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Abstract: A numerical method based on the finite element method is wsehfinvestigation of viscous, incompressible fluid flowing
in a channel with slowly varying cross-section with absogoivalls. The proposed mathematical model can be appliedderstand
the flow behaviour of a fluid in renal tubules. The method isnestricted by the parameters in the problem such as wave enumb
permeability parameter, amplitude ratio and Reynolds remibhe effects of these parameters on the transverse tyebowl mean
pressure drop is studied and the results are presentedigathptResults show that the parameters cause a signifatertge on the
flow.
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1 Introduction

One of the excretory organ of the human body is kidney. Kidrexcrete most of the end products of body metabolism
and they control concentrations of most of the constitueht®dy fluids. The basic functional unit of kidney is nephron
Each kidney contains over a million tiny units (of nephrored) similar in structure and function. Each nephron
functions independently and in most instances it is suffici® study the function of nephron to understand the
mechanism of kidney in terms of mathematical models.

In nephrons, the portion after the Bowman'’s capsule is dgdteximal convoluted tubule, which is narrower than rest of
the tube and non-uniform in nature. It is the place where rabaseful substances, like water, glucose and electrolytes
are reabsorbed back into the plasma and unwanted subsfas=to urine. Thus it is of interest to study the flow in
proximal tubule using mathematical models.

Study of viscous fluid flow in channels of varying cross sattiwith permeable wall is significant because of its
application to both physiological and engineering flow peofis. The flow of fluid in a renal tubule has been studied by
different authors. Maceyl] formulated the problem as the flow of an incompressibleadscfluid through a circular
tube with linear rate of reabsorption at the wall. Whereastan P] found that the bulk flow in the proximal tubule
decays exponentially with the axial distance. Then, Ma&yws$ed this condition to solve the equations of motion and
mentioned that the longitudinal velocity profile is parab@nd the drop in mean pressure is proportional to the mean
axial flow. Marshall and Trowbridgel] and Palatt et.alq] used physical conditions existing at the rigid permeabhet
instead of prescribing the flux at the wall as a function ohhdistance.

The representation of a proximal tubule as a uniform tubé withstant wall permeability is obviously an idealization.
Radhakrishnamacharya et &l [considered a non-uniform geometry to model renal tubuldenthe previous studies
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considered it uniform. They made an attempt to understaedfitw through the renal tubule by studying the
hydrodynamical aspects of an incompressible viscous ftui éircular tube of varying cross-section with reabsorptio
at the wall. Following similar approach, Chandra and PrdShdnalyzed fluid flow in rigid tube of slowly varying
cross-section by considering different geometries. Alsaytinvestigated the problem by considering fluid exchange
across the permeable wall governed by Starling’s hypath€iaturani and Ranganatt@ $tudied fluid flow through a
diverging/converging tube with variable wall permeakiliThey obtained approximate analytical solution for theeca
that the flux at the wall depends on wall permeability anddbamundary pressure drop. Recently, Muthu and Tesfahun
[9] have studied the fluid flow in nonuniform rigid wavy channéharying cross section and presented the effects of
slope parameter, reabsorption coefficient on the transweiscity and mean pressure drop.

In all the above studies, the method used to solve the gowgetuations of the fluid motion is perturbation method of
solution by taking small nonuniform tube parameter/curatparameter. In this paper, the Navier-Stokes equations
governing the flow of an incompressible viscous fluid thro@glvavy non-uniform permeable channel are solved
numerically by using the finite element method. The effe€isave number §), reabsorption coefficientr(), amplitude
ratio (€) and Reynolds number on the transverse velocity, streactibtmand mean pressure drop are studied without
restrictions on the parameters of the problem, in principle

The boundary of the channel walls are assumed to be symnabwigx axis and vary withx. It is taken as
. 2TIX
nx) =d+ k x+ asm(T) 1)
whered is the half width of the channel at the inlet fa= 0 ). k; is a constant whose magnitude depends on the length

of the channel exit and inlet dimensioass the amplitude and is the wave length (see Fig.1). Here, we assime 1
to model the slowly varying slope.

"

o

Fig. 1: Geometry of the problem.

