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Abstract: The main objective of this paper is to estimate non-parametrically the quantiles of a conditional distribution when the sample
is considered as an α-mixing sequence. First of all, a kernel type estimator for the conditional cumulative distribution function (cond-
cdf ) is introduced. Afterwards, we give an estimation of the quantiles by inverting this estimated cond-cdf, the asymptotic properties
are stated when the observations are linked with a single-index structure. The pointwise almost complete convergence and the uniform
almost complete convergence (with rate) of the kernel estimate of this model are established. This approach can be applied in time
series analysis. For that, the whole observed time series has to be split into a set of functional data, and the functional conditional
quantile approach can be employed both in foreseeing and building confidence prediction bands.

Keywords: Conditional quantile, conditional cumulative distribution, derivatives of conditional cumulative distribution, functional
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1 Introduction

Estimating quantiles of any distribution is a substantial part of Statistics, it guaranties to build confidence ranges deriving
many applications in numerous fields, chemistry, geophysics, medicine, meteorology,. . . . Furthermore, Statistics for
functional random variables become progressively important, the latest literature in this domain presents the great
potential of these functional statistical methods. The most famous case of functional random variable corresponds to the
situation when we observe random curve on different statistical units. Such data are called Functional Data. Numerous
multivariate statistical technics, mainly parametric in the functional model terminology, have been extended to functional
data and good analysis on this area can be found in Ramsay and Silverman ([23] and [24]) or Bosq [5]. Lately,
nonparametric methods considering functional variables have been grown with very interesting practical motivations
dealing with environmetrics, (see Damon and Guillas [9], Fern´andez et al. et al. [10], Aneiros et al. [1]), chemometrics
(see Ferraty and Vieu [14]), meteorological sciences (see Besse et al. [3], Hall and Heckman [22]), speech recognization
problem (see Ferraty and Vieu [15]), radar range profile (see Hall et al. [21], Dabo-Niang et al. [8]), medical data (see
Gasser et al. [20]). Moreover, forecasting techniques cover a big part of the statistical problems. Because a continuous
time series can be seen as a sequence of dependent functional random variables, the above mentioned functional
methodology can be used for time-series forecasting (see for instance Ferraty et al., [11], for a functional forecasting
approach of time-series based on conditional expectation estimation). This article suggests to bring together the three
former statistical aspects in order to derive a method for estimating conditional quantiles in situation when the data are
both dependent and of functional nature. In particular, we focus on the nonparametric estimation of the conditional
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quantiles of a real random variable given a functional random variable under mixing assumption. We start by estimating
the conditional distribution by means of a kernel estimator and we derive an estimate of the conditional quantiles (see
Section 2). From a theoretical point of view, a crucial problem is linked with the so-called curse of dimensionality.
Actually, in a nonparametric context, it is well known that the rate of convergence decreases with the dimension of the
space in which the conditional variable is valued. But here, the conditional variable takes its values in an infinite
dimensional space. One way to override this problem is to consider some concentration hypotheses acting on the
distribution of the functional variable which allows to obtain asymptotic properties of our kernel estimates (see Section
3). This approach is used to derive a new method to forecast time series.

2 The model and the estimates

2.1 The functional nonparametric framework.

Consider a random pair (X ,Y ) where Y is valued in R and X is valued in some infinite dimensional Hilbertian space
with scalar product < ., . >. Let (Xi,Yi)i=1···n be the statistical sample of pairs which are identically distributed like (X ,Y ),
but not necessarily independent. Henceforward, X is called functional random variable f.r.v. Let x be fixed in H and let
F(θ , y, x) be the conditional cumulative distribution function (cond-cdf ) of Y given < θ ,X >=< θ ,x >, specifically:

∀y ∈ R , F(θ , y, x) = P(Y ≤ y| < X ,θ >=< x,θ >).

Saying that, we are implicitly assuming the existence of a regular version for the conditional distribution of Y given
< θ ,X >. Now, let tγ be the γ-order quantile of the distribution of Y given < θ ,X >=< θ ,x >. From the
cond-cdf F(θ , ., x), the general definition of the γ-order quantile is given as:

tθ (γ) = in f{t ∈ R : F (θ , t, x) ≥ γ}, ∀γ ∈ (0, 1).

In order to simplify our framework and to focus on the main interest of our paper (the functional feature of < θ ,X >), we
assume that F(θ , ., x)is strictly increasing and continuous in a neighborhood of tγ . This is insuring that the conditional
quantile tγ is uniquely defined by:

tθ (γ) = F−1(θ , γ, x). (1)

Next, in all what follows, we assume only smoothness restrictions for the cond-cdf F (θ , ., x)through nonparametric
modelling (Section 2.4). We suppose also that (Xi,Yi)i∈N is an α-mixing sequence, which is one among the most general
mixing structures. The α-mixing condition together with the functional approach allow to deal with continuous time
processes (see Section 4 for instance).

In our infinite dimensional purpose, we use the terminology functional nonparametric, where the word functional
referees to the infinite dimensionality of the data and where the word nonparametric referees to the infinite
dimensionality of the model. Such functional nonparametric statistics is also called doubly infinite dimensional (see
Ferraty and Vieu [16], for more details). We also use the terminology operatorial statistics since the target object to be
estimated (the cond-cdf F(θ , ., x)) can be viewed as a nonlinear operator.

2.2 The estimators

The kernel estimator F̂(θ , ., x) of F(θ , ., x)is presented as follows:

F̂ (θ , y, x) =
∑n

i=1 K
(
h−1

K (< x−Xi,θ >)
)

H(h−1
H (y−Yi))

∑n
i=1 K

(
h−1

K (< x−Xi,θ >)
) , (2)
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where K is a kernel function, H a cumulative distribution function and hK = hK,n (resp. hH = hH,n) a sequence of positive
real numbers. Note that using similar ideas, Roussas [26] introduced some related estimates but in the special case when
X is real, while Samanta [27] produced previous asymptotic study. As a by-product of (2.1) and (2.2), it is easy to derive
an estimator t̂γ of tγ :

t̂θ (γ) = F̂−1(θ ,γ , x). (3)

Such an estimator is unique as soon as H is an increasing continuous function. Such an approach has been largely used
in the case where the variable X is of finite dimention (see e.g Whang and Zhao, [28], Cai [7], Zhou and Lianng [29] or
Gannoun et. al [19]).

