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1 Introduction, definitions and notations

We denote byC the set of all finite complex numbers. Letf be a meromorphic function defined onC. We use the

standard notations and definitions in the theory of entire and meromorphic functions which are available in [22] and [?].

Let f be a non-constant meromorphic function defined in the open complex planeC. Also let n0 j ,n1 j ,...nk j(k ≥ 1) be

non-negative integers such that for eachj,
k
∑

i=0
ni j ≥ 1. We call M j [ f ] = A j ( f )n0 j

(

f (1)
)n1 j

...

(

f (k)
)nk j

where

T (r,A j) = S(r, f ) to be a differential monomial generated byf . The numbersγM j =
k
∑

i=0
ni j andΓM j =

k
∑

i=0
(i + 1)ni j are

called respectively the degree and weight ofM j [ f ] {[5],[26]} . The expressionP[ f ] =
s
∑
j=1

M j [ f ] is called a differential

polynomial generated byf . The numbersγP = max
1≤ j≤ s

γM j and ΓP = max
1≤ j≤ s

ΓM j are called respectively the degree and

weight ofP[ f ] {[5],[26]} . Also we call the numbersγP
−
= min

1≤ j≤ s
γM j andk (the order of the highest derivative off ) the

lower degree and the order ofP[ f ] respectively. Ifγp
−

= γP, P[ f ] is called a homogeneous differential polynomial.

Throughout the paper we consider only the non-constant differential polynomials and we denote byP0 [ f ] a differential

polynomial not containingf i.e., for whichn0 j = 0 for j = 1,2, ...s. We consider only thoseP[ f ] , P0 [ f ] singularities of

whose individual terms do not cancel each other. We also denote by M [ f ] a differential monomial generated by a

transcendental meromorphic functionf .

In the sequel the following definitions are well known.
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Definition 1. Let a be a complex number, finite or infinite. The Nevanlinna deficiency and the Valiron deficiency of ‘ a ’

with respect to a meromorphic function f are defined as

δ (a; f ) = 1− limsup
r→∞

Nf (r,a)

Tf (r)
= lim inf

r→∞

mf (r,a)

Tf (r)

and

∆(a; f ) = 1− liminf
r→∞

Nf (r,a)

Tf (r)
= limsup

r→∞

mf (r,a)

Tf (r)
.

Definition 2. The quantityΘ(a; f ) of a meromorphic function f is defined as follows

Θ(a; f ) = 1− limsup
r→∞

−
Nf (r,a)

Tf (r)
.

Definition 3. [29] For a ∈ C∪{∞}, we denote by nf |=1(r,a), the number of simple zeros of f−a in |z| ≤ r. Nf |=1(r,a) is

defined in terms of nf |=1(r,a) in the usual way. We put

δ1(a; f ) = 1− limsup
r→∞

Nf |=1(r,a)

Tf (r)
,

the deficiency of ‘a’ corresponding to the simple a-points off i.e., simple zeros of f−a.

Yang [28] proved that there exists at most a denumerable number of complex numbersa∈C∪{∞} for whichδ1(a; f )> 0

and ∑
a∈C∪{∞}

δ1(a; f )≤ 4.

Definition 4. [24] For a ε C∪{∞} , let np(r,a; f ) denote the number of zeros of f−a in |z| ≤ r, where a zero of multiplicity

< p is counted according to its multiplicity and a zero of multiplicity ≥ p is counted exactly p times and Np(r,a; f ) is

defined in terms of np(r,a; f ) in the usual way. We define

δp(a; f ) = 1− limsup
r→∞

Np(r,a; f )
Tf (r)

.

Definition 5. [3] P[ f ] is said to be admissible if

(i) P[ f ] is homogeneous, or

(ii) P[ f ] is non homogeneous and mf (r) = Sf (r).

During the past decades, several authors ( see [6] to [17], [25]) made closed investigations on comparative study of the

growth properties of composite entire or meromorphic functions in different directions using order (lower order ) and

differential polynomials and differential monomials generated by one of the factors. The growth indicator such as order

(lower order ) of entire or meromorphic function which is generally used in computational purpose is defined in terms of

the growth of that function with respect to the exponential function is shown in the following definition:

Definition 6. The orderρ f ( the lower orderλ f ) of an entire function f is defined as

ρ f = limsup
r→∞

log logM f (r)

loglogMexpz(r)
= limsup

r→∞

loglogM f (r)

log(r)

(

λ f = lim inf
r→∞

log logM f (r)
loglogMexpz(r)

= lim inf
r→∞

loglogM f (r)
log(r)

)

.
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when f is a meromorphic, one may easily prove that

ρ f = limsup
r→∞

logTf (r)

logTexpz(r)
= limsup

r→∞

logTf (r)

log
(

r
π
) = limsup

r→∞

logTf (r)

log(r)+O(1)

(

λ f = lim inf
r→∞

logTf (r)

logTexpz(r)
= lim inf

r→∞

logTf (r)

log
(

r
π
) = lim inf

r→∞

logTf (r)

log(r)+O(1)

)

.

Both entire and meromorphic function have regular growth iftheir order coincides with their lower order.

