,a∗n)n∈N in graA∩ (domB×X∗) such

that(an)n∈N converges to a point in[x0,z[, while 〈z− an,a∗n〉 −→ ∞. ThenFA+B(z,z∗) = +∞.

Fact 10. [6, Lemma 2.12] LetA : X ⇒ X∗ be of type (FPV). Supposex0 ∈ domA but thatz /∈ domA. Then there exists a

sequence(an,a∗n)n∈Nin graA so that(an)n∈N converges to a point in[x0,z[ and〈z− an,a∗n〉 −→+∞.

Fact 11. [The Banach-Alaoglu Theoerem][11, Theorem 3.15] The closed unit ball inX∗, B∗
X is weak star compact.

Fact 12. [16] Let A : X ⇒ X∗ be maximally monotone andz ∈ domA\domA. Then for every sequence(zn)n∈N in domA

such thatzn → z, we have limn→∞ inf ‖A(zn)‖=+∞.

Proof. Suppose to the contrary that there exists a sequencez∗nk
∈ A(znk) andL > 0 such that supk∈N ‖z∗nk

‖ ≤ L. By Fact2,

there exists a weak* convergent subnet,(z∗β )β∈J of z∗nk
such thatz∗β ⇁∗

w z∗∞ ∈ X∗. By [5, Fact 3.5], we have(z,z∗∞) ∈ graA,

which is a contradiction to our assumption thatz /∈ domA.

Fact 13. [6, Lemma 2.11] LetA : X ⇒ X∗ be of type (FPV), and LetB : X ⇒ X∗ be maximally monotone. Let(z,z∗) ∈

X ×X∗. Supposex0 ∈ domA∩ int domB. Assume that there exists a sequence(an)n∈N in domA∩domB andβ ∈ [0,1] such

thatan → β z+(1−β )x0 andan ∈ bdry domB ThenFA+B(z,z∗) = +∞.
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Fact 14. [16, Proposition 3.1] LetA : X ⇒ X∗ be of type (FPV), and LetB : X ⇒ X∗ be maximally monotone. Let

(z,z∗) ∈ X ×X∗. Supposex0 ∈ domA∩ int domB. Assume that there exists a sequence(an)n∈N in domA∩ [domB\domB]

andβ ∈ [0,1] such thatan → β z+(1−β )x0 ThenFA+B(z,z∗)≥ 〈z,z∗〉.

3 Our main results

We first prove the useful results which play an important roleto prove our main results.

Lemma 1. Let A be any subset of X , 0∈ intA = intA and A is convex. Then x ∈ A if and only if x ∈ int(1+ ε)A for every

0< ε < 1.

Proof. First we show thatA ⊂ (1+ ε)A, for every 0< ε < 1. Let z ∈ A and assume on the contrary that there exist

0< ε < 1 such thatz /∈ (1+ ε)A i.e., z
(1+ε) /∈ A. By Fact2 and hypothesis,tz ∈ intA = intA, ∀0≤ t < 1. In particular,

for t = 1
1+ε < 1 we havetz /∈ A which is a contradiction. Now we show thatA ⊂ int(1+ ε)A. Let x ∈ A. If x ∈ intA, then

clearlyx ∈ int(1+ε)A. If x ∈ bdryA, then we showx ∈ int(1+ε)A. On the contrary, ifx ∈ bdry(1+ε)A i.e., x
1+ε ∈ bdryA

for someε. By 0∈ intA andx ∈ A and Fact2, tx ∈ intA,∀0 ≤ t < 1. For t = 1
1+ε , tx ∈ bdryA which is a contradiction.

Hence,x ∈ int(1+ ε)A for every 0< ε < 1. Conversely,x ∈ int(1+ ε)A, for every 0< ε < 1. For ε = 1
n ,n = 1,2,3, ...

x ∈ int(1+ 1
n)A = intAn. Thence, there existU(x,rn)⊂ An. Chooseyn ∈ An such thatyn ∈U(x,rn) andrn such thatrn → 0

asn → ∞. Sinceyn ∈ An then there existsxn ∈ A such thatyn = (1+ 1
n )xn which impliesxn =

yn

1+ 1
n
→ x. Hencex ∈ A.