2.3 Assumptions on the functional variable

Let Nx be a fixed neighborhood of x and let B(x,h) be the ball of center x and radius h, namely
Bθ (x,h) = { f ∈ H /0 < |< x− f ,θ >| < h}. Then, let’s consider the following hypotheses:

(H0) ∀h > 0, P(X ∈ Bθ (x,h)) = ϕ θ ,x (h)> 0,

(H1) (Xi,Yi)i∈N is an α-mixing sequence whose the coefficients of mixture verify:

∃a > 0,∃c > 0 : ∀n ∈ N, α (n)≤ cn−a.

(H2) 0 < supi ̸= jP((Xi,X j) ∈ Bθ (x,h)×Bθ (x,h)) = O

(
(ϕθ ,x)

(a+1)
a

n
1
a

)
.

(H0) can be interpreted as a concentration hypothesis acting on the distribution of the f.r.v. X , while (H2) concerns the
behavior of the join distribution of the pairs (Xi,X j).Indeed, this hypothesis is equivalent to assume that, for n large enough

supi ̸= j
P((Xi,X j) ∈ Bθ (x,h)×Bθ (x,h))

P(X ∈ Bθ (x,h))
≤C

(ϕ θ ,x
n

) 1
a

.

This is one way to control the local asymptotic ratio between the joint distribution and its margin. Remark that the upper
bound increases with a. In order words, more the dependence is strong, more restrictive is (H2). The hypothesis (H1)
specifies the asymptotic behavior of the α-mixing coefficients.

2.4 The nonparametric model

As usually in nonparametric estimation, we suppose that the cond-cdf F(θ , ., x)verifies some smoothness constraints.
Let b1 and b2 be two positive numbers; such that:

(H3) ∀(x1,x2) ∈ Nx ×Nx, ∀(y1,y2) ∈ S2
R, |F (θ , y1,x1)−F(θ , y2,x2)| ≤Cθ ,x

(
∥x1 − x2∥ b1 +∥y1 − y2∥ b2

)
,

(H4) F(θ , ., x)is j- times continuously differential in some neighborhood of tθ (γ),

(H5) ∀(x1,x2) ∈ Nx ×Nx, ∀(y1,y2) ∈ S2
R,∣∣∣F( j) (θ , y1,x1)−F( j)(θ , y2,x2)

∣∣∣ ≤Cθ ,x

(
∥x1 − x2∥ b1 +∥y1 − y2∥ b2

)
,

where, for any positive integer l, F(l)(θ , z,x) denotes its lth derivative (i.e. ∂ lF(θ , y,x)
∂yl

∣∣∣
y=z

).
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Let’s note that (H3) is used for the prove of the almost complete convergence of t̂θ (γ) whereas (H4) and (H5) are needed
to establish the rate of convergence.

3 Asymptotic study

This part of paper is devoted, to the theoretical analysis, we start it by giving the almost complete convergence (a.co.) of
the estimate conditional quantile t̂θ (γ). After that, we will focus on the rate of convergence. Concerning the notations, as
soon as possible, Cand C

′
will denote generic constants. Moreover, from now on, hH (resp. hK) is a sequence which tends

to 0 with n.

3.1 Pointwise almost complete convergence

Let’s begin with the statement of an almost complete convergence property. To this end, we need some assumptions
concerning the kernel estimator F̂ (θ , ., x):

(H6) The restriction of H to the set {u ∈ R,H(u) ∈ (0,1)} is a strictly increasing function,

(H7) ∀(y1,y2) ∈ R2, |H(y1)−H(y2)| ≤C |y1 − y2| and
∫
|t|b2 H(1) (t)dt < ∞,

where, for all l ∈ N∗, H(l) (t) = dlH(y)
dyl

∣∣∣
y=t

,

(H8) K is a positive bounded function with support [−1,1] such that ∀u ∈ (0,1) 0 < K(u),

(H9) logn
nϕθ .x(hk)

→
n→∞

0.

(H10) (Xi,Yi)for i = 1, ...,n are strongly mixing with arithmetic coefficient of order a > 1and ∃β > 2 such that

(i) s−(a+1)
n,l = o

(
n−β ) for l = 0,1,2;

(ii) s−(a+1)
n,k = o

(
n−β ) for k = 3,4,5,6,7;

Remark 3.1.

•(H7) insures the existence of t̂θ (γ), while (H6) insures its unicity.

•(H0)-(H5) and (H8) are standard assumptions for the distribution conditional estimation in single functional index
model, which have been adopted by Bouchentouf et al. [4] for i.i.d case.

•(H9) is a technical condition for our results.

•(H10) is similar to that appeared in Ferraty and Vieu [18], it shows the influence of covariance on the convergence
rate. Here, sn,l and sn,k will be defined bellow.

Theorem 3.1. Put sn = max{sn,0;sn,1}, and suppose that either (H10)-(i) is satisfied together with hypotheses (H0)-(H3)

and (H6)-(H9), thus we have:

t̂θ (γ)− tθ (γ) →
n→∞

0, a.co. (4)
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Proof of Theorem 3.1. The proof is based on the pointwise convergence of F̂ (θ , ., x) at tθ (γ):

F (θ , tθ (γ) , x)− F̂ (θ , tθ (γ) , x) →
n→∞

0, a.co. (5)

Where the proof of the latter follows directly from Lemmas 3.1 and 3.2 which will be given below.

First of all, let’s note that because of (H6) and (H7), F̂ (θ , ., x)is a continuous and strictly increasing function. So, we
have:

∀ε > 0, ∃δ (ε)> 0,∀y,
∣∣∣F̂ (θ , y, x)− F̂ (θ , tθ (γ) , x)

∣∣∣ ≤ δ (ε)⇒ |y− tθ (γ)| ≤ ε.

This leads us to write

∀ε > 0, ∃δ (ε)> 0,P
(∣∣̂tθ (γ)− tθ (γ)

∣∣ > ε
)
≤ P

(∣∣∣F̂ (θ , t̂θ (γ) , x
)
− F̂ (θ , tθ (γ) , x)

∣∣∣ ≥ δ (ε)
)

= P
(∣∣∣F (θ , tθ (γ) , x)− F̂ (θ , tθ (γ) , x)

∣∣∣ ≥ δ (ε)
)
,

since (3) is implying that F̂
(
θ , t̂θ (γ) , x

)
= γ = F (θ , tθ (γ) , x) .