For a non-constant entire functionf , M f (r) andTf (r) are both strictly increasing and continuous functions ofr and

their inversesM−1
f (r) : (| f (0)| ,∞)→ (0,∞) andT−1

f :
(

Tf (0) ,∞
)

→ (0,∞) respectively exist where lim
s→∞

M−1
g (s) = ∞ and

lim
s→∞

T−1
f (s) = ∞. In this connection we just recall the following definition which is relevant to our study:

Definition 7. [2] A non-constant entire function f is said have the property (A) if for anyσ > 1 and for all sufficiently

large r,
[

M f (r)
]2

≤ M f (rσ ) holds. For examples of functions with or without the Property (A), one may see [2].

Bernal{[1], [2]} initiated the idea of relative order of an entire functionf with respect to another entire functiong,

symbolized byρg ( f ) to keep away from comparing growth just with expz which is as follows:

ρg ( f ) = inf
{

µ > 0 : M f (r)< Mg (r
µ) for all r > r0 (µ)> 0.

}

= limsup
r→∞

logM−1
g M f (r)

logr
.

The definition agrees with the classical one [?] if g(z) = expz.

Similarly, one may define the relative lower order of an entire function f with respect to another entire functiong

symbolized byλg ( f ) in the following way:

λg ( f ) = lim inf
r→∞

logM−1
g M f (r)

logr
.

Extending this idea, Lahiri and Banerjee[23] established the definition of relative order of a meromorphic function with

respect to an entire function which is as follows:

Definition 8. [23] Let f be any meromorphic function and g be any entire function. The relative order of f with respect

to g is defined as

ρg ( f ) = inf
{

µ > 0 : Tf (r)< Tg (r
µ) for all sufficiently large r

}

= limsup
r→∞

logT−1
g Tf (r)

logr
.

Likewise, one may define the relative lower order of a meromorphic function f with respect to an entire functiong in the

following way:

λg( f ) = lim inf
r→∞

logT−1
g Tf (r)

logr
.

It is known {cf. [23] } that if g(z) = expz then Definition8 coincides with the classical definition of the order of a

meromorphic functionf .

In the paper we prove some comparative growth properties of composite entire or meromorphic functions in almost a
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new direction in the light of their relative orders and relative lower orders and differential monomials, differential

polynomials generated by one of the factor.

2 Lemmas

In this section we present some lemmas which will be needed inthe sequel.

Lemma 1. [4] Let f be meromorphic and g be entire then for all sufficientlylarge values of r,

Tf◦g (r)6 {1+o(1)}
Tg (r)

logMg (r)
Tf (Mg (r)) .

Lemma 2.[18] Let f be a meromorphic function and g be an entire function such thatλg < µ < ∞ and0< λ f ≤ ρ f < ∞.

Then for a sequence of values of r tending to infinity,

Tf◦g(r)< Tf (exp(rµ)) .

Lemma 3. [18] Let f be a meromorphic function of finite order and g be an entire function such that0< λg < µ < ∞.

Then for a sequence of values of r tending to infinity,

Tf◦g(r)< Tg (exp(rµ)) .

Lemma 4. [21] Let f be an entire function which satisfy the Property (A),β > 0, δ > 1 andα > 2. Then

βTf (r)< Tf

(

αrδ
)

.

Lemma 5. [19] If f be a meromorphic function either of finite order or of non-zero lower order such thatΘ (∞; f ) =

∑
a6=∞

δp (a; f ) = 1 or δ (∞; f ) = ∑
a6=∞

δ (a; f ) = 1 and g be an entire function of regular growth having non zero finite order

andΘ (∞;g) = ∑
a6=∞

δp (a;g) = 1 or δ (∞;g) = ∑
a6=∞

δ (a;g) = 1. Then the relative order and relative lower order of P0 [ f ]

with respect to P0 [g] are same as those of f with respect to g where P0 [ f ] and P0 [g] are homogeneous. i.e.,

ρP0[g] (P0 [ f ]) = ρg ( f ) andλP0[g] (P0 [ f ]) = λg( f ) .

Lemma 6. [20] Suppose f be a transcendental meromorphic function of finite order or of non-zero lower order and

∑
a∈C∪{∞}

δ1(a; f ) = 4. Also let g be a transcendental entire function of regular growth having non zero finite order and

∑
a∈C∪{∞}

δ1(a;g) = 4. Then the relative order and relative lower order of M[ f ] with respect to M[g] are same as those of f

with respect to g. i.e.,

ρM[g] (M [ f ]) = ρg ( f ) andλM[g] (M [ f ]) = λg ( f ) .

3 Theorems

In this section we present the main results of the paper. It isneedless to mention that in the paper, the admissibility and

homogeneity ofP0 [ f ] for meromorphicf will be needed as per the requirements of the theorems.

Theorem 1.Let g be an entire function and f be a meromorphic function either of finite order and non-zero lower order

with Θ (∞; f ) = ∑
a6=∞

δp (a; f ) = 1 or δ (∞; f ) = ∑
a6=∞

δ (a; f ) = 1. Also h be an entire function of regular growth having non
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zero finite order withΘ (∞;h) = ∑
a6=∞

δp(a;h) = 1 or δ (∞;h) = ∑
a6=∞

δ (a;h) = 1 and 0 < λh ( f ) ≤ ρh ( f ) < ∞. Then for

every positive constantµ and eachα ∈ (−∞,∞) ,

lim inf
r→∞

{

logT−1
h Tf◦g(r)

}1+α

logT−1
P0(h)

TP0( f ) (exp(rµ))
= 0 if µ > λg .