The proof of the following Lemma2 closely follows the lines of the proof of [6, Proposition 3.2].

Lemma 2. Let A : X ⇒ X∗ be of type (FPV), and let B : X ⇒ X∗ be maximally monotone. Let (z,z∗) ∈ X ×X∗, x0 ∈

domA∩domB and domB is open. Assume that there exists (an)n∈N ∈ domA∩bdrydomB such that it converges to a point

in [x0,z]. Then FA+B(z,z∗)≥ 〈z,z∗〉.

Proof. Assume to the contrary

FA+B(z,z
∗)< 〈z,z∗〉. (1)

By the necessary translation if necessary, we can suppose thatx0 = 0∈ domA∩ int domB and(0,0)∈ graA∩graB. By the

assumption that, there exists 0≤ β < 1 such that

an −→ β z. (2)

Since 0∈ int domB and by (1) Fact2, we have

0< β < 1 and β z 6= 0. (3)

Sincean ∈ domA we set

y0 := β z and (4)

By 0∈ int domB and (3), there exists 0< ρ0 ≤ ‖y0‖ such that

ρ0UX ⊆ domB. (5)

Now we show that there existsβ ≤ δn ∈ [1− 1
n ,1[ such that

Hn ⊆ domB (6)

where

Hn := δnβ z+(1− δn)ρ0UX. (7)
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By Fact2 and Fact2, we have for everys ∈ (0,1),

sβ z+(1− s)ρ0UX ⊆ int domB = int domB.

Hence (6) holds.

Sincean → y0 andδnβ z = υn (say) by (7), υn → y0. Then we can suppose that

‖υn‖ ≤ ‖y0‖+1≤ ‖z‖+1, ∀n ∈ N (by(4)). (8)

Next we show that there exists(ãn, ãn
∗)n∈N in graA∩ (Hn ×X∗) such that

〈z− ãn, ãn
∗〉 ≥ −K0‖a∗n‖ (9)

whereK0 =
1

β 2 (2‖z‖+2). Sinceδnβ z = υn ∈ Hn anda∗n ∈ X∗, then we consider two cases.

Case 1. (υn,a∗n) ∈ graA. Take(ãn, ãn
∗) := (υn,a∗n).

〈z− ãn, ãn
∗〉= 〈z−υn,a

∗
n〉

≥ −‖z−υn‖‖a∗n‖

≥ −(2‖z‖+2)‖a∗n‖ by equation(8).

≥−K0‖a∗n‖. (10)

Hence (9) holds.

Case 2. (υn,a∗n) /∈ graA. By Fact 2 and by the assumptionan ∈ domA, we get υn = δnβ z ∈ domA. Therefore,

Hn ∩domA 6= φ . Since(υn,a∗n) /∈ graA andυn ∈ Hn, by using(FPV ) property there exists(ãn, ãn
∗) ∈ graA∩ (Hn ×X∗)

such that

〈υn − ãn,a
∗
n − ãn

∗〉< 0.

Thus, we have

〈υn − ãn, ãn
∗− a∗n〉> 0⇒〈υn − ãn, ãn

∗〉> 〈υn − ãn,a
∗
n〉

⇒〈δnβ z− δnβ ãn + δnβ ãn − ãn, ãn
∗〉> 〈υn − ãn,a

∗
n〉

⇒〈δnβ (z− ãn)− (1− δnβ )ãn, ãn
∗〉> 〈υn − ãn,a

∗
n〉

⇒〈δnβ (z− ãn), ãn
∗〉> (1− δnβ )〈ãn, ãn

∗〉+ 〈υn − ãn,a
∗
n〉.

Sinceβ ≤ δn < 1, (0,0) ∈ graA and(ãn, ãn
∗) ∈ graA, applying monotonicity ofA, we have

〈δnβ (z− ãn), ãn
∗〉 ≥ 〈υn − ãn,a

∗
n〉 ⇒〈z− ãn, ãn

∗〉 ≥
1

δnβ
〈υn − ãn,a

∗
n〉.