Consider now, for i = 1, · · · ,n the following notations:

Ki (θ ,x) = K
(
h−1

K (< x−Xi,θ >)
)
, Hi ( tθ (γ)) = H

(
h−1

H ( tθ (γ)−Yi)
)
,

F̂N (θ , tθ (γ) , x) =
1

nE(K1 (θ ,x))

n

∑
i=1

Ki (θ ,x)Hi ( tθ (γ)) and F̂D (θ , x) =
1

nE(K1 (θ ,x))

n

∑
i=1

Ki (θ ,x)

By using the following decomposition,

F̂ (θ , tθ (γ) , x)−F (θ , tθ (γ) , x) =
1

F̂D (θ , x)

{
F̂N (θ , tθ (γ) , x)−EF̂N (θ , tθ (γ) , x)

}
(6)

− 1

F̂D (θ , x)

{
F (θ , tθ (γ) , x)−EF̂N (θ , tθ (γ) , x)

}
+

F (θ , tθ (γ) , x)

F̂D (θ , x)

{
EF̂D (θ , x)− F̂D (θ , x)

}
,

In what follows, let’s denote

s2
n,0 =

n

∑
i=1

n

∑
j=1

∣∣Cov(∆ i (x,θ) ,∆ j (x,θ))
∣∣ ,

s2
n,1 =

n

∑
i=1

n

∑
j=1

∣∣Cov(∆ i (x,θ)Hi ( tθ (γ)) ,∆ j (x,θ)H j ( tθ (γ)))
∣∣ ,

where ∆ i (x,θ) =
K(h−1

K (<x−Xi,θ>))
EK1(θ ,x)

. Let now present the following lemmas.

Lemma 3.1. Under the conditions of Theorem (H0)-(H3) and (H6)-(H9), we have∣∣∣F (θ , tθ (γ) , x)−EF̂N (θ , tθ (γ) , x)
∣∣∣ = O

(
hb1

K

)
+O

(
hb2

H

)
. (7)
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Lemma 3.2. Under the assumptions of Theorem 3.1, we have:

(i) F̂D (θ , x)−EF̂D (θ , x) = Oa.co

(√
s2
n,0 logn

n

)
,

(ii) F̂N (θ , tθ (γ) , x)−EF̂N (θ , tθ (γ) , x) =Oa.co

(√
s2
n,1 logn

n

)
. The proof of these two lemmas will be done in the same

manner as it was given in [13], (since they are a special case of the Lemmas 3.2 and 3.3), the reader may also refer to
Ferraty and Vieu [18].It suffices to replace F̂( tγ |x) (resp. F

(
tγ |x)

)
) by F̂ (θ , tθ (γ) , x) (resp. F (θ , tθ (γ) , x)), and F̂D (x),

(resp. FD (x)) by F̂D (θ , x) (resp. FD (θ , x)) with d (x1,x2) =< x1 − x2,θ >.

3.2 Pointwise almost complete rate of convergence.

In this section we study the rate of convergence of our conditional quantile estimator t̂γ . Because this kind of results is
stronger than the previous one, we have to introduce some additional assumptions. As it is usual in conditional quantiles
estimation, the rate of convergence can be linked with the flatness of the cond-cdf F ( .|x)around the conditional quantile
tθ (γ). This is one reason why we introduced hypotheses (H4) and (H5). But a complementary way to take into account
this local shape constrain is to suppose that:

(H11) ∃ j > 0,∀l, 0 ≤ l ≤ j, F(l) (θ , tθ (γ) ,x) = 0 and
∣∣∣ F( j) (θ , tθ (γ) ,x)

∣∣∣ > 0.

Because we focus on the local behavior of F(θ , .,x)around tθ (γ) via its derivatives that leads us to consider the
successive derivatives of F̂ (θ , ., x) and subsequently some assumptions on the successive derivatives of the cumulative
kernel H:

(H12) The support of H(1)is compact and ∀l ≥ j,H(l) exists and is bounded.

(H13) ∀i ̸= i
′
,the conditional density of

(
Yi,Yi′

)
given

(
< Xi,θ >,< Xi′ ,θ >

)
is continuous at (tθ (γ) , tθ (γ)).

Theorem 3.2. Put sn = max{sn,0;sn,1} and assume that either (H10)-(i) is satisfied together with hypotheses (H0)-(H9)

and (H11)-(H13), we have

t̂θ (γ)− tθ (γ) = O

((
hb1

K +hb2
H

) 1
j
)
+Oa.co

( s2
n logn

n2

) 1
2 j

 . (8)

Proof of Theorem 3.2. The proof is based on the Taylor expansion of F̂ (θ , ., x) at tθ (γ) and on the use of (H10):

F̂ (tθ (γ) , x)− F̂
(
θ , t̂θ (γ) , x

)
=

j−1

∑
l=1

(tθ (γ)− t̂θ (γ))l

l!
F̂(l) (tθ (γ) , x)+

(tθ (γ)− t̂θ (γ)) j

j!
F̂( j) (t∗θ | x) ,

=
j−1

∑
l=1

(
tθ (γ)− t̂θ (γ)

)l

l!

