Some fixed point theorems in 2-Banach spaces and 2-normed tensor product spaces

Dipankar Das ${ }^{1}$, Nilakshi Goswami ${ }^{1}$, Vandana ${ }^{2}$
${ }^{1}$ Department of Mathematics, Gauhati University, Guwahati, Assam, India
${ }^{2}$ School of Studies in Mathematics, Pt. Ravishankar Shukla University, Raipur (C.G.), India

Received: 9 May 2016, Accepted: 28 July 2016
Published online: 5 January 2017.

Abstract

In this paper, we derive some fixed point theorems in 2-Banach spaces. Let X be a 2-Banach space and T be a self-mapping on X. Let $\psi:[0, \infty) \rightarrow[0, \infty) ; \beta, \phi:[0, \infty) \times[0, \infty) \rightarrow[0, \infty)$ and $\gamma:[0, \infty) \times[0, \infty) \times[0, \infty) \rightarrow[0, \infty)$ be continuous mappings having some specific characteristics. Using these mappings, we define some conditions for T under which T has a unique fixed point in X. The conditions for two self-mappings T_{1} and T_{2} on X for having the common unique fixed point are also derived here with proper examples. Moreover, defining a 2-norm in the projective tensor product space, we derive a fixed point theorem here with a suitable example.

Keywords: 2-Banach space, fixed points, projective tensor product.

1 Introduction

In this paper, we derive some fixed point theorems for mappings on 2-Banach spaces satisfying some specific characteristics. The notion of 2-normed linear spaces and their topological structures was initiated by Gähler [10] in his paper "Linear 2-normed spaces". He studied the special class of 2-metric spaces which is linear and defined a 2-norm on those spaces. Motivated by this work, several authors namely Iseki [11], Rhoads [27], White [29], etc., studied various aspects of the fixed point theory and proved some fixed point theorems in 2-metric and 2-Banach spaces. Cho et al. [3] investigated about common fixed points of weakly compatible mappings in 2-metric spaces. In 1993, Khan and Khan [12] derived some results on fixed points of involution maps in 2-Banach spaces. In 2013 [28], Saha et al. discussed some fixed point theorems for a class of for weakly C-contractive mappings in a setting of 2-Banach Space.

2 Preliminaries

Definition 1. Let X be a real linear space of dimension greater than 1 and let $\|.,$.$\| be a real valued function on X \times X$ satisfying the following conditions:
(i) $\|x, y\|=0$ if and only if x and y are linearly dependent,
(ii) $\|x, y\|=\|y, x\|$ for all $x, y \in X$,
(iii) $\|\alpha x, y\|=|\alpha|\|y, x\|, \alpha$ being real, $x, y \in X$,
(iv) $\|x, y+z\| \leqslant\|x, y\|+\|x, z\|$, for all, $x, y, z \in X$

Then $\|.,$.$\| is called a 2-norm on X$ and $(X,\|.,\|$.$) is called a linear 2-normed space.$
Definition 2. A sequence $\left\{x_{n}\right\}$ in a 2-normed space $(X,\|.,\|$.$) is said to be a Cauchy sequence if \lim _{n, m \rightarrow \infty}\left\|x_{n}-x_{m}, a\right\|=0$ for all a in X.

Definition 3. A sequence $\left\{x_{n}\right\}$ in a 2-normed space X is called a convergent sequence if there is an x in X such that $\lim _{n \rightarrow \infty}\left\|x_{n}-x, a\right\|=0$ for all a in X.

Definition 4. A 2-normed space in which every Cauchy sequence is convergent is called a 2-Banach space.
Definition 5. Let X and Y be two linear 2-normed spaces. An operator $T: X \rightarrow Y$ is said to be continuous at $x \in X$ if for every sequence $\left\{x_{n}\right\}$ in $X,\left\{x_{n}\right\} \rightarrow x$ as $n \rightarrow \infty$ implies $\left\{T\left(x_{n}\right)\right\} \rightarrow T(x)$ in Y as $n \rightarrow \infty$.

Definition 6. Let f and g be two self-maps on a set X. If $f x=g x$, for some x in X then x is called coincidence point of f and g.