⇒〈z− ãn, ãn
∗〉 ≥ −

1
δnβ

‖υn − ãn‖‖a∗n‖

⇒〈z− ãn, ãn
∗〉 ≥ −

1
β 2‖υn − ãn‖‖a∗n‖. (11)
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Sinceυn, ãn ∈ Hn, then we havẽan → y0 and we can suppose that

‖ãn‖ ≤ ‖y0‖+1≤ ‖z‖+1, ∀n ∈N. (12)

Appealing to equation (11), we have

〈z− ãn, ãn
∗〉 ≥ −

1
β 2 (2‖z‖+2)‖a∗n‖

=−K0‖a∗n‖.

Sinceβ z ∈ bdry domB and by hypothesis, we haveβ z ∈ domB\domB. Then by Fact2 we have,

inf ‖B(Hn)‖ ≥ K0‖a∗n‖n. (13)

Sinceãn ∈ Hn, equation (6) implies thatãn ∈ int domB andãn ∈ domA. Again sinceãn ∈ Hn then takeb∗n ∈ B(ãn) by (13),

‖b∗n‖ ≥ nK0‖a∗n‖. (14)

We compute

FA+B(z,z
∗) = sup

{ãn
∗+b∗n∈(A+B)(ãn)}

[〈ãn,z
∗〉+ 〈z− ãn, ãn

∗〉+ 〈z− ãn,b
∗
n〉]

≥ [〈ãn,z
∗〉+ 〈z− ãn, ãn

∗〉+ 〈z− ãn,b
∗
n〉]. (15)

By (9) and (14), we have

FA+B(z,z
∗)≥ [〈ãn,z

∗〉+ 〈z− ãn, ãn
∗〉+ 〈z− ãn,b

∗
n〉]

⇒FA+B(z,z
∗)≥ 〈ãn,z

∗〉−K0‖a∗n‖n+ 〈z− ãn,b
∗
n〉

⇒
FA+B(z,z∗)

‖b∗n‖
≥

〈
ãn,

z∗

‖b∗n‖

〉
−

K0‖a∗n‖
‖b∗n‖

+

〈
z− ãn,

b∗n
‖b∗n‖

〉
(16)

By Banach-Alaoglu Theorem [11, Theorem 3.15], there exist aweak∗ convergent subnet(
b∗γ
‖b∗γ‖

) of ( b∗n
‖b∗n‖

) such that

b∗γ
‖b∗γ‖

−→ υ∗
∞ ∈ X∗. (17)

Using (17) and taking limit in (16) along the subnet, we have〈z−β z,υ∗
∞〉 ≤ 0

〈z,υ∗
∞〉 ≤ 0. (18)

On the other hand, since 0∈ int domB by using Fact2, there existε > 0 andM > 0 such that

sup
y∗∈By

‖y∗‖ ≤ M, ∀y ∈ εUX. (19)
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Since(ãn,b∗n) ∈ graB, then we have

〈ãn − y,b∗n − y∗〉 ≥ 0, ∀y ∈ εUX,y
∗ ∈ B(y),n ∈ N

⇒〈ãn,b
∗
n〉− 〈y,b∗n〉+ 〈ãn − y,−y∗〉 ≥ 0 ∀y ∈ εUX,y

∗ ∈ B(y),n ∈ N

⇒〈ãn,b
∗
n〉− 〈y,b∗n〉 ≥ −(‖ãn‖+ ε)M, ∀y ∈ εUX,n ∈N

⇒〈ãn,b
∗
n〉 ≥ ε‖b∗n‖− (‖ãn‖+ ε)M, ∀n ∈N

⇒

〈
ãn,

b∗n
‖b∗n‖

〉
≥ ε −

(‖ãn‖+ ε)M
‖b∗n‖

, ∀n ∈N. (20)

Using (17) and taking limit in (20) along the subnet, we have〈β z,υ∗
∞〉 ≥ ε > 0 which contradict to (18). Hence

FA+B(z,z∗)≥ 〈z,z∗〉.

Proposition 1. Let A : X ⇒ X∗ be of type (FPV), and let B : X ⇒ X∗ be maximally monotone. Let (z,z∗) ∈ X × X∗,

x0 ∈ domA∩domB and for every x ∈ domA∩ int domB, ‖x∗‖≤ |B(x)|, x∗ ∈ A(x) holds. Assume that there exists (an)n∈N ∈

domA∩bdrydomB such that it converges to a point in [x0,z]. Then FA+B(z,z∗)≥ 〈z,z∗〉.