(
F̂(l) (tθ (γ) , x)−F(l) (tθ (γ) , x)

)
+

(
tθ (γ)− t̂θ (γ)

) j

j!
F̂( j) (t∗θ | x) ,

where, for all y ∈ R,

F̂( j) (θ ,y, x) =
h− j

H ∑n
i=1 K

(
h−1

K (< x−Xi,θ >)
)

H( j)(h−1
H (y−Yi))

∑n
i=1 K

(
h−1

K (< x−Xi,θ >)
)

and where min
(
tθ (γ) , t̂θ (γ)

)
< t∗θ < max

(
tθ (γ) , t̂θ (γ)

)
. Suppose now that we have the following result.
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Lemma 3.3. Put s∗n = max{sn,0;sn,2} and assume that either (H10)-(ii) is satisfied together with under conditions

(H0)-(H8) and (H11)-(H12) and if

lim
n→∞

logn

nh2 j−1
H ϕ θ ,x(hK)

= 0,

then we have:

F̂( j) (θ , tθ (γ) ,x)−F( j) (θ , tθ (γ) ,x) |= O
(

hb1
K +hb2

H

)
+Oa.co

(√
s∗2

n logn
n2

)
where

s2
n,2 =

n

∑
i=1

n

∑
j=1

∣∣∣Cov(h−l
K ∆ i (x,θ)H(l)

i ( tθ (γ)) ,h−l
H ∆ j (x,θ)H(l)

j ( tθ (γ)))
∣∣∣

Because of Theorem 3.1, Lemma 3.3 and (H10), we have:

F̂( j) (θ , t∗θ , x) →
n→∞

F( j) (θ , tθ (γ) ,x)> 0, a.co.

then we derive

(tθ (γ)− t̂θ (γ)) j =O
(

F̂ (θ , tθ (γ) , x)−F (θ , tθ (γ) , x)
)

(9)

+O

(
j−1

∑
l=1

(tθ (γ)− t̂θ (γ))l
(

F̂(l) (θ , tθ (γ) ,x)−F(l) (θ , tθ (γ) ,x)
))

, a.co.

Now, comparing the convergence rates given in Lemmas 3.2 and 3.3, we get

(tθ (γ)− t̂θ (γ)) j = O
(

F̂ (tθ (γ) , x)−F (θ , tθ (γ) , x)
)

a.co.

Thus, Lemmas 3.1 and 3.2 allow us to get the claimed result. The proof of Lemma 3.3 will be given in the same manner
as it was done in Ferraty et al [13] (they are a special case of the Lemmas 3.5). It suffices to replace
F̂( j)

(
tγ | x

)
(resp. F( j)

(
tγ | x

)
) by F̂( j) (θ , tθ (γ) ,x) (resp. F( j) (θ , tθ (γ) ,x)), with d (x1,x2) =< x1 − x2,θ >. The

proof of these latter will be given briefly in the appendix.

4 Uniform almost complete convergence and rate of convergence

In this section we derive the uniform version of Theorem 3.1 and Theorem 3.2. The study of the uniform consistency is a
crucial tool for studying the asymptotic properties of all estimates of the functional index if is unknown. In the multivariate
case, the uniform consistency is a standard extension of the pointwise one, nevertheless, in the studied case, it requires
some additional tools and topological conditions (see Ferraty et al. [12]). Consequently, coupled with the conditions
introduced antecedently, we need the following ones. Firstly, consider

SH ⊂
d

SH
n∪

k=1

Bθ (xk,rn) and ΘH ⊂
d

ΘH
n∪

m=1

Bθ (θ m,rn), (10)

with xk (resp. θ j)∈H and rn,dSH
n ,dΘH

n are sequences of positive real numbers which tend to infinity as ngoes to infinity
and suppose that ,dSH

n ,dΘH
n are the minimal numbers of open balls with radius rn in H , which are required to cover SH

and ΘH .
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4.1 Conditional quantile distribution estimation

In this subpart we propose to study the uniform almost complete convergence of our estimator (2.3), to this end, we need
to state the following assumptions.

(A1) There exists a differentiable function ϕ (.)such that ∀x ∈ SH and ∀θ ∈ΘH ,

0 <Cϕ (h)≤ ϕ θ ,x (h)≤C
′
ϕ (h)< ∞ and ∃η0 > 0, ∀η < η0, ϕ

′
(η)<C.

(A2) ∀(y1,y2) ∈ SR×SR , ∀(x1,x2) ∈ SH ×SH ,and ∀θ ∈Θ H ,

|F (θ , y1,x1)−F(θ , y2,x2)| ≤C
(
∥x1 − x2∥ b1 +∥y1 − y2∥ b2

)
.

(A3) The kernel K satisfy (H3) and Lipschitz’s condition holds

|K (x)−K(y)| ≤C∥x− y∥ .

(A4) For some ν ∈ (0,1) , limn→∞ nν hH = ∞, and for rn = O
(

logn
n

)
, the sequences ,dSH

n and dΘH
n satisfiy:

(i) (logn)2

nϕ(hK)
< logdSH

n + logdΘH
n < nϕ(hK)

logn ,

(ii) ∑∞
n=1 n

1
2b2

(
dSH

n dΘH
n

)1−β
< ∞ for some β > 1,

(iii) nϕ (hK) = O
(
(logn)2

)
.

(A5) ∀(y1,y2) ∈ SR×SR , ∀(x1,x2) ∈ SH ×SH , and ∀θ ∈ΘH ,∣∣∣F( j) (θ , y1,x1)−F( j)(θ , y2,x2)
∣∣∣ ≤C

(
∥x1 − x2∥ b1 +∥y1 − y2∥b2

)
.

(A6) For some ν ∈ (0,1) , limn→∞ nν hH = ∞, and for rn = O
(

logn
n

)
, the sequences ,dSH

n and dΘH
n satisfy: (i) (logn)2

nh2 j−1
H ϕ(hK)

< log ,dSH
n + logdΘ H

n <
nh2 j−1

H ϕ(hK)
logn ,

(ii) nh2 j−1
H ϕ (hK) = O

(
(logn)2

)
.

And let

s2
n,3 =

n

∑
i=1

n

∑
j=1

∣∣Cov(Λ i,Λ j)
∣∣ , s2

n,4 =
n

∑
i=1

n

∑
j=1

∣∣Cov(Ω i,Ω j)
∣∣ ,

s2
n,5 =

n

∑
i=1

n

∑
j=1

∣∣Cov
(
∆ i
(
xk(x),θ m(θ)

)
,∆ j

(
xk(x),θ m(θ)

))∣∣ , s2
n,6 =

n

∑
i=1

n

∑
j=1

∣∣Cov(Γ i,Γ j)
∣∣ ,

s2
n,7 =

n

∑
i=1

n

∑
j=1

∣∣∣Cov
(

Γ (l)
i ,Γ (l)

j

)∣∣∣ ,
where

∆ i (x,θ) =
1

hKϕ (hK)
1Bθ (x,h)∪Bθ (xk(x),h)

(Xi) ,

Ω i (x,θ) =
1

hKϕ (hK)
1Bθ (xk(x),h)∪Bθm(θ)(xk(x),h)