Definition 7. Let f and g be two self-maps defined on a set X. Then f and g are said to be weakly compatible if they commute at coincidence points, i.e., if $f u=g u$ for some $u \in X$, then $f g u=g f u$.

3 Fixed point in 2-Banach spaces

Theorem 1. Let X be a 2-Banach space and T be a self map on X. Let $\psi:[0, \infty) \rightarrow[0, \infty)$ and $\beta:[0, \infty) \times[0, \infty) \rightarrow[0, \infty)$ are continuous mappings satisfying the conditions: $\psi(0)=0, \psi$ is monotonically increasing;

$$
b \psi(s) \leqslant \beta(r, s) \Rightarrow b s \leqslant r, b \in\{1,2\} ; \beta(s, t)=0 \Leftrightarrow s=t=0 .
$$

Let

$$
\psi(\|T x-T y, a\|) \leqslant \beta(\|x-T x, a\|,\|y-T y, a\|)-\max [\psi(\|x-T x, a\|), \psi(\|y-T y, a\|)]
$$

where $x, y, a \in X$. Then T has a unique fixed point on X.
Proof. For any fixed $x_{0} \in X$, we construct a sequence $\left\{x_{n}\right\}$ by $x_{n+1}=T x_{n}, n=0,1,2, \ldots$

$$
\begin{aligned}
\psi\left(\left\|x_{n}-x_{n+1}, a\right\|\right) & \leqslant \beta\left(\left\|x_{n-1}-x_{n}, a\right\|,\left\|x_{n}-x_{n+1}, a\right\|\right) \\
& -\max \left[\psi\left(\left\|x_{n-1}-x_{n}, a\right\|\right), \psi\left(\left\|x_{n}-x_{n+1}, a\right\|\right)\right] \\
& \leqslant \beta\left(\left\|x_{n-1}-x_{n}, a\right\|,\left\|x_{n}-x_{n+1}, a\right\|\right)
\end{aligned}
$$

Therefore we write,

$$
\left\|x_{n}-x_{n+1}, a\right\| \leqslant\left\|x_{n-1}-x_{n}, a\right\| .
$$

So, $\left\{\left\|x_{n}-x_{n+1}, a\right\|\right\}$ is a monotonic decreasing sequence of real numbers and hence it converges to some r, say, i.e., $\left\|x_{n}-x_{n+1}, a\right\| \rightarrow r$ as $n \rightarrow \infty$.

Now, $\left\|x_{n}-x_{n+1}, a\right\|=\left\|T x_{n-1}-T x_{n}, a\right\|$. So,

$$
\begin{aligned}
\psi(r) & =\psi\left(\lim _{n \rightarrow \infty}\left\|x_{n}-x_{n+1}, a\right\|\right)=\lim _{n \rightarrow \infty} \psi\left(\left\|T x_{n-1}-T x_{n}, a\right\|\right) \\
& \leqslant \lim _{n \rightarrow \infty}\left[\beta\left(\left\|x_{n-1}-T x_{n-1}, a\right\|,\left\|x_{n}-T x_{n}, a\right\|\right)-\max \left(\psi\left(\left\|x_{n-1}-T x_{n-1}, a\right\|\right), \psi\left(\left\|x_{n}-T x_{n}, a\right\|\right)\right)\right] \\
& =\lim _{n \rightarrow \infty}\left[\beta\left(\left\|x_{n-1}-x_{n}, a\right\|,\left\|x_{n}-x_{n+1}, a\right\|\right)-\max \left(\psi\left(\left\|x_{n-1}-x_{n}, a\right\|\right), \psi\left(\left\|x_{n}-x_{n+1}, a\right\|\right)\right)\right] \\
& =\beta(r, r)-\max [\psi(r), \psi(r)] .
\end{aligned}
$$