2 Mathematical formulation

In this section we summarize the equation governing the flafloid flowing through channel. Two types of formulation
are discussed, namely theocity-pressure andvorticity-streamfunction. The boundary conditions relevant to the problem
are also presented consistently in both the two formulation
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2.1 Vel ocity-pressure formulation

Consider an incompressible fluid flowing through a radiajlsnmetric channel with cross-section varying slowly along
the axis as given by equatidn The motion of the fluid is assumed to be laminar, steady antsstric. As a result we
consider a section of the channel in 2D with domain denote@ byhe channel is long enough to neglect the initial and
end effects. The equations governing the motion of such flwidulated in terms of the primitive fields (velocity-press
formulation) are given by, (see for exampidl])

O-u=0

2
(u-D)u= —0OP+ v, @)

where u = ui + vj the velocity vector field,P the pressurey the kinematic viscosity parameter. The symbols
0= (d/0x)i+(d/dy)j and? = O- 0 are the gradient and Laplacian differential operatorQomespectively. The first
equation of @) is the continuity accounting for the incompressibilityndition. The equations of motiorn2) are
subjected to the following boundary conditions

(a) Thetangential velocity at thewall is zero. The tangent vector to the boundaryas T =i+ %r)(x)j. Then

0=T-u= u+d%r)(x)v on the upper wall witty = n (x). 3)

(b) Inlet/Outlet boundaries. Based on our assumption we consider a symmetrical inletdany condition. That is,

u(0,y) = f(y). (4)

wheref is some function which is symmetrical with respect to skaxis with f(d) = 1, and the outlet boundary
condition:

u=g(y), )

whereg is symmetric with respect to theaxis.
(c) There-absorption has been accounted for by considering the bulk flow as a da@ngeunction ofx along the wall.
That is, the flux across a cross-section is given as

n(x)
qm=£ V(x,y)dy = QoF (ax), (6)

whereF (ax) = 1 whena = 0 and decreases wit the constantr > 0 is the re-absorption coefficient, a@g is the
flux across the cross-sectionat 0.

In 2D the Navier-Storckes equatior®d composed of three partial differential equations witkethvariables (two velocity
components and one pressure field). There have been sonerdionmulations developed, among this the most common
is thevorticity-stream function (¢ — w) formulation. In this formulation, the incompressibilitpnstraint 2); is satisfied
apriori from the construction itself. As a result the pressibes not appear in the formulation as unknown. Ratheanit ¢
be obtained from the primary unknown fields as a post-process

2.2 The vorticity-stream function formulation

The stream functio and the vorticityw are scalar valued fields defined &) defined by

_ov ow and wfd—vf@ (7

oy’ T ox’ Tox  dy

u
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To non-dimensionalized the formulation we use the follayscaling

_X _Y N
Xlil\’ y*da ’7 d7
/ w ! / d2
= -, a:aA, =—0D,
MY TeT

wherex',y, n’, ¢/, a’, andp’ are the dimensionless counterpartg,of, i1, ¥, a, andp respectively. The vorticity-stream
function (y — w) formulation of the governing equation®)(n the dimensionless form are given by (after dropping the
primes)

A%w = 6Re0w- (BOY)

8
AD?Y = —w, ®

whered = d/A is a constant resulting from differentiation with respecttte non-dimensional spatial variableandy,
Re = Qo/V is the Reynolds numbef is symmetric and is anti-symmetric second-order tensors given by

320 01
A:[o 1]’ BZ[—lO] ©)

The non-dimensional form of the boundary boundary cond#tjaliscussed above, in terms of the- w are:

(a) The tangential component of the velocity vector equéatethe normal derivative of the stream function at the
boundary; that is, we recall that the tangent vector to tpestrtion of the wall is given by =i+ %r)(x), hence
the outward normal on the boundarynis= f%n (X)i + j so thatT -n = 0. To this end, the boundary conditia3) {s
translated to free Neumann-type condition of the form

oy
Ofﬁfnﬂ(,ufTu. (10)
Similarly the same boundary condition is prescribed at thgosite side of the boundary with= —n (x).

(b) The stream functiorp is also prescribed at the inlet/outlet boundaries so tleat-tomponent of the velocity field is

parabola and conformable with the adjacent boundary congity is continuous everywhere). That is,

w = f(y), on the inlet boundary (11)
1

a(y), on the outlet boundary (12)

wheref andgare anti-derivatives of andg respectively.
(c) The re-absorption boundary condition reads as

Y = QoF (ax), on the wall withy = n(x). (13)

Similarly @ is prescribed, along the wall at the opposite side, a synienettue,—QoF (ax).