(Xi) ,
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∆ i
(
xk(x),θ m(θ)

)
=

K
(
h−1

K

(
< xk(x)−Xi,θ m(θ) >

))
EK
(
h−1

K

(
< xk(x)−Xi,θ m(θ) >

)) ,

Γ i =
K
(
h−1

K

(
< xk(x)−Xi,θ m(θ) >

))
EK
(
h−1

K

(
< xk(x)−Xi,θ m(θ) >

))H
(
h−1

H (ty −Yi)
)

−E

(
K
(
h−1

K

(⟨
xk(x)−Xi,θ m(θ)

⟩))
EK
(
h−1

K

(⟨
xk(x)−Xi,θ m(θ)

⟩))H
(
h−1

H (ty −Yi)
))

and

Γ (l)
i =

1
hl

H

K
(
h−1

K

(
< xk(x)−Xi,θ m(θ) >

))
EK
(
h−1

K

(
< xk(x)−Xi,θ m(θ) >

))H(l) (h−1
H (ty −Yi)

)
− 1

hl
H
E

(
K
(
h−1

K

(
< xk(x)−Xi,θ m(θ) >

))
EK
(
h−1

K

(
< xk(x)−Xi,θ m(θ) >

))H(l) (h−1
H (ty −Yi)

))
.

Theorem 4.1. Put s
′
n = max

{
sn,3;sn,4;sn,5;sn,6

}
, and assume that either (H10)-(ii) is satisfied together with under

hypotheses (H0)-(H3) and (H6)-(H9), (A1) and (A3)-(A4), we have

supx∈SF

∣∣̂tθ (γ)− tθ (γ)
∣∣ →

n→∞
0 a.co. (11)

Proof of Theorem 4.1 The proof of the theorem can be completed by using the following results.

Lemma 4.1. Under the conditions (H0)-(H3) and (H6)-(H9), we have

supθ∈ΘH
supx∈SH

supt∈SR

∣∣∣F (θ , tθ (γ) , x)−EF̂N (θ , tθ (γ) , x)
∣∣∣ = O

(
hb1

K

)
+O

(
hb2

H

)
. (12)

Lemma 4.2. Under the assumptions of Theorem 4.1, we have:

1 supθ∈ΘF
supx∈SF

∣∣∣F̂D (θ , x)−EF̂D (θ , x)
∣∣∣ = Oa.co


√

max
{

s2
n,3;s2

n,4;s2
n,5

}
logdSF

n dΘF
n

n

 ,

2 supθ∈ΘH
supx∈SH

supt∈SR
F̂N (θ , tθ (γ) , x)−EF̂N (θ , tθ (γ) , x) = Oa.co

√
max

{
s2
n,3;s2

n,4;s2
n,6

}
logd

SF
n d

ΘF
n

n


+Oa.co

(√
logd

SF
n d

ΘF
n

nϕ(hK)

)
.

Theorem 4.2. Under hypotheses (H0)-(H3), (H6)-(H10) and (A1)-(A4), we have

supθ∈ΘF
supx∈SF

∣∣̂tθ (γ)− tθ (γ)
∣∣ = O

((
hb1

K +hb2
H

) 1
j
)
+Oa.co

( logdSF
n dΘF

n

nh2 j−1
H ϕ (hK)

) 1
2 j
 .
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+Oa.co

( s
′′2
n logdSF

n dΘF
n

n2

) 1
2 j
 ,

where s
′′2
n = max

{
sn,3;sn,4;sn,5;sn,7

}
Remark 4.1. These results extends Theorem 3 or Theorem 4 given in Bouchentouf et al. [4] to the mixing case. The
effect of covariance structure for dependence case on the convergence rate is reflected in the last term. Specially, if the
functional single-index is fixed, it is easy to prove the following corollary that are similar the one given in Bouchentouf
et al [4].

Corollary 4.1. Under the conditions of Theorem 4.2, we have

1. supθ∈ΘH
supx∈SH

supy∈SR

∣∣ F̂ (θ , y, x)−F (θ , y, x)
∣∣ = O

(
hb1

K +hb2
H

)
+Oa.co

(√
logd

SH
n +logd

ΘH
n

nϕ(hK)

)

+Oa.co

(√
s′∗2
n logd

SF
n d

ΘF
n

n

)
.

2. supx∈SH
supy∈SR

∣∣ F̂ (θ , y, x)−F (θ , y, x)
∣∣ = O

(
hb1

K +hb2
H

)
+Oa.co

√ logdSH
n

nϕ (hK)

+Oa.co


√

s′∗2
n logdSF

n

n

 ,

where s
′∗2
n = max

{
sn,3;sn,5;sn,6

}
.

Proof of Theorem 4.2. Obviously, the proofs of these two results, namely Theorem 4.2 and Corollary 4.1 can be

deduced from the following intermediate results which are only uniform version of Lemma 3.3.

Lemma 4.3. Put s∗n = max {sn,0;sn,2} , and assume that either (H10)-(ii) is satisfied together with under conditions

(H0)-(H8) and (H11)-(H12) and if

lim
n→∞

logn

nh2 j−1
H ϕθ ,x(hK)

= 0,

then we have:

sup
θ∈ΘH

sup
x∈SH

sup
y∈SR

∣∣∣∣F̂( j)(θ , tθ (γ),x)−F( j)(θ , tθ (γ),x)
∣∣∣∣= O(hb1

K +hb2
H )+Oa.co.

(√s∗2
n logdSF

n dΘF
n

n

)
,

where s2
n,2 = ∑n

i=1 ∑n
j=1

∣∣∣∣Cov
(

h−l
H ∆i(x,θ)H

(l)
i (tθ (γ)),h−l

H ∆ j(x,θ)H
(l)
j (tθ (γ))

)∣∣∣∣.
5 Proofs of Technical Lemmas

In order to highlight the main contribution of our paper (i.e. α− mixing and functional variables) some details are
voluntarily omitted.
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Proof of Lemma 3.1. The asymptotic behavior of bias term is standard, in the sense that it is not affected by the

dependence structure of the data. We have

EF̂N(θ , tθ (γ),x)−Fx
θ (tθ (γ)) =

1
EK1(x,θ)

E
(

K1(x,θ)
[
E
(

H1(tθ (γ))|< X1,θ >

)
−Fx

θ (tθ (γ))
])

. (13)

and by noting that

E(H1(tθ (γ))|< X1,θ >) =
∫
R

H(1)(t)F(θ , tθ (γ)−hHt,X1)dt,

we can write, because of (H3) and (H7):

|E(H1(tθ (γ))|< X1,θ >)−Fx
θ (tθ (γ))| ≤Cx,θ

∫
R

H(1)(t)(hb1
K + |t|b2 hb2

H )dt.