Thus, $2 \psi(r) \leqslant \beta(r, r) \Rightarrow 2 r \leqslant r$, possible for $r=0$. Hence, $\left\|x_{n}-x_{n+1}, a\right\| \rightarrow 0$ as $n \rightarrow \infty$.
Next, we show that $\left\{x_{n}\right\}$ is a Cauchy sequence in X. If possible, let $\left\{x_{n}\right\}$ be not a Cauchy sequence, and so, there exists
$\varepsilon>0$ such that there exists sub sequences $\left\{x_{m_{k}}\right\}$ and $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ with $n_{k}>m_{k}>k$ such that $\left\|x_{m_{k}}-x_{n_{k}}, a\right\| \geqslant \varepsilon$ and $\left\|x_{m_{k}}-x_{n_{k}-1}, a\right\|<\varepsilon$ Then,

$$
\begin{aligned}
& \left.\psi(\varepsilon) \leqslant \psi\left\|x_{m_{k}}-x_{n_{k}}, a\right\|\right)=\psi\left(\left\|T x_{m_{k}-1}-T x_{n_{k}-1}, a\right\|\right) \\
& \leqslant \beta\left(\left\|x_{m_{k}-1}-T x_{m_{k}-1}, a\right\|,\left\|x_{n_{k}-1}-T x_{n_{k}-1}, a\right\|\right) \\
& \quad \quad-\max \left[\psi\left(\left\|x_{m_{k}-1}-T x_{m_{k}-1}, a\right\|\right), \psi\left(\left\|x_{n_{k}-1}-T x_{n_{k}-1}, a\right\|\right)\right]
\end{aligned}
$$

Taking n_{k} and $m_{k} \rightarrow \infty$ and using the continuity of β and ψ

$$
\psi(\varepsilon) \leqslant \beta(0,0)-\max [\psi(0), \psi(0)]=0=\psi(0) \Rightarrow \varepsilon \leqslant 0
$$

which is a contradiction. Hence $\left\{x_{n}\right\}$ is a Cauchy sequence in X, and so, it converges to some z, in X. Now,

$$
\begin{aligned}
& \psi\left(\left\|x_{n}-T z, a\right\|\right) \leqslant \beta\left(\left\|x_{n-1}-T x_{n-1}, a\right\|,\|z-T z, a\|\right)-\max \left[\psi\left(\left\|x_{n-1}-T x_{n-1}, a\right\|\right), \psi(\|z-T z, a\|)\right] \\
& \Rightarrow 2 \psi(\|z-T z, a\|) \leqslant \beta(0,\|z-T z, a\|) ;[\operatorname{taking} n \rightarrow \infty] \\
& \Rightarrow 2\|z-T z, a\| \leqslant 0,(\forall a \in X) \\
& \Rightarrow\|z-T z, a\|=0
\end{aligned}
$$

Since a is arbitrary, taking $a=0$, we get, $z=T z$.

To show the uniqueness: Let $T z_{1}=z_{1}$ and $T z_{2}=z_{2}$. Then

$$
\begin{aligned}
\psi\left(\left\|T z_{1}-T z_{2}, a\right\|\right) & \leqslant \beta\left(\left\|z_{1}-T z_{1}, a\right\|,\left\|z_{2}-T z_{2}, a\right\|\right)-\max \left[\psi\left(\left\|z_{1}-T z_{1}, a\right\|\right), \psi\left(\left\|z_{2}-T z_{2}, a\right\|\right)\right] \\
& =\beta(0,0)-\max [\psi(0), \psi(0)]
\end{aligned}
$$

Therefore we write,

$$
\left\|T z_{1}-T z_{2}, a\right\|=0 \forall a \in X \Rightarrow T z_{1}=T z_{2} \Rightarrow z_{1}=z_{2}
$$

The proof is completed.

Example 1. Let $X=\mathbb{R}^{3}$ and we consider the following 2-norm on X (refer to [1])

$$
\|x, y\|=\left|\operatorname{det}\left(\begin{array}{ccc}
i & j & k \\
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3}
\end{array}\right)\right|
$$

where $x=\left(x_{1}, x_{2}, x_{3}\right), y=\left(y_{1}, y_{2}, y_{3}\right) \in \mathbb{R}^{3}$. Then $(X,\|.\|$,$) is a 2-Banach space.$
We fix $(e, f, g) \in \mathbb{R}^{3}$ and let T be a self mapping on \mathbb{R}^{3} defined by $T(x, y, z)=(e, f, g) \forall(x, y, z) \in \mathbb{R}^{3}$.
Let $\psi(s)=2 s, \beta(r, s)=\frac{r}{2}+s$; where $(r, s) \in[0, \infty)$. Now, $T x=(e, f, g)=T y$ therefore $\|T x-T y, a\|=0$.
Hence all the conditions of Theorem 1 are satisfied. So, T has a unique fixed point $(e, f, g) \in \mathbb{R}^{3}$.