In this problem, we consider exponentially decaying buliwflthat is, in equation1(3), F is taken as
F(ax) =expg—ax], (14)

whereaq is the permeability coefficient.
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3 Finite element approximation

In this section we present the finite element formulationhaf vorticity-stream function form7j. We then continue

to linearize the weak form upon which the Galerkin finite edertnapproximation and its iterative matrix system are also
formulated. In the present analysis, the governing eqna(if) together with the boundary conditiorigj-(13) are solved

in the finite region ABCD shown Figur2 Although the boundary conditions for the infinite channaérbeen given,
the present numerical method requires furthermore theitons on the entrance section AB and the exit section CD
because the numerical analysis is carried out for the fingeon ABCD as discussed b¥(,12] and [11]. Due to this, the
following conditions shall be introduced

(i) They-component of the flow velocity vanishes at the inlet andedutbundaries. That is,= —dy/dx= 0.
(i) The profile of the stream functiog is given by the prescribed functiorigy) andg(y) at AB and CD respectively.
(iii) The only boundary condition with respect to the voitfdunction w is free Neumann boundary condition over the
entire boundary. That i®lw/dn = 0 at each point on the boundary @f
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Fig. 2. Domain of the problem.
Therefore, the boundary conditions used in the analysideamritten as follows:
oy ow B
Y =h, and %fo, %fo onlr =0Q, (15)
whereh is a function defined on the entire boundarpy
f(y) On AB (inflow)
—F(ax) OnBC
h= (16)
a(y) On CD (outflow)

F(ax) On AD
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with f(y) anddly) are functions ofy, such thau is parabolic at AB and CD sections. We assume that theseifumsct
satisfy the boundary conditions so that the solution is free discontinuities.

3.1 Variational formulation

To formulate the weak form of the probler) (we first define the trial and weighting function spaces fahbarticity,
w, and stream functiory. For formal treatment of finite element procedure see, fangde [L4]. Stream function trial
space

Sy ={W: @ eHY(Q)andy =h(x,y) onaQ}. (17)
emph\orticity trial space

7 ={w: weHYQ)}. (18)
Stream function weighting space

¥, ={9: 9 H(Q)andp=00ndQ}. (19)
\orticity weighting space

Yo=1{9:0 cH(Q)}. (20)

Since there is no Dirichelet boundary condition with regplee vorticity, w, the vorticity trial and weighting spaces are
the sameH(Q). The variational problem corresponding to the syst&ptdgether with the boundary conditionss
reads as: Findy, w) € 7, x ., such that for eachy, ¢) € 7, x 7,

Jw
/QD(p-(ADw)dQ—i—éRe/Q quw-(BDw)dQ:/rqo%dl'

. . 5 (21)
/ 06 - (ADY)dQ + / o YdQ :/ o 2¥ar.
Ja Ja r’on
Note that, for the problem under discussion, the right hdaeissof the above equations vanish as a consequence of the
homogeneous Neumann boundary conditions given in equdt®n

3.2 Linearisation of the weak formulation

The weak formulation in the forms oR{) is non-linear in the unknown fields stream functiggrand vorticity w. An
iterative solution technique of Newton'’s type is employedolve the non-linear problems. The method requires one to
linearise the non-linear problem to generate iterativedmproblems that are solved and updated sequentially aintil
desired level of convergence is reached (see, for exanffBpapd the references therein, for detailed discussion of the
concept of linearisation).

Suppose thaR R = R(Y, w) be a sufficiently smooth non-linear function. The lineai@a of R is based on the
first-order (Taylor's) expansion, which expressed as

R(WY+ B, w+80) = R(Y, @) +R (Y, w; 5P, 5w) +O(3Y, 5w), (22)

whereR' (Y, w;dY, dw), which we also denoted it bRsR((Y, w), is the directional derivative dR at (), w) in the
direction of (0, dw) and it is defined by

(Y+hdyY, w+hdw) —R(Y, w)
h

DsR(Y, w) =R (¢, w; oY, dw) = HLnoR . (23)
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To find the linearisation of the weak forn21) we take an arbitrary trial paife, ¢) then defineR as a vector-valued
function as

Ry, w)
R(Y, ) = 24
(¥, ) R, w)] (24)
where
Ra(, w):/ qu~(ADm)dQ+6Re/ ¢0w- (BOW)dQ
? e (25)
Ro(y, @) = [ Op-(ADW)d@ + [ pyde.
Hence the directional derivatiigsR(y, w) is computed as
DsR1(¥, w)
DsR(Y, w) = 26
where
DsRe (W, @) :/ Og- (AT 3w)dQ + 6Re/ o0 50 (BOW)AQ + 5Re/ o0w- (BO 5y)dQ
Q Q Q 27)

Dy Ra (W, m):/QD¢~(AD 6Lp)dQ+/Q¢ SwdQ.