Combining this last result with (13) allows us to achieve the proof.

Proof of Lemma 3.2. Following the ideas used in regression [17], the key fact consists in using a pseudo-exponential

inequality taking considering the α− mixing structure. We start by writing,

1. Concerning (i), in fact, it can be found that.

F̂D(θ ,x)−EF̂D(θ ,x) =
1

nE(K1(θ ,x))

n

∑
i=1

Ki(θ ,x)−
1

nE(K1(θ ,x))

n

∑
i=1

EKi(θ ,x)

=
1

nE(K1(θ ,x))

n

∑
i=1

Ki(θ ,x)−EKi(θ ,x)

=
1
n

n

∑
i=1

∆i(θ ,x)−E∆i(θ ,x) =
1
n

n

∑
i=1

Ψi(θ ,x)

where Ψi(θ ,x) = Ki(θ ,x)−EKi(θ ,x) has zero mean and satisfies

|Ψi(θ ,x)| ≤Cx,θ/ϕθ ,x(hK),

then it allows us to use directly a dependent version of the Fuk-Nagaev’s exponential inequality [18] and obtain

F̂D(θ ,x)−EF̂D(θ ,x) = Oa.co.

(√s2
n,0 logn

n

)
.

2. Concerning (ii), it performs along the same steps and by invoking the same arguments, just changing the variable
Ψi(θ ,x) into the following ones:

Ξi(θ , tθ (γ),x) = Hi(tθ (γ))∆i(θ ,x)−EHi(tθ (γ))∆i(θ ,x).

Because H is a cumulative kernel, we have Hi(tθ (γ) ≤ 1. By using systematically this fact to bound the variables Hi, all
the calculus made previously with the variables Ψi(θ ,x) remain valid with the variables Ξi(θ , tθ (γ),x).
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Thus Ψi(θ ,x) = Ki(θ ,x)−EKi(θ ,x) has zero mean and satisfies

|Ψi(θ ,x)| ≤Cx,θ/ϕθ ,x(hK),

the Fuk-Nagaev’s inequality [25] allows one to get

F̂N(θ , tθ (γ),x)−EF̂N(θ , tθ (γ),x) = Oa.co.

(√s2
n,1 logn

n

)
.

Consequently, the proof of Lemma 3.2 is achieved.

Proof of Lemma 3.3. We use again the same kind of decomposition as (6):

F̂( j)(θ , tθ (γ),x)−F( j)(θ , tθ (γ),x) =
1

F̂D(θ ,x)

{(
F̂( j)

N (θ , tθ (γ),x)−EF̂( j)
N (θ , tθ (γ),x)

)
−
(

F( j)(θ , tθ (γ),x)−EF̂( j)
N (θ , tθ (γ),x)

)}
+

F( j)(θ , tθ (γ),x)
F̂D(θ ,x)

{
EF̂D(θ ,x)− F̂D(θ ,x)

}
. (14)

This proof is very similar to the one of Theorem 3.1.

First of all, lets consider the bias term F( j)(θ , tθ (γ),x)−EF̂( j)
N (θ , tθ (γ),x). Using the same arguments in the proof of

Lemma 3.1, replacing F(θ , tθ (γ),x) (resp. F̂(θ , tθ (γ),x)) with F( j)(θ , tθ (γ),x) (resp. F̂ j
N(θ , tθ (γ),x)) and considering

hypotheses (H5), (H7) and (H12) we get:

F( j)(θ , tθ (γ),x)−EF̂ j
N(θ , tθ (γ),x) = O

(
hb1

K +hb2
K

)
. (15)

Now, we focus on the term F̂( j)
N (θ , tθ (γ),x)−EF̂( j)

N (θ , tθ (γ),x). To get the asymptotic behaviour of this quantity, we
comeback to the proof of Lemma 3.2, and we replace F(θ , tθ (γ),x) (resp. F̂(θ , tθ (γ),x)) with F( j)(θ , tθ (γ),x)
(resp. F̂ j

N(θ , tθ (γ),x)).

Note that (H11) and (H13) permit to show that

E
(

H( j)(h−1
H (tθ (γ)−Yi)

)
H( j)(h−1

H (tγ −Yi′)
)∣∣(Xi,X ′

i )
)
= O(h2

H),

while (H1) and (H5) imply that

E
(

H( j)(h−1
H (tθ(γ)−Yi)

)∣∣Xi

)
= O(hH).

Consequently, we have by using successively (H8), (H0), (H2) and (H10)-(i)

Cov(Ξ ∗
i (θ , tθ (γ),x),Ξ ∗

i′ (θ , tθ (γ),x)) = O

(
h2

H

(
ϕθ ,x(hK)

n

)1/α
ϕθ ,x(hK)

)
,

where

Ξ ∗
i (θ , tθ (γ),x) = H( j)(h−1

H (tθ (γ)−Yi)
)
Ki(θ ,x)−E

(
H( j)(h−1

H (tθ (γ)−Yi))Ki(x)
)
.
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has zero mean and satisfies

|Ξ ∗
i (θ , tθ (γ),x)| ≤Ch− j

H ,

because H( j) is bounded. Indeed, it can be found that

F̂( j)
N (θ , tθ (γ),x)−EF̂( j)

N (θ , tθ (γ),x) =
h− j

H
nEK1(θ ,x)

n

∑
i=1

Ξ ∗
i (θ , tθ (γ),x),

then it allows us to use directly similar arguments of Lemma 3.2, we obtain

F̂( j)
N (θ , tθ (γ),x)−EF̂( j)

N (θ , tθ (γ),x) = Oa.co.

(√s∗2
n logn

n

)
,

which leads directly to the result of Lemma 3.3.

Proof of Lemma 4.1. It is omitted as it very similar to that of Lemma 4.6 in Bouchentouf et al. [4].