Proof. If 1 +α ≤ 0, then the theorem is obvious. We consider 1+α > 0. SinceT−1
h (r) is an increasing function ofr, it

follows from Lemma2 for a sequence of values ofr tending to infinity that

logT−1
h Tf◦g(r)< logT−1

h Tf (exp(rµ))

i.e., logT−1
h Tf◦g(r)< (ρh ( f )+ ε) rµ

. (1)

Again for all sufficiently large values ofr, we get in view of Lemma5 that

logT−1
P0(h)

TP0( f ) (exp(rµ))≥
(

λP0(h) (P0( f ))− ε
)

rµ

i.e., logT−1
P0(h)

TP0( f ) (exp(rµ))≥ (λh ( f )− ε)rµ
. (2)

Therefore for a sequence of values ofr tending to infinity, we obtain from(1) and(2) that

{

logT−1
h Tf◦g(r)

}1+α

logT−1
P0(h)

TP0( f ) (exp(rµ))
≤

(ρh( f )+ ε)1+α rµ(1+α)

(λh ( f )− ε) rµ . (3)

So from(3) we obtain that

liminf
r→∞

{

logT−1
h Tf◦g(r)

}1+α

logT−1
P0(h)

TP0( f ) (exp(rµ))
= 0 .

This proves the theorem.

In the line of Theorem1 and with the help of Lemma6, we may state the following theorem without its proof.

Theorem 2. Let g be an entire function and f be a transcendental meromorphic function either of finite order and of

non-zero lower order with ∑
a∈C∪{∞}

δ1(a; f ) = 4. Also h be a transcendental entire function of regular growth having non

zero finite order with ∑
a∈C∪{∞}

δ1(a;h) = 4 and 0 < λh ( f ) ≤ ρh( f ) < ∞. Then for every positive constantµ and each

α ∈ (−∞,∞) ,

lim inf
r→∞

{

logT−1
h Tf◦g(r)

}1+α

logT−1
M(h)TM( f ) (exp(rµ))

= 0 if µ > λg .

Theorem 3.Let f be a meromorphic function with non zero finite order and lower order, g be an entire function either

of finite order or of non-zero lower order such thatΘ (∞;g) = ∑
a6=∞

δp(a;g) = 1 or δ (∞;g) = ∑
a6=∞

δ (a;g) = 1 and h be an

entire function of regular growth having non zero finite order andΘ (∞;h) = ∑
a6=∞

δp (a;h)= 1 or δ (∞;h)= ∑
a6=∞

δ (a;h)= 1.

Also letρh ( f )< ∞ andλh (g)> 0. Then for every positive constantµ and eachα ∈ (−∞,∞) ,

lim inf
r→∞

{

logT−1
h Tf◦g(r)

}1+α

logT−1
P0(h)

TP0(g) (exp(rµ))
= 0 if µ > λg .

The proof is omitted as it can be carried out in the line of Theorem1.
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Theorem 4.Let f be a meromorphic function with non zero finite order and lower order, g be a transcendental entire

function either of finite order or of non-zero lower order such that ∑
a∈C∪{∞}

δ1(a;g) = 4 and h be a transcendental entire

function of regular growth having non zero finite order and∑
a∈C∪{∞}

δ1(a;h) = 4. Also letρh ( f )< ∞ andλh (g)> 0. Then

for every positive constantµ and eachα ∈ (−∞,∞) ,

lim inf
r→∞

{

logT−1
h Tf◦g(r)

}1+α

logT−1
M(h)TM(g) (exp(rµ))

= 0 if µ > λg .

The proof of the above theorem is omitted as it can be carried out in the line of Theorem3 and with the help of Lemma6.

Theorem 5.Let f be a meromorphic function of finite order withΘ (∞; f ) = ∑
a6=∞

δp(a; f )= 1 or δ (∞; f ) = ∑
a6=∞

δ (a; f ) =1,

g be an entire function with non zero finite lower order and h bean entire function of regular growth having non zero finite

order withΘ (∞;h) = ∑
a6=∞

δp(a;h) = 1 or δ (∞;h) = ∑
a6=∞

δ (a;h) = 1. Also letλh ( f ) > 0 andρh (g)< ∞ . Then for every

positive constantµ and eachα ∈ (−∞,∞) ,

lim inf
r→∞

{

logT−1
h Tf◦g(r)

}1+α

logT−1
P0(h)

TP0( f ) (exp(rµ))
= 0 if µ > λg .

Theorem 6.Let f be a meromorphic function with finite order, g be an entire function non zero finite lower order with

Θ (∞;g) = ∑
a6=∞

δp(a;g) = 1 or δ (∞;g) = ∑
a6=∞

δ (a;g) = 1 and h be an entire function of regular growth having non zero

finite order withΘ (∞;h) = ∑
a6=∞

δp (a;h) = 1 or δ (∞;h) = ∑
a6=∞

δ (a;h) = 1. Also let0 < λh (g) ≤ ρh (g) < ∞ . Then for

every positive constantµ and eachα ∈ (−∞,∞) ,

lim inf
r→∞

{

logT−1
h Tf◦g(r)

}1+α

logT−1
P0(h)

TP0(g) (exp(rµ))
= 0 if µ > λg .