The Newton’s scheme for the proble@ilj reads as: Given that theapproximate solutiofig, «x). Our objective is to
find an updatédyk, dux) such that for eackp, ¢) € 7, x 7,

DsR(Yk, ax) = —R(Yk, &x)- (28)

Then the nextk+ 1, approximate solutiofd i1, dax.1) is given by

Ui =0k + P, and 1= OGk+ (29)

3.3 Galerkin approximation
Consider a triangulatiofi of Q into rectangular element@®, e=1,2,...Ng such that

a=Je" (30)

e=1

Consider the finite element baspg"} and{¢"} corresponding to the variatiordy anddw, respectively. The current
unknown updatedyi anddwy are expressed as linear combinations of the respective dl@snents:

dy=Soy' @', and dw=YS dw ¢! (31)
2 2004
wheredy' anddw' are coefficient of expansion fd, anddwy respectively.

Given thek!" approximate finite element solutiofy!, «f). Substitution of the expansions i1 and weighting
functions by the basis functionn%1 andqbih into the iterative scheme®) leads to the matrix iterative system

< k] Tow] _[R!
[K‘k*"” Keel |dw| R (32)

(© 2016 BISKA Bilisim Technology
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where
[Ke¥], = 6Re/Q @O (BO¢@)dQ

[Kf“’}u:/quyih-(Amq;}‘)dQMRe/Q p0g" - (BOY)dO

K, = [ 00 (ADg)d0

K], | = /Q o dQ
[R;’J]i:/gmqo-(ADaﬁ)dQMRe/Q o0 - (BOW)dQ

R = [ 00-(ADy)an+ [ gupdo.

(33)

andéy, anddwy are the vectors of nodal values of tkié finite element update.

3.4 Evaluation of pressure

Piecewise continuous bi-quadratic isoparametric finimment shape functions are used to interpolate the unknown
fields ¢ and w. However, derivatives of such shape functions are no longetinuous. Particularly, the derivatives are
discontinuous across the element boundaries. Thus gearttiat are derivatives af and w are evaluated only at the
guadrature points in the interior of the elements. Gradi¢ttie non-dimensional pressure fiélccan be calculated from
partial derivatives ofy andw using the formula

oY’y oY oY, Jw

Red( 5% a2 dy dxdy>7 ay
OP=b= , , (34)
oWty Ay 92y dw
3 32
Red (dy e T ax (3x0y) 0 ox

Instead of the usual way of evaluating pressure at the thérgtuae points in the interior of the elements as a postge®c
here we incorporated the weak form of pressure gradienttiequ@4) into (21). In which case, we are able to evaluate
pressure at the nodal points and it is now piecewise continoo Q. The weak form of the pressure gradient equation
(34) is given by

/ Nq. OPdQ — / 0g-bdQ, (35)
Q JQ

whereq is the pressure trial function. To find the pressure uniguwadyneed to have a Dirichlet boundary condition on
either or both the inlet and outlet boundaries.

3.5 Mean pressure drop

Since the channel and the flow are symmetricrtiean pressure P along any vertical line is equal to the pressure on the
axis of the channel. That is

P(x) = P(x.0) (36)
Furthermore, the mean pressure drop betweer® andx = X is calculated using
Ap(xo) = P(0) — p(xo)- @37

4 Results and discussion

The objective of this analysis is to study the behavior of anompressible fluid flow through a channel of
converging/diverging and slowly varying cross-sectiothvébsorbing walls by numerical approach. It may be recalled

(© 2016 BISKA Bilisim Technology
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that k characterize the slope of the converging/diverging wavylsw = 1.0 represents a diverging channkl= 0
represents a normal (sinusoidal) channel krd —1.0 represents a converging chanreehnd o represents amplitude
and reabsorption coefficient of wavy walls. We discuss tfexes of these parameters on the transverse velogixyy()),
mean pressure drog@(x)) and stream functiogy(x,y). In all our numerical calculations, the following paramstare
fixed asd = 0.1 ande = 0.1.

Fig. 3: A transverse velocity at k = 0.1, k = 0.0 and k = Fig. 4: A transverse velocity at = 0.5, = 1.0 anda =
-0.1 respectively. 1.5 respectively.

(© 2016 BISKA Bilisim Technology
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4.1 Thevelocity v

The velocity field can be obtained from approximation of ttream function. In this section, we discuss the effects of
the slope parametek); reabsorption coefficient() and Reynolds number on the transverse velocity. Also, wk iioto

the behavior of the velocity at different cross sections h## flow field. The effect of slope parametdq (on the
transverse velocity is shown in Figur8)( The velocity is more for divergent channel than the norgsaiusoidal)
channel, and it is less for convergent channel than the otlerThe effect of reabsorption coefficiemtis presented in
the Fig. @). It can be observed from the figures thatcagcreases, the transverse velocity of the flow increaseaslfor
cases ( converging, normal, and diverging channels).