For common fixed point of two self maps T_{1} and T_{2} on X, we prove.

Theorem 2. Let X be a 2-Banach space and T_{1} and T_{2} be two self maps on X. Let ψ and β be as defined in Theorem 1 with $\beta(r, s)=\beta(s, r)$. Then T_{1} and T_{2} have common unique fixed point, if for $x, y, a \in X$

$$
\psi\left(\left\|T_{1} x-T_{2} y, a\right\|\right) \leqslant \beta\left(\left\|x-T_{1} x, a\right\|,\left\|y-T_{2} y, a\right\|\right)-\max \left[\psi\left(\left\|x-T_{1} x, a\right\|\right), \psi\left(\left\|y-T_{2} y, a\right\|\right)\right]
$$

Proof. For a fixed point $x_{0} \in X$, we construct a sequence $\left\{x_{n}\right\}$ by

$$
x_{2 n+1}=T_{1}\left(x_{2 n}\right) \text { and } x_{2 n+2}=T_{2}\left(x_{2 n+1}\right), n=0,1,2, \ldots
$$

Now, it can be shown that $\left\{x_{n}\right\}$ is a Cauchy sequence in X, converging to some z in X, which is the common fixed point for T_{1} and T_{2}.

Corollary 1. Let X be a 2-Banach space and T be a self map on X. Let ψ, β be as defined in Theorem 3.1 satisfying

$$
\psi(\|T x-T y, a\|) \leqslant \frac{1}{c}[\beta(\|x-T y, a\|,\|y-T y, a\|)-\max (\psi(\|y-T x, a\|), \psi(\|x-T x, a\|))]
$$

where $c>2$ and $x, y, a \in X$. Then T has unique fixed point on X.
Corollary 2. If ψ satisfies then also similar result holds for

$$
\psi(\|T x-T y, a\|) \leqslant \beta(\|x-y, a\|,\|y-T y, a\|)-\max [\psi(\|x-y, a\|), \psi(\|x-T x, a\|)], \forall x, y, a \in X
$$

We now establish another fixed point theorem for T using two other mappings γ and ϕ.
Theorem 3. Let X be a 2-Banach space and T be a self mapping on X. Let $\gamma:[0, \infty) \times[0, \infty) \times[0, \infty) \rightarrow[0, \infty)$ and $\phi:[0, \infty) \times[0, \infty) \rightarrow[0, \infty)$ be continuous mapping satisfying $\gamma(r, 0, r+t) \leqslant k r$ and $\phi(r, t) \geqslant k^{\prime} r$, where $k, k^{\prime} \in[0, \infty)$ such that $k-k^{\prime}<1$. Let

$$
\|T x-T y, a\| \leqslant \gamma[\|x-y, a\|,\|y-T x, a\|,\|x-T y, a\|]-\phi[\|x-T x, a\|,\|y-T y, a\|], \forall x, y, a \in X
$$

Then T has a fixed point.
Proof. For any fixed $x_{0} \in X$, we construct a sequence $\left\{x_{n}\right\}$ by $x_{n+1}=T x_{n}$. We get,