We omit the proofs of Theorem5 and Theorem6 as those can be carried out in the line of Theorem1 and Theorem3

respectively and with the help of Lemma3.

In the line of Theorem5 and Theorem6 and with the help of Lemma6 we may state the following two theorems without

their proofs.

Theorem 7. Let f be a transcendental meromorphic function of finite order with ∑
a∈C∪{∞}

δ1(a; f ) = 4, g be an entire

function with non zero finite lower order and h be a transcendental entire function of regular growth having non zero

finite order with ∑
a∈C∪{∞}

δ1(a;h) = 4. Also letλh ( f ) > 0 and ρh (g) < ∞. Then for every positive constantµ and each

α ∈ (−∞,∞) ,

lim inf
r→∞

{

logT−1
h Tf◦g(r)

}1+α

logT−1
M(h)TM( f ) (exp(rµ))

= 0 if µ > λg .

Theorem 8.Let f be a meromorphic function with finite order, g be a transcendental entire function non zero finite lower

order with ∑
a∈C∪{∞}

δ1(a;g) = 4 and h be a transcendental entire function of regular growth having non zero finite order
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with ∑
a∈C∪{∞}

δ1(a;h) = 4. Also let0< λh (g)≤ ρh (g)< ∞ . Then for every positive constantµ and eachα ∈ (−∞,∞) ,

lim inf
r→∞

{

logT−1
h Tf◦g(r)

}1+α

logT−1
M(h)TM(g) (exp(rµ))

= 0 if µ > λg .

Theorem 9.Suppose f be a meromorphic function either of finite order or of non-zero lower order such thatΘ (∞; f ) =

∑
a6=∞

δp (a; f ) = 1 or δ (∞; f ) = ∑
a6=∞

δ (a; f ) = 1. Also let h be an entire function of regular growth having nonzero finite

order withΘ (∞;h) = ∑
a6=∞

δp (a;h) = 1 or δ (∞;h) = ∑
a6=∞

δ (a;h) = 1 and g be any entire function such thatρh ( f )< ∞ and

λh ( f ◦g) = ∞ .Then

lim
r→∞

logT−1
h Tf◦g (r)

logT−1
P0[h]

TP0[ f ] (r)
= ∞.

Proof.Let us suppose that the conclusion of the theorem do not hold.Then we can find a constantβ > 0 such that for a

sequence of values ofr tending to infinity,

logT−1
h Tf◦g (r)≤ β logT−1

P0[h]
TP0[ f ] (r) . (4)

Again it follows for all sufficiently large values ofr and in view of Lemma5 that

logT−1
P0[h]

TP0[ f ] (r)≤
(

ρP0[h] (P0[ f ])+ ε
)

logr

i.e., logT−1
P0[h]

TP0[ f ] (r)≤ (ρh ( f )+ ε) logr . (5)

Thus from(4) and(5) , we have for a sequence of values ofr tending to infinity that

logT−1
h Tf◦g (r)≤ β (ρh ( f )+ ε) logr

i.e.,
logT−1

h Tf◦g (r)

logr
≤

β (ρh ( f )+ ε) logr
logr

i.e., lim inf
r→∞

logT−1
h Tf◦g (r)

logr
= λh( f ◦g)< ∞.

This is a contradiction. Hence the theorem follows.

Remark.Theorem9 is also valid with “limit superior” instead of “limit” ifλh ( f ◦g) = ∞ is replaced byρh ( f ◦g) = ∞ and

the other conditions remain the same.

Corollary 1. Under the assumptions of Theorem9 and Remark3,

lim
r→∞

T−1
h Tf◦g (r)

T−1
P0[h]

TP0[ f ] (r)
= ∞ and limsup

r→∞

T−1
h Tf◦g (r)

T−1
P0[h]

TP0[ f ] (r)
= ∞ .

respectively hold.

The proof is omitted.

Analogously one may also state the following theorem and corollaries without their proofs as those may be carried out in

the line of Remark3, Theorem9 and Corollary1 respectively.
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Theorem 10. Let g be an entire function either of finite order or of non-zero lower order such that

Θ (∞;g) = ∑
a6=∞

δp (a;g) = 1 or δ (∞;g) = ∑
a6=∞

δ (a;g) = 1. Also let h be an entire function of regular growth having non

zero finite order withΘ (∞;h) = ∑
a6=∞

δp (a;h) = 1 or δ (∞;h) = ∑
a6=∞

δ (a;h) = 1 and f be any meromorphic function such

thatρh (g)< ∞ andρh ( f ◦g) = ∞ .Then

limsup
r→∞

logT−1
h Tf◦g (r)

logT−1
P0[h]

TP0[g] (r)
= ∞ .

Remark.Theorem10 is also valid with “limit” instead of “limit superior” ifρh ( f ◦g) = ∞ is replaced byλh ( f ◦g) = ∞
and the other conditions remain the same.