Figure 6) illustrates the effect of Reynolds number on the veloeityersusy. As shown, the Reynolds number produces
significant influence on the transverse velocity. Rsincreases from 0.1 to 100, the velocity increases and thet poi
where the velocity attains its maximum decreases. ¥Figlso shows the behavior of the velocity as the fluid passes
through the channel at different locations»fAs the fluid passes from the entrance to exit, the transweskity
decreases and it attains the maximum at the pgi@it7 at the entrance and it shifts towards the boundary atdihe e

Fig. 5: A transverse velocity at R = 0.1, R =50
and R = 100 respectively.

4.2 Theveocity u

The reabsorption coefficientand the slope parametehas the same effect on the longitudinal velocitps a increases
the velocityu decreases and it increases as the channel moves from digéogn to convergent form.

(© 2016 BISKA Bilisim Technology
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Fig. 7: A longitudinal velocity atk = 0.1,k = 0.0 andk =
-0.1 respectively.

Fig. 6: A longitudinal velocity ata = 0.5,a = 1.0 anda
= 1.5 respectively.

4.3 Pressure and mean pressuredrop Ap

The values of the mean pressure drop over the length of thenehare calculated for different valueslonda. As
shown, in Figures, when the reabsorption coefficieatincreases, the mean pressure drop decrease for all thires for
of the channel ( convergent, normal and divergent channéliglire9 displays the effect of slope parameketo mean
pressure drop. We can notice thap is less for the divergent channel than the normal or converggannels, and it is
more for convergent channel than the normal/divergentroblan

(© 2016 BISKA Bilisim Technology
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Ap
35F
3.0F
250 — a=0.5
200 -—=a=1.0
15F a=1.5
10F
0.5F
; L L 1 L L 1 L L 1 L L 1 L L 1 L L 1 x
: 0.5 1.0 1.5 2.0 2.5 3.0
Fig. 8: Mean Pressure Drop at=0.5,a = 1.0 anda = 1.5 respectively.
Ap
8 —
6 =
L — k=0.1
4l -==-k=0.0
: k=-0.1
2 =
J L L L L 1 L L 1 L L 1 L L 1 L L 1 L L 1 x

Fig. 9: Mean Pressure Drop &t= 0.1,k = 0.0 andk = -0.1 respectively.

Figuresl0- 13 shows the influence af andk on the pressurp and mean pressure. These parameters has same effect on
p and mean pressure. As the reabsorption coefficieand slop parametdrincreases the pressure decreases while the
mean pressure rise.
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0.0 0.5 1.0 1.5 2.0 2.5 3.0

. Fig. 11: Mean Pressure at = 0.5,a = 1.0 anda = 1.5
Flg. 10: Pressure atr = 0.5, a0 = 1.0 anda = 1.5 respective|y_

respectively.
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MeanP

0.0 0.5 1.0 1.5 2.0 2.5 3.0

67“““““““““““““““x

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Fig. 12: Pressure ak = 0.1, k = 0.0 andk = -0.1
respectively. Fig. 13: Mean Pressure &= 0.1,k = 0.0 andk = —0.1
respectively.

4.4 Sream function

We can observe the flow behavior of the fluid by looking at th&t@or drawing of the stream function for various values
of reabsorption coefficierd and for the slope parameterFig. (14) shows the effect ofr on the flow behavior of the
fluid. It can be observed that asincreases, the stream lines moves to the boundary becausarefabsorption. Figl5
are showing the flow pattern for diverging, normal(sinuat)idnd converging channels.
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Fig. 14: Stream function atr = 0.5,a = 1.0 anda = 1.5  Fig. 15: Stream function at = 0.1,k=0.0 andk = —0.1
respectively. respectively.

5 Conclusions

In the present study, an analysis of mathematical modelaafimpressible fluid flow in a rigid channel of slowly varying
converging/diverging walls has been presented with ptssibpplications to the flow of fluid in renal tubules. The main
contribution of this study is to use the numerical methoddlves the Navier-Stock equations for an incompressible,
steady, viscous flow without imposing any restriction onplaeameters of the problem. The reabsorption coeffigient
the slope parametérand the Reynolds numb&e have the same effect on the transverse velocity. As thegasers,

(© 2016 BISKA Bilisim Technology
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the velocity also increases. The mean pressure drop desréasrise of reabsorption coefficient for all three forms of
the channel (converging, normal(sinusoidal) and divergihannels). It is also less for the divergent channel than th
normal or convergent channels, and it is more for convergjgntnel than the normal/divergent channels. The streamlin

shows the general trend of the fluid flow. Physically, as tladserption coefficient increases the fluid that come out of
the channel becomes very low.
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