Proof of Lemma 4.2. The proof can be completed following the same steps as of Lemmas 4.4 4.7 in Bouchentouf et al.

[4].

i. From (1), for ∀x ∈ SH and ∀θ ∈ΘH , we have the decomposition as follows.For all x ∈ SH and θ ∈ΘH , we set

Let us consider the following decomposition

sup
x∈SH

sup
θ∈ΘH

∣∣∣F̂D(θ ,x)−1
∣∣∣ = sup

x∈SH

sup
θ∈ΘH

∣∣∣F̂D(θ ,x)−E
(

F̂D(θ ,x)
)∣∣∣

≤ sup
x∈SH

sup
θ∈ΘH

∣∣∣F̂D(θ ,x)− F̂D(θ ,xk(x))
∣∣∣

+ sup
x∈SH

sup
θ∈ΘH

∣∣∣F̂D(θ ,xk(x))− F̂D(t j(θ),xk(x))
∣∣∣

+ sup
x∈SH

sup
θ∈ΘH

∣∣∣F̂D(t j(θ),xk(x))−E
(

F̂D(t j(θ),xk(x))
)∣∣∣

+ sup
x∈SH

sup
θ∈ΘH

∣∣∣E(F̂D(t j(θ),xk(x))
)
−E
(

F̂D(θ ,xk(x))
)∣∣∣

+ sup
x∈SH

sup
θ∈ΘH

∣∣∣E(F̂D(θ ,xk(x))
)
−E

(
F̂D(θ ,x)

)∣∣∣
= F1 +F2 +F3 +F4 +F5+ (16)

where k(x) = arg,mink∈{1...rn} ∥x− xk∥ and j(θ) = arg min j∈{1...ln} ∥θ − t j∥.

In order to complete the proof of Lemma 4.1, we only need to give the convergence rate of five terms in (16) respectively.
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Firstly, we treat F1. Let λ = λ0

√
logd

SF
n d

ΘF
n S2

n,5
n2

for all λ0 > 0, we have that

P(F3 > λ ) = P
(

max
k∈{1...d

SH
n }

max
j∈{1...d

ΘH
n }

F ′
3 > λ

)
≤ dSH

n dΘH
n max

k∈{1...d
SH
n }

max
j∈{1...d

ΘH
n }

P(F ′
3 > λ ). (17)

where F ′
3 =

∣∣∣F̂D(t j(θ),xk(x))−E
(

F̂D(t j(θ),xk(x))
)∣∣∣.

By using the Fuk-Nagaev’s inequality (Proposition A.11(ii), see Ferraty and Vieu [18]) with taking r = (logn)2 and
q = a+1, one will obtain that

P(F ′
3 > λ )≤C1A1 +C2A2 (18)

where

A1 =

(
1+

λ 2
0 (logdSF

n dΘF
n )

(logn)2

)− (logn)2
2

A2 =
n(logn)2aλ−(a+1)

0

(logdSF
n dΘF

n )(a+1)/2

1
sa+1

n,5
.

By hypotheses (A4)-(i) and (iii), we get logd
SH
n +logd

ΘH
n

(logn)2 → 0 as n → 0, which leads to

A1 ≤ dSH
n dΘH

n , (19)

for some β > 1 and λ0 > 0 such that λ 2
0 = 2β . On the other hand,

A2 ≤ Cn(logn)2a(logdSH
n dΘH

n )−(a+1)/2n−η ≤ C’
1

nη−τ−1 , (20)

where τ > 0 such that η > η − τ > 2. Meanwhile, by the selection of β and η , we can find that

(dSH
n dΘH

n )β = O(nη−τ−1). (21)

Combining the equations (5.5)-(5.9) with hypothesis (A4)-(iii), we have

F3 = Oa.co.

(√ s2
n,5 logdSF

n dΘF
n

n2

)
(22)

Next, let us treat F1 and F2, respectively. By Assumption (A1), it follows

sup
x∈SH

sup
θ∈ΘH

1
n

∣∣∣∣ n

∑
i=1

(
∆i(x,θ)−∆i(xk(x),θ)

)∣∣∣∣ ≤ C
ϕ(hK)

sup
x∈SH

sup
θ∈ΘH

1
n

n

∑
i=1

1Bθ (x,h)∪Bθ (xk(x),h)(Xi)

= C sup
x∈SH

sup
θ∈ΘH

1
n

n

∑
i=1

Λi(x,θ)
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and

sup
x∈SH

sup
θ∈ΘH

1
n

∣∣∣∣ n

∑
i=1

(
∆i(xk(x),θ)−∆i(xk(x),θm(θ))

)∣∣∣∣≤ C
ϕ(hK)

sup
x∈SH

sup
θ∈ΘH

1
n

n

∑
i=1

1Bθ (xk(x),h)∪Bθ (xk(x),h)(Xi)

= C sup
x∈SH

sup
θ∈ΘH

1
n

n

∑
i=1

Ωi(x,θ).

Therefore, similar to the argument for (22), we can get

F1 = Oa.co.

(√ s2
n,3 logdSF

n dΘF
n

n2

)
(23)

and

F2 = Oa.co.

(√ s2
n,4 logdSF

n dΘF
n

n2

)
(24)

Thus, by using the same arguments as that in Bouchentouf et al. [4], it leads F5 ≤ F1 and F4 ≤ F1, respectively. then, as
n → ∞,

F4 = Oa.co.

(√ s2
n,4 logdSF

n dΘF
n

n2

)
and F5 = Oa.co.