Corollary 2. Under the assumptions of Theorem10and Remark3,

limsup
r→∞

T−1
h Tf◦g (r)

T−1
P0[h]

TP0[g] (r)
= ∞ and lim

r→∞

T−1
h Tf◦g (r)

T−1
P0[h]

TP0[g] (r)
= ∞

respectively hold.

In the line of Theorem9 and Theorem10and with the help of Lemma6, we may state the following two theorems without

their proofs.

Theorem 11.Suppose f be a transcendental meromorphic function either of finite order or of non-zero lower order such

that ∑
a∈C∪{∞}

δ1(a; f ) = 4. Also let h be a transcendental entire function of regular growth having non zero finite order with

∑
a∈C∪{∞}

δ1(a;h) = 4 and g be any entire function such thatρh ( f )< ∞ andλh ( f ◦g) = ∞ .Then

lim
r→∞

logT−1
h Tf◦g (r)

logT−1
M[h]TM[ f ] (r)

= ∞ .

Remark.Theorem11 is also valid with “limit superior” instead of “limit” ifλh ( f ◦g) = ∞ is replaced byρh ( f ◦g) = ∞
and the other conditions remain the same.

Corollary 3. Under the assumptions of Theorem11and Remark3,

lim
r→∞

T−1
h Tf◦g (r)

T−1
M[h]TM[ f ] (r)

= ∞ andlimsup
r→∞

T−1
h Tf◦g (r)

T−1
M[h]TM[ f ] (r)

= ∞

respectively hold.

The proof is omitted.

Theorem 12. Let g be a transcendental entire function either of finite order or of non-zero lower order such that

∑
a∈C∪{∞}

δ1(a;g) = 4. Also let h be a transcendental entire function of regular growth having non zero finite order with

∑
a∈C∪{∞}

δ1(a;h) = 4 and f be any meromorphic function such thatρh (g)< ∞ andρh ( f ◦g) = ∞ .Then

limsup
r→∞

logT−1
h Tf◦g (r)

logT−1
M[h]TM[g] (r)

= ∞ .
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Remark.Theorem12 is also valid with “limit” instead of “limit superior” ifρh ( f ◦g) = ∞ is replaced byλh ( f ◦g) = ∞
and the other conditions remain the same.

Corollary 4. Under the assumptions of Theorem12and Remark3,

limsup
r→∞

T−1
h Tf◦g (r)

T−1
M[h]TM[g] (r)

= ∞ and lim
r→∞

T−1
h Tf◦g (r)

T−1
M[h]TM[g] (r)

= ∞

respectively hold.

Theorem 13. Let f be a meromorphic function either of finite order or of non-zero lower order with

Θ (∞; f ) = ∑
a6=∞

δp (a; f ) = 1 or δ (∞; f ) = ∑
a6=∞

δ (a; f ) = 1, g be an entire function and h be an entire function of regular

growth having non zero finite order withΘ (∞;h) = ∑
a6=∞

δp(a;h) = 1 or δ (∞;h) = ∑
a6=∞

δ (a;h) = 1 and satisfy the

Property (A). Also letλg < λh( f ) ≤ ρh( f )< ∞. Then

lim inf
r→∞

logT−1
h Tf◦g (r)

T−1
P0[h]

TP0[ f ] (r)
= 0 .

Proof.Let β > 2 andδ > 1. SinceT−1
h (r) is an increasing function ofr, it follows from Lemma1 and Lemma4, for all

sufficiently large values ofr that

T−1
h Tf◦g (r)6 T−1

h

[

{1+o(1)}Tf (Mg (r))
]

i.e., T−1
h Tf◦g (r)6 β

[

T−1
h Tf (Mg (r))

]δ

i.e., logT−1
h Tf◦g (r)6 δ logT−1

h Tf (Mg (r))+O(1) .

Therefore from above, we get for a sequence of values ofr tending to infinity that

logT−1
h Tf◦g (r)≤ δ (ρh ( f )+ ε) logMg (r)+O(1) (6)

i.e., logT−1
h Tf◦g (r)≤ δ (ρh( f )+ ε) rλg+ε +O(1) . (7)

Again from the definition of relative order, we obtain in viewof Lemma5 for all sufficiently large values ofr that

T−1
P0[h]

TP0[ f ] (r)> r

(

λP0(h)
(P0( f ))−ε

)

i.e., T−1
P0[h]

TP0[ f ] (r)> r(λh( f )−ε)
. (8)

Thus in view of(7) and(8) , we get for a sequence of values ofr tending to infinity,

logT−1
h Tf◦g (r)

T−1
P0[h]

TP0[ f ] (r)
<

δ (ρh( f )+ ε) rλg+ε +O(1)

r(λh( f )−ε) . (9)

Now asλg < λh( f ) , we can chooseε (> 0) in such a way thatλg+ ε < λh( f )− ε and the theorem follows from(9) .