$$
\begin{aligned}
\left\|x_{n}-x_{n+1}, a\right\| & \leqslant \gamma\left[\left\|x_{n-1}-x_{n}, a\right\|,\left\|x_{n}-x_{n}, a\right\|,\left\|x_{n-1}-x_{n+1}, a\right\|\right]-\phi\left[\left\|x_{n-1}-x_{n}, a\right\|,\left\|x_{n}-x_{n+1}, a\right\|\right] \\
& \leqslant \gamma\left[\left\|x_{n-1}-x_{n}, a\right\|, 0,\left\|x_{n-1}-x_{n}, a\right\|+\left\|x_{n}-x_{n+1}, a\right\|\right]-\phi\left[\left\|x_{n-1}-x_{n}, a\right\|,\left\|x_{n}-x_{n+1}, a\right\|\right] \\
& \leqslant\left(k-k^{/}\right)\left\|x_{n-1}-x_{n}, a\right\| \\
& \leqslant\left(k-k^{\prime}\right)^{2}\left\|x_{n-2}-x_{n-1}, a\right\| \leqslant \ldots \leqslant\left(k-k^{\prime}\right)^{n}\left\|x_{0}-x_{1}, a\right\| \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

Hence $\left\{x_{n}\right\}$ is a Cauchy sequence in X and so, it converges to some z,(say) in X.

$$
\begin{aligned}
\|z-T z, a\| & \leqslant\left\|z-x_{n+1}, a\right\|+\left\|x_{n+1}-T z, a\right\| \\
& \leqslant\left\|z-x_{n+1}, a\right\|+\gamma\left[\left\|x_{n}-z, a\right\|,\left\|z-T x_{n}, a\right\|,\left\|x_{n}-T z, a\right\|\right]-\phi\left[\left\|x_{n}-T x_{n}, a\right\|,\|z-T z, a\|\right] \\
& \leqslant 0+\gamma[0,0,0+\|z-T z, a\|]-\phi[0,\|z-T z, a\|][\text { taking } n \rightarrow \infty] .
\end{aligned}
$$

Therefore we write $\|z-T z, a\|=0$, for all $a \in X$. Since a is arbitrary, taking $a=0$, we get, $z=T z$.
Example 2. Let $\gamma(r, s, t)=k_{1}(r+s+t)$ and $\phi(r, s)=k_{2}(r+s)$, where k_{1} and k_{2} are two constants (>0). Now we can find out $k, k^{\prime} \in[0, \infty)$ with $k-k^{\prime}<1$ such that $\gamma(r, 0, r+t)=k_{1}(2 r+t) \leqslant k r$ and $\phi(r, t)=k_{2}(r+t) \geqslant k^{\prime} r$. Let T and X be as
defined in Example 1. Now, for $x, y, a \in X$

$$
\|T x-T y, a\| \leqslant \gamma[\|x-y, a\|,\|y-T x, a\|,\|x-T y, a\|]-\phi[\|x-T x, a\|,\|y-T y, a\|]
$$

Hence by Theorem 3, T has a fixed point on X.

Depending upon k_{1} and k_{2}, the mapping T is of different types. From the given condition,

$$
\begin{aligned}
\|T x-T y, a\| & \leqslant \gamma[\|x-y, a\|,\|y-x, a\|+\|x-T x, a\|,\|x-y, a\|+\|y-T y, a\|]-\phi[\|x-T x, a\|,\|y-T y, a\|] \\
& \leqslant k_{1}[3\|x-y, a\|+\|x-T x, a\|+\|y-T y, a\|]-k_{2}[\|x-T x, a\|+\|y-T y, a\|] .
\end{aligned}
$$

So, if $k_{1}=k_{2}$, then $\|T x-T y, a\| \leqslant 3 k_{1}\|x-y, a\|$ which is a contraction mapping for $k_{1}<\frac{1}{3}$ (and has a unique fixed point) and nonexpansive for $k_{1}=\frac{1}{3}$.

Next, we discuss common fixed point for four mappings in 2-Banach spaces.

4 2-Norm for projective tensor product

4.1 Algebric tensor product

[2]. Let X, Y be normed spaces over F with dual spaces X^{*} and Y^{*} respectively. Given $x \in X, y \in Y$, let $x \otimes y$ be the element of $B L\left(X^{*}, Y^{*} ; F\right)$ (which is the set of all bounded bilinear forms from $X^{*} \times Y^{*}$ to F), defined by

$$
x \otimes y(f, g)=f(x) g(y),\left(f \in X^{*}, g \in Y^{*}\right)
$$

The algebraic tensor product of X and $Y, X \otimes Y$ is defined to be the linear span of $\{x \otimes y: x \in X, y \in Y\}$ in $B L\left(X^{*}, Y^{*} ; F\right)$.