Proof.Assume to the contrary

FA+B(z,z
∗)< 〈z,z∗〉. (21)

By the necessary translation if necessary, we can suppose thatx0 = 0∈ domA∩ int domB and(0,0)∈ graA∩graB. By the

assumption that, there exists 0≤ β < 1 such that

an −→ β z. (22)

Since 0∈ int domB and by (21) Fact2, we have

0< β < 1 and β z 6= 0. (23)

By the similar argument of Lemma2, there exists(ãn, ãn
∗)n∈N in graA∩ (Hn ×X∗) such that

〈z− ãn, ãn
∗〉 ≥ −K0‖a∗n‖ (24)

whereK0 =
1

β 2 (2‖z‖+2). Sinceβ z ∈ bdry domB we consider two cases:

Case 1. β z /∈ domB. By the same argument of Lemma2, we obtain a contradiction.

Case 2. β z ∈ domB. Sinceβ z ∈ bdry domB. Takey∗0 ∈ NdomB
(β z) such that

〈y∗0,β z− y〉> 0, for every y ∈ int domB. (25)

Thus,ty∗0 ∈ NdomB
(β z),∀t > 0. Sinceβ z ∈ dom A, we again consider the following two subcases:

Subcase 1. β z ∈ domA. Since 0∈ int domB then by (25), we have

〈y∗0,z〉 > 0. (26)

SinceB is maximally monotone. By [13, Lemma 28.5],B = B+NdomB
andβ z ∈ domA∩domB. Then we compute

FA+B(z,z
∗)≥ sup[〈z−β z,A(β z)〉+ 〈z−β z,B(β z)+ ty∗0〉+ 〈z∗,β z〉].
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Thus,
FA+B(z,z∗)

t
≥ sup

[
〈z−β z,

A(β z)
t

〉+ 〈z−β z,
B(β z)

t
+ y∗0〉+

〈z∗,β z〉
t

]
.

By (21), lettingt → ∞ we have〈z−β z,y∗0〉 ≤ 0 and sinceβ < 1 we obtain

〈z,y∗0〉 ≤ 0,

which contradicts to (26).

Subcase 2. β z /∈ domA. SetUn := β z+ 1
nUX. Sinceβ z ∈ domA we have domA∩Un 6= φ . Since(β z,β z∗) /∈ graA. By

using (FPV) property ofA, there exists(ãn, ãn
∗) ∈ graA∩ (Un ×X∗) such that

〈β z− ãn,β z∗− ãn
∗〉< 0

which implies that

〈β z− ãn, ãn
∗〉> 〈β z− ãn,β z∗〉

⇒〈z− ãn, ãn
∗〉−

(1−β )
β

〈ãn, ãn
∗〉> 〈β z− ãn,β z∗〉

⇒〈z− ãn, ãn
∗〉>

(1−β )
β

〈ãn, ãn
∗〉+ 〈β z− ãn,β z∗〉.

Since(0,0) ∈ graA and(ãn, ãn
∗) ∈ graA. By monotonicity ofA, 〈ãn, ãn

∗〉 ≥ 0. Appealing to the above equation, we have

〈z− ãn, ãn
∗〉 ≥ 〈β z− ãn,z

∗〉. (27)

Sinceβ z ∈ bdry domB. By 0∈ int domB, Fact2 and Lemma1, we haveβ z ∈ int(1+ ε)domB, for every 0< ε < 1. Since

ãn → β z. Thence, there existsn0 ∈ N such thatãn ∈ int(1+ ε)domB, ∀n ≥ n0. Thus, for every 0< ε < 1, ãn ∈ int(1+

ε)domB, ∀n ≥ n0. Therefore,ãn ∈ domB ∀n ≥ n0. By Fact2, we haveãn ∈ domB. Sinceãn ∈ domA andãn → β z, then

by Fact2, we haveãn ∈ int domB. Thus,ãn ∈ domA∩ int domB and hence by hypothesis, there exists someb∗n ∈ B(ãn),

such that‖ãn
∗‖ ≤ ‖b∗n‖. By Fact2, ‖ãn

∗‖→+∞. Hence‖b∗n‖ ≥ n‖a∗n‖ for all n ∈ N anda∗n ∈ X∗ That is (14) of Lemma

2 holds. Then by the same argue of Lemma2 we obtain a contradiction. HenceFA+B(z,z∗)≥ 〈z,z∗〉.