Remark.If we takeρg < λh( f ) ≤ ρh( f ) < ∞ instead ofλg < λh ( f ) ≤ ρh( f ) < ∞ and the other conditions remain the

same, the conclusion of Theorem13remains valid with “limit inferior ” replaced by “ limit ”.
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Theorem 14.Let f be a transcendental meromorphic function either of finite order or of non-zero lower order with

∑
a∈C∪{∞}

δ1(a; f ) = 4, g be an entire function and h be a transcendental entire function of regular growth having non zero

finite order with ∑
a∈C∪{∞}

δ1(a;h) = 4 and satisfy the Property (A). Also letλg < λh( f ) ≤ ρh( f )< ∞. Then

lim inf
r→∞

logT−1
h Tf◦g (r)

T−1
M[h]TM[ f ] (r)

= 0 .

The proof of the above theorem is omitted as it can be carried out in the line of Theorem13 and with the help of Lemma

6.

Remark.If we considerρg < λh( f )≤ ρh ( f )< ∞ instead ofλg < λh ( f )≤ ρh ( f )< ∞ and the other conditions remain the

same, the conclusion of Theorem14remains valid with “limit inferior ” replaced by “ limit”.

Theorem 15.Let f be a meromorphic function, g be an entire function either of finite order or of non-zero lower order

with Θ (∞; f ) = ∑
a6=∞

δp (a; f ) = 1 or δ (∞; f ) = ∑
a6=∞

δ (a; f ) = 1 and h be an entire function of regular growth having non

zero finite order withΘ (∞;h) = ∑
a6=∞

δp (a;h) = 1 or δ (∞;h) = ∑
a6=∞

δ (a;h) = 1 . Also letρh( f ◦g)< ∞ andλh (g) > 0.

Then

lim
r→∞

[

logT−1
h Tf◦g (r)

]2

T−1
P0(h)

TP0(g) (expr) · logT−1
P0(h)

TP0(g) (r)
= 0 .

Proof.For any arbitrary positiveε, we have in view of Lemma5 for all sufficiently large values ofr that

logT−1
h Tf◦g (r)≤ (ρh ( f ◦g)+ ε) logr (10)

and

logT−1
P0(h)

TP0(g) (r)≥
(

λP0(h) (P0(g))− ε
)

logr

i.e., logT−1
P0(h)

TP0(g) (r)≥ (λh (g)− ε) logr. (11)

Similarly, for all sufficiently large values ofr we have

logT−1
P0(h)

TP0(g) (expr)≥
(

λL(h) (L(g))− ε
)

r

i.e., T−1
P0(h)

TP0(g) (expr)≥ exp[(λh (g)− ε) r] . (12)

From(10) and(11) , we have for all sufficiently large values ofr that

logT−1
h Tf◦g (r)

logT−1
P0(h)

TP0(g) (r)
≤

(ρh ( f ◦g)+ ε) logr
(λh (g)− ε) logr

.

As ε (> 0) is arbitrary, we obtain from above that

limsup
r→∞

logT−1
h Tf◦g (r)

logT−1
P0(h)

TP0(g) (r)
≤

ρh ( f ◦g)
λh (g)

. (13)
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Again from(10) and(12) , we get for all sufficiently large values ofr that

logT−1
h Tf◦g (r)

T−1
P0(h)

TP0(g) (expr)
≤

(ρh ( f ◦g)+ ε) logr
exp[(λh(g)− ε) r]

.

Sinceε (> 0) is arbitrary, it follows from above that

limsup
r→∞

logT−1
h Tf◦g (r)

T−1
P0(h)

TP0(g) (expr)
= 0

i.e., lim
r→∞

logT−1
h Tf◦g (r)

T−1
P0(h)

TP0(g) (expr)
= 0. (14)

Thus the theorem follows from(13) and(14) .

In view of Theorem15, the following two theorems can be carried out. Hence their proofs are omitted.

Theorem 16. Let f a meromorphic function either of finite order or of non-zero lower order such that

Θ (∞; f ) = ∑
a6=∞

δp (a; f ) = 1 or δ (∞; f ) = ∑
a6=∞

δ (a; f ) = 1, g be any entire function and h be an entire function of regular

growth having non zero finite order withΘ (∞;h) = ∑
a6=∞

δp(a;h) = 1 or δ (∞;h) = ∑
a6=∞

δ (a;h) = 1. Also letρh ( f ◦g)< ∞

andλh ( f )> 0. Then

lim
r→∞

[

logT−1
h Tf◦g (r)

]2

T−1
P0(h)

TP0( f ) (exp(r)) · logT−1
P0(h)

TP0( f ) (r)
= 0 .

Theorem 17.Let f be a meromorphic function either of finite order or of non-zero lower order such thatΘ (∞; f ) =

∑
a6=∞

δp (a; f ) = 1 or δ (∞; f ) = ∑
a6=∞

δ (a; f ) = 1, g be an entire function either of finite order or of non-zero lower order

such that ∑
a6=∞

Θ (a;g) = 2 and h be an entire function of regular growth having non zero finite order andΘ (∞;h) =

∑
a6=∞

δp (a;h) = 1 or δ (∞;h) = ∑
a6=∞

δ (a;h) = 1. Also letρh ( f ◦g)< ∞, λh (g)> 0 andλh ( f )> 0. Then

(i) lim
r→∞

[

logT−1
h Tf◦g (r)

]2

T−1
P0(h)

TP0(g) (expr) · logT−1
P0(h)

TP0( f ) (r)
= 0 and

(ii) lim
r→∞

[

logT−1
h Tf◦g (r)

]2

T−1
P0(h)

TP0( f ) (expr) · logT−1
P0(h)

TP0(g) (r)
= 0.