4.2 Projective tensor product

[2]. Given normed spaces X and Y, the projective tensor norm γ on $X \otimes Y$ is defined by

$$
\|u\|_{\gamma}=\inf \left\{\sum_{i}\left\|x_{i}\right\|\left\|y_{i}\right\|: u=\sum_{i} x_{i} \otimes y_{i}\right\}
$$

where the infimum is taken over all (finite) representations of u. For the normed spaces X and Y, in the projective tensor product $X \otimes_{\gamma} Y$, we take

$$
\|u, v\|=\|u\|\|v\|, u, v \in X \otimes_{\gamma} Y
$$

Following White [29], we can say that $X \otimes_{\gamma} Y$ is a 2-Banach space upto linear dependence (i.e., $X \otimes_{\gamma} Y$ satisfies all the conditions for being a 2 -Banach space except u and v may be linearly dependent and yet $\|u, v\| \neq 0$).

Let D_{X}, D_{Y} and $D_{X \otimes_{\gamma} Y}$ denote a closed and bounded subset of X, Y and $X \otimes_{\gamma} Y$ respectively. Let T_{1} and T_{2} be two pairs of mappings where $T_{1}: D_{X \otimes_{\gamma} Y} \rightarrow D_{X}$ and $T_{2}: D_{X \otimes_{\gamma} Y} \rightarrow D_{Y}$ be such that for any $u, v \in D_{X \otimes_{\gamma} Y}$ and $a \otimes b \in D_{X \otimes_{\gamma} Y}$ with $\|a\| \geqslant 1$ and $\|b\| \geqslant 1$.
$(E)\left\|T_{1}(u)-T_{1}(v)\right\| \leqslant \frac{1}{K M_{2}}(k\|u-v, a \otimes b\|-\psi(k\|u-v, a \otimes b\|))$
$(F)\left\|T_{2}(u)-T_{2}(v)\right\| \leqslant \frac{1}{K M_{1}}\left(k^{\prime}\|u-v, a \otimes b\|-\psi\left(k^{\prime}\|u-v, a \otimes b\|\right)\right)$
where
(i) $\psi:[0, \infty) \rightarrow[0, \infty)$ is continuous and non-decreasing, $\psi(0)=0$
(ii) $\left\|T_{1} u\right\| \leqslant M_{1}$ and $\left\|T_{2} u\right\| \leqslant M_{2}, \forall u \in D_{X \otimes_{\gamma} Y}$.

Here, $D_{X \otimes_{\gamma} Y}$ is bounded by K and k, k^{\prime} are positive. From the mappings T_{1} and T_{2} we define a mapping $T: D_{X \otimes_{\gamma} Y} \rightarrow D_{X \otimes_{\gamma} Y}$ such that $T u=T_{1} u \otimes T_{2} u$.

Theorem 4. The mapping T derived by the pair of mappings $\left(T_{1}, T_{2}\right)$ satisfying (E) and (F) has a unique fixed point in $D_{X \otimes{ }_{\gamma} Y}$ if $k+k / \leqslant 1$.

Proof. For $u, v \in D_{X \otimes_{\gamma} Y}, a \in X$ and $b \in Y$ and $a \otimes b \in D_{X \otimes_{\gamma} Y}$ with $\|a\| \geqslant 1$ and $\|b\| \geqslant 1$