(√ s2
n,3 logdSF

n dΘF
n

n2

)
. (25)

Finally, the first part of Lemma 4.2 can be easily deduced from (22)-(24).

ii. Concerning (2), the proof follows the same steps as that in Ferraty et al. [13]. It is also adopted by Bouchentouf et al.
[4]. In fact, by the compact property of SR ⊂ R, we have SR ⊂

∪zn
m=1 (ym − ln,ym + ln) and ln, zn can be selected such as

zn = O(l−n 1) = O(n
1

2b2 ). By taking m(y) = arg min{1,2,...,zn} |y− tm|, then similar to the decomposition given in
Bouchentouf et al. [4], it leads

sup
θ∈ΘH

sup
x∈SH

sup
y∈SR

∣∣∣F̂N(θ ,y,x)−E
(
F̂N(θ ,y,x)

)∣∣∣=Ψ1 +Ψ2 +Ψ3 +Ψ4 +Ψ5 +Ψ6 +Ψ7

where

Ψ1 = sup
θ∈ΘH

sup
x∈SH

sup
y∈SR

∣∣∣F̂N(θ ,y,x)− F̂N
(
θ ,y,xk(x)

)∣∣∣
Ψ2 = sup

θ∈ΘH

sup
x∈SH

sup
y∈SR

∣∣∣F̂N(θ ,y,x)− F̂N
(
θ ,y,xk(x)

)∣∣∣
Ψ3 = sup

θ∈ΘH

sup
x∈SH

sup
y∈SR

∣∣∣F̂N(t j(θ),y,xk(x))− F̂N(t j(θ),ym(y),xk(x))
∣∣∣,

Ψ4 = sup
θ∈ΘH

sup
x∈SH

sup
y∈SR

|F̂N(t j(θ),ym(y),xk(x))−E
(
F̂N(t j(θ),ym(y),xk(x))

)∣∣∣,
Ψ5 = sup

θ∈ΘH

sup
x∈SH

sup
y∈SR

∣∣∣E(F̂N(t j(θ),ym(y),xk(x))
)
−E
(
F̂N(t j(θ),y,xk(x))

)∣∣∣,
Ψ6 = sup

θ∈ΘH

sup
x∈SH

sup
y∈SR

∣∣∣E(F̂N(t j(θ),y,xk(x))
)
−E

(
F̂N(θ ,y,xk(x))

)∣∣∣,
Ψ7 = sup

θ∈ΘH

sup
x∈SH

sup
y∈SR

∣∣∣E(F̂N(θ ,y,xk(x))
)
−E
(
F̂N(θ ,y,x)

)∣∣∣
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Since

Ψ1 ≤ sup
θ∈ΘH

sup
x∈SH

1
n

∣∣∣∣ n

∑
i=1

(∆i(x,θ)−∆i(θ ,xk(x))
)∣∣∣∣= F1

and

Ψ2 ≤ sup
θ∈ΘH

sup
x∈SH

1
n

∣∣∣∣ n

∑
i=1

(
∆i(θ ,xk(x))−∆i(t j(θ),xk(x))

)∣∣∣∣= F2

then using the fact that Γ1 ≤ F1 and Ψ2 ≤ F2 and using equations (23) and (24), we get

Ψ1 = Oa.co.

(√ s2
n,3 logdSF

n dΘF
n

n2

)
and

Ψ2 = Oa.co.

(√ s2
n,4 logdSF

n dΘF
n

n2

)
On the other hand, since Ψ7 ≤Ψ1 and Ψ6 ≤Ψ2, we get

Ψ7 = Oa.co.

(√ s2
n,3 logdSF

n dΘF
n

n2

)
and

Ψ6 = Oa.co.

(√ s2
n,4 logdSF

n dΘF
n

n2

)
respectively.

iii. Concerning Ψ3 and Ψ5; by conditions (H4) and (H5), boundness of K and selection of ln, using the same arguments of
Lemma 4.7 in Bouchentouf et al. [4], we get

∣∣∣F̂N(t j(θ),y,xk(x))− F̂N(t j(θ),ym(y),xk(x))
∣∣∣≤ C

n

∣∣∣∣ n

∑
i=1

(
K(h−1

K < xk(x)−Xi,θm(θ) >)

EK(h−1
K < xk(x)−Xi,θm(θ) >)

)∣∣∣∣∣∣∣y− ym(y)

hH

∣∣∣
≤ C

n

∣∣∣∣ n

∑
i=1

∆i(xk(x),θm(θ))

∣∣∣∣∣∣∣y− ym(y)

hH

∣∣∣
≤ O

( ln
hH

)
= O

(√
logdSH

n dΘH
n

nϕ(hK)

)
as n → ∞, therefore, it follows

Ψ5 ≤Ψ3 = Oa.co.

(√
logdSH

n dΘH
n

nϕ(hK)

)

iv. Concerning Ψ4, let us consider ε = ε0

(√
s2
n,6 logd

SF
n d

ΘF
n

n2

)
. Since
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P

(
Ψ4 > ε0

√
s2

n,6 logdSF
n dΘF

n

n2

)
= P(Ψ4 > ε)

= P

(
max

j∈{1...d
ΘH
n }

max
k∈{1...d

SH
n }

max
m(y)∈{1,2,...,zn}

|ϒn −Eϒn |> ε

)
≤ zn dSH

n dΘH
n P

(
|ϒn −Eϒn | > ε

)
where ϒn = F̂N(t j(θ),ym(y),xk(x)), the application of Fuk-Nagaev’s inequality (Proposition A.11-(ii), see Ferraty and Vieu
[18]) with r = (logn)2 > 1 and q = a+1, we get that

P

(∣∣∣∣∣ n

∑
i=1

(Γi −EΓi)

∣∣∣∣∣ > ε

)
≤ C

(
1+

ε2
0 (logdSF

n dΘF
n )

(logn)2

)−(logn)2/2

+
n(logn)2aε−(a+1)

0

(logdSF
n dΘF

n )(a+1)/2

1
sa+1

n,6

= C1B1 +C2B2

Similarly to (5.10), it yields

Ψ4 = Oa.co.

(√
s2

n,6 logdSF
n

n2

)
.

Finally, the proof of Lemma 4.2 is achieved.

Proof of Lemma 4.3. The proof is an immediate consequence of the second part of Lemma 4.2, it suffices to replace the

conditional cumulative distribution function by its successive derivatives.

6 Concluding remarks

In this article, we examine conditional quantile estimation in the single functional index model for α−mixing functional
data. The asymptotic properties such as pointwise almost complete consistency and the uniform almost complete
convergence of the kernel estimator with rate are presented under some mild conditions. Although α−mixing is
reasonably weak among various weak dependence process and has many practical applications such as in time series
prediction, we also address other dependence settings such as long memory dependence functional data (see Benhenni et
al. [2]). In this case, the asymptotic properties of the estimation of successive derivatives of the conditional density
function, conditional hazard function, conditional distribution function and conditional quantile in the single functional
index model have been investigated in our other works.
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