In the line of Theorem15, Theorem16 and Theorem17 and with the help of Lemma6 we may state the following three

theorems without their proofs :

Theorem 18.Let f be a meromorphic function, g be a transcendental entirefunction either of finite order or of non-zero

lower order with ∑
a∈C∪{∞}

δ1(a;g) = 4 and h be a transcendental entire function of regular growth having non zero finite

order with ∑
a∈C∪{∞}

δ1(a;h) = 4. Also letρh ( f ◦g)< ∞ andλh (g)> 0. Then

lim
r→∞

[

logT−1
h Tf◦g (r)

]2

T−1
M(h)TM(g) (expr) · logT−1

M(h)TM(g) (r)
= 0 .

Theorem 19.Let f a transcendental meromorphic function either of finiteorder or of non-zero lower order such that

∑
a∈C∪{∞}

δ1(a; f ) = 4, g be any entire function and h be a transcendental entire function of regular growth having non zero
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finite order with ∑
a∈C∪{∞}

δ1(a;h) = 4. Also letρh ( f ◦g)< ∞ andλh( f )> 0. Then

lim
r→∞

[

logT−1
h Tf◦g (r)

]2

T−1
M(h)TM( f ) (expr) · logT−1

M(h)TM( f ) (r)
= 0 .

Theorem 20.Let f be a transcendental meromorphic function either of finite order or of non-zero lower order such

that ∑
a∈C∪{∞}

δ1(a; f ) = 4, g be a transcendental entire function either of finite orderor of non-zero lower order such

that ∑
a∈C∪{∞}

δ1(a;g) = 4 and h be a transcendental entire function of regular growth having non zero finite order and

∑
a∈C∪{∞}

δ1(a;h) = 4. Also letρh( f ◦g)< ∞, λh(g)> 0 andλh ( f )> 0. Then

(i) lim
r→∞

[logT−1
h Tf◦g(r)]

2

T−1
M(h)TM(g)(expr)·logT−1

M(h)TM( f )(r)
= 0 and

(ii) lim
r→∞

[logT−1
h Tf◦g(r)]

2

T−1
M(h)TM( f )(expr)·logT−1

M(h)TM(g)(r)
= 0.

Theorem 21. Let f be a meromorphic function either of finite order or of non-zero lower order with

Θ (∞; f ) = ∑
a6=∞

δp (a; f ) = 1 or δ (∞; f ) = ∑
a6=∞

δ (a; f ) = 1, g be an entire function with finite order and h be an entire

function of regular growth having non zero finite order withΘ (∞;h) = ∑
a6=∞

δp (a;h) = 1 or δ (∞;h) = ∑
a6=∞

δ (a;h) = 1

and satisfy the Property (A). Also let0< λh ( f )≤ ρh ( f ) < ∞. Then

limsup
r→∞

log[2] T−1
h Tf◦g (r)

logT−1
P0(h)

TP0( f ) (r)
≤

ρg

λh ( f )
.

Proof.From(6) and in view of Lemma5, it follows for all sufficiently large values ofr that

log[2]T−1
h Tf◦g (r)≤ log[2]Mg (r)+O(1)

i.e.,
log[2] T−1

h Tf◦g (r)

logT−1
P0(h)

TP0( f ) (r)
≤

log[2]Mg (r)+O(1)
logr

·
logr

logT−1
P0(h)

TP0( f ) (r)

i.e., limsup
r→∞

log[2] T−1
h Tf◦g (r)

logT−1
P0(h)

TP0( f ) (r)
≤ limsup

r→∞

log[2]Mg (r)+O(1)
logr

· limsup
r→∞

logr

logT−1
P0(h)

TP0( f ) (r)

i.e., limsup
r→∞

log[2] T−1
h Tf◦g (r)

logT−1
P0(h)

TP0( f ) (r)
≤ ρg.

1
λP0(h) (P0( f ))

=
ρg

λh( f )
.

This proves the theorem.

Theorem 22.Let f be a meromorphic function, g be an entire function of finite order withΘ (∞;g) = ∑
a6=∞

δp (a;g) = 1

or δ (∞;g) = ∑
a6=∞

δ (a;g) = 1 and h be an entire function of regular growth having non zero finite order withΘ (∞;h) =

∑
a6=∞

δp (a;h) = 1 or δ (∞;h) = ∑
a6=∞

δ (a;h) = 1 and satisfy the Property (A). Also letρh( f ) < ∞ andλh (g)> 0. Then

limsup
r→∞

log[2]T−1
h Tf◦g (r)

logT−1
P0(h)

TP0(g) (r)
≤

ρg

λh (g)
.

The proof of Theorem22 is omitted as it can be carried out in the line of Theorem21.
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Theorem 23.Let f be a transcendental meromorphic function either of finite order or of non-zero lower order with

∑
a∈C∪{∞}

δ1(a; f ) = 4, g be an entire function with finite order and h be a transcendental entire function of regular growth

having non zero finite order with ∑
a∈C∪{∞}

δ1(a;h) = 4 and satisfy the Property (A). Also let0 < λh ( f ) ≤ ρh ( f ) < ∞.