Proposition 2. Let A : X ⇒ X∗ be of type (FPV), and let B : X ⇒ X∗ be maximally monotone with (i) domB is open or

(ii) for every x ∈ domA∩ int domB, ‖x∗‖ ≤ |B(x)|, x∗ ∈ A(x) holds and domA∩ int domB 6= φ . Suppose that there exists

(z,z∗) ∈ X ×X∗ such that FA+B(z,z∗)< 〈z,z∗〉. Then z ∈ domA.

Proof. By the necessary translation if necessary, we can suppose that 0∈ domA∩ int domB and(0,0) ∈ graA∩graB. We

assume to the contrary that

z /∈ domA. (28)

By using equation (28) and Fact2, we have there exist(an,a∗n)n∈N in graA and 0≤ λ < 1 such that

〈z− an,a
∗
n〉 −→+∞ and an −→ λ z. (29)

Now we consider the following cases.

Case 1. There exists a subsequence of(an)n∈N in domB.

We can suppose thatan ∈ domB for every n ∈ N. Thus by 29 and Fact2, we haveFA+B(z,z∗) = +∞, which is a
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contradiction to the hypothesis thatFA+B(z,z∗)< 〈z,z∗〉.

Case 2. There existsn1 ∈ N such thatan /∈ domB for everyn ≥ n1.

Now we suppose thatan /∈ domB for everyn ∈ N. Sincean /∈ domB, by Fact2 and Fact2, there existsβn ∈ [0,1] such

that

βnan ∈ bdrydomB. (30)

By equation (29), we can suppose that

βnan −→ β z (31)

Since 0∈ int domB then by (28) and Fact2, we have

0< β < 1. (32)

If (i) holds then by Lemma2, we haveFA+B(z,z∗)≥ 〈z,z∗〉 and if (ii) hold. By Proposition1, FA+B(z,z∗)≥ 〈z,z∗〉 which

is a contradiction. Hence by combining all the above cases, we have proved thatz ∈ domA.

Theorem 1. [Main result] Let A,B : X ⇒ X∗ be maximally monotone with (i) domB is open or (ii)for every x ∈ domA∩

int domB, ‖x∗‖ ≤ |B(x)|, x∗ ∈ A(x) holds and domA∩ int domB 6= φ . Assume that A is of type (FPV ). Then A+B is

maximally monotone.

Proof. By the necessary translation if necessary, we can suppose that 0∈ domA∩ int domB and(0,0)∈ graA∩graB. From

Fact2, we have domA ⊆ PX(domFA) and domB ⊆ PX(domFB). Thus,

0∈ Core[Conv(domA)−Conv(domB)].

Hence ⋃

λ>0

λ (PX(domFA)−PX(domFB)) = X .

Thus, by Fact2 it is sufficient to prove that

FA+B(z,z
∗)≥ 〈z,z∗〉, ∀(z,z∗) ∈ X ×X∗. (33)

Let (z,z∗) ∈ X ×X∗. On the contrary assume that

FA+B(z,z
∗)< 〈z,z∗〉. (34)

Then by equation (34) Proposition2 and Fact2 we have

z ∈ domA\domB. (35)

Sincez ∈ domA, there exists(an,a∗n)n∈N in graA such that

an −→ z. (36)

By (35), an /∈ domB for all but finitely many termsan. We can suppose thatan /∈ domB for all n ∈ N. By Fact2 and Fact

2, there existsβn ∈]0,1[ such that

βnan ∈ bdrydomB. (37)
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By (36) andβ ∈ [0,1] we have

βnan −→ β z. (38)

By (37) and (35) we have 0< β < 1. If (i) hold, by Lemma2, we have a contradiction and if (ii) hold, by Proposition1, we

obtain a contradiction. Thus, we haveFA+B(z,z∗)≥ 〈z,z∗〉 for all (z,z∗) ∈ X ×X∗. HenceA+B is maximally monotone.
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