Then

limsup
r→∞

log[2]T−1
h Tf◦g (r)

logT−1
M(h)TM( f ) (r)

≤
ρg

λh ( f )
.

Theorem 24.Let f be a meromorphic function, g be a transcendental entirefunction of finite order with ∑
a∈C∪{∞}

δ1(a;g)=

4 and h be a transcendental entire function of regular growth having non zero finite order with ∑
a∈C∪{∞}

δ1(a;h) = 4 and

satisfy the Property (A). Also letρh ( f )< ∞ andλh (g)> 0. Then

limsup
r→∞

log[2]T−1
h Tf◦g (r)

logT−1
M(h)TM(g) (r)

≤
ρg

λh (g)
.

The proof of the above two theorems are omitted as those can becarried out in the line of Theorem21 and Theorem22

respectively and with the help of Lemma6.

Theorem 25.Let f be a meromorphic function either of finite order or of non-zero lower order such thatΘ (∞; f ) =

∑
a6=∞

δp (a; f ) = 1 or δ (∞; f ) = ∑
a6=∞

δ (a; f ) = 1, g be an entire function with finite order and h be an entire function of

regular growth having non zero finite order withΘ (∞;h) = ∑
a6=∞

δp (a;h) = 1 or δ (∞;h) = ∑
a6=∞

δ (a;h) = 1 and satisfy the

Property (A). Also let0< λh( f )≤ ρh( f )< ∞. Then

lim
r→∞

logT−1
h Tf◦g (r)

logT−1
P0(h)

TP0( f ) (exprµ)
= ∞ ,

whereρg < µ < ∞.

Proof.Let us considerβ > 2 andδ > 1. As T−1
h (r) is an increasing function ofr, in view of Lemma1 we get from(6) for

all sufficiently large values ofr,

logT−1
h Tf◦g (r)≤ δ (ρh( f )+ ε) rρg+ε +O(1). (15)

Also from the definition of the relative lower order and in view of Lemma5, we obtain for all sufficiently large values of

r that

logT−1
P0(h)

TP0( f ) (exp(rµ))≥
(

λP0(h) (P0( f ))− ε
)

log{exp(rµ)}

i.e., logT−1
P0(h)

TP0( f ) (exprµ)≥ (λh ( f )− ε) rµ
. (16)

Now from (15) and(16) , it follows for all sufficiently large values ofr that

logT−1
h Tf◦g (r)

logT−1
P0(h)

TP0( f ) (exprµ)
≤

δ (ρh ( f )+ ε) rρg+ε +O(1)
(λh( f )− ε) rµ . (17)

As ρg < µ , we can chooseε (> 0) in such a way that

ρg+ ε < µ . (18)
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Thus from(17) and(18) , we obtain that

lim
r→∞

logT−1
h Tf◦g (r)

logT−1
P0(h)

TP0( f ) (exprµ)
= 0 .

Thus the theorem follows.

In the line of Theorem25, we may state the following theorem without its proof:

Theorem 26.Let f be a meromorphic function, g be an entire function either of finite order or of non-zero lower order

with Θ (∞;g) = ∑
a6=∞

δp (a;g) = 1 or δ (∞;g) = ∑
a6=∞

δ (a;g) = 1 and h be an entire function of regular growth having non

zero finite order withΘ (∞;h) = ∑
a6=∞

δp (a;h) = 1 or δ (∞;h) = ∑
a6=∞

δ (a;h) = 1 and satisfy the Property (A). Also let

λh (g)> 0 andρh( f ) < ∞. Then for everyµ with ρg < µ < ∞,

lim
r→∞

logT−1
h Tf◦g (r)

logT−1
P0(h)

TP0(g) (exprµ)
= 0 .

In the line of Theorem25 and Theorem26 and with the help of Lemma6, we may state the following two theorems

without their proofs :

Theorem 27.Let f be a transcendental meromorphic function either of finite order or of non-zero lower order such that

∑
a∈C∪{∞}

δ1(a; f ) = 4, g be an entire function with finite order and h be a transcendental entire function of regular growth

having non zero finite order with ∑
a∈C∪{∞}

δ1(a;h) = 4 and satisfy the Property (A). Also let0< λh( f )≤ ρh ( f )< ∞. Then

lim
r→∞

logT−1
h Tf◦g (r)

logT−1
M(h)TM( f ) (exprµ)

= ∞ ,

whereρg < µ < ∞.

Theorem 28.Let f be a meromorphic function, g be a transcendental entirefunction either of finite order or of non-zero

lower order with ∑
a∈C∪{∞}

δ1(a;g) = 4 and h be a transcendental entire function of regular growth having non zero finite

order with ∑
a∈C∪{∞}

δ1(a;h) = 4 and satisfy the Property (A). Also letλh (g) > 0 andρh ( f ) < ∞. Then for everyµ with

ρg < µ < ∞,

lim
r→∞

logT−1
h Tf◦g (r)

logT−1
M(h)TM(g) (exprµ)

= 0 .
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