$$
\begin{aligned}
\|T u-T v, a \otimes b\| & =\left\|T_{1} u \otimes T_{2} u-T_{1} v \otimes T_{2} v, a \otimes b\right\| \\
& \leqslant\left\|\left(T_{1} u-T_{1} v\right) \otimes T_{2} u, a \otimes b\right\|+\left\|T_{1} v \otimes\left(T_{2} u-T_{2} v\right), a \otimes b\right\| \\
& =\left\|T_{1} u-T_{1} v\right\|\left\|T_{2} u\right\|\|a b\|+\left\|T_{1} v\right\|\left\|T_{2} u-T_{2} v\right\|\|a \otimes b\| \\
& \leqslant \frac{1}{K M_{2}}[k\|u-v, a \otimes b\|-\psi(k\|u-v, a \otimes b\|)] \cdot K M_{2} \\
& +\frac{1}{K M_{1}}\left[k^{\prime}\|u-v, a \otimes b\|-\psi\left(k^{\prime}\|u-v, a \otimes b\|\right)\right] K M_{1} \\
& =\left(k+k^{\prime}\right)\|u-v, a \otimes b\|-\psi(k\|u-v, a \otimes b\|)-\psi\left(k^{\prime}\|u-v, a \otimes b\|\right) \\
& \leqslant\|u-v, a \otimes b\|-\left\{\psi(k\|u-v, a \otimes b\|)+\psi\left(k^{\prime}\|u-v, a \otimes b\|\right)\right\}
\end{aligned}
$$

Let $x_{0} \in D_{X \otimes_{\gamma} Y}$ be fixed. We take $x_{n+1}=T x_{n}$. Now,

$$
\begin{aligned}
\left\|x_{n+1}-x_{n}, a \otimes b\right\| & =\left\|T x_{n}-T x_{n-1}, a \otimes b\right\| \\
& \leqslant\left\|x_{n}-x_{n-1}, a \otimes b\right\|-\psi\left(k\left\|x_{n}-x_{n-1}, a \otimes b\right\|\right)-\psi\left(k^{/}\left\|x_{n}-x_{n-1}, a \otimes b\right\|\right) \\
& \leqslant\left\|x_{n}-x_{n-1}, a \otimes b\right\|
\end{aligned}
$$

Hence $\left\{\left\|x_{n+1}-x_{n}, a \otimes b\right\|\right\}$ is a monotonically decreasing sequence of non-negative real numbers and so, is convergent to some real, say r. Taking $n \rightarrow \infty$, we get

$$
r \leqslant r-\left\{\psi(k r)+\psi\left(k^{\prime} r\right)\right\},(\text { by continuity of } \psi) . \text { Then, } \psi(k r)+\psi\left(k^{\prime} r\right) \leqslant 0
$$

this is possible only when $r=0$. So,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}, a \otimes b\right\|=0 \\
& \Rightarrow \lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|\|a \otimes b\|=0 \Rightarrow \lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0 \\
& \Rightarrow \lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}, u\right\|=0 \forall u \in D_{X \otimes_{\gamma} Y}
\end{aligned}
$$

Hence, $\left\{x_{n}\right\}$ is a Cauchy sequence in the 2-Banach space $D_{X \otimes_{\gamma} Y}$. Let it converge to some $z \in D_{X \otimes_{\gamma} Y}$. Now,

$$
\begin{aligned}
\|z-T z, u\| & \leqslant\left\|z-x_{n+1}, u\right\|+\left\|x_{n+1}-T z, u\right\|=\left\|z-x_{n+1}, u\right\|+\left\|T x_{n}-T z, u\right\| \\
& \leqslant\left\|z-x_{n+1}, u\right\|+\left\|x_{n}-z, u\right\|-\left[\psi\left(k\left\|x_{n}-z, u\right\|\right)+\psi\left(k^{\prime}\left\|x_{n}-z, u\right\|\right)\right] \\
& \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

Hence, $\|z-T z, u\|=0 \Rightarrow z=T z$. To show the uniqueness. Let z_{1} and z_{2} be two distinct fixed points for T in $D_{X \otimes_{\gamma} Y}$. Now,

$$
\begin{aligned}
\left\|z_{1}-z_{2}, u\right\|=\left\|T z_{1}-T z_{2}, u\right\| & \leqslant\left\|z_{1}-z_{2}, u\right\|-\left[\psi\left(k\left\|z_{1}-z_{2}, u\right\|\right)+\psi\left(k^{\prime}\left\|z_{1}-z_{2}, u\right\|\right)\right] \\
& \Rightarrow \psi\left(k\left\|z_{1}-z_{2}, u\right\|\right)+\psi\left(k^{\prime}\left\|z_{1}-z_{2}, u\right\|\right) \leqslant 0
\end{aligned}
$$

which is contradiction. So, $z_{1}=z_{2}$. Thus, T has a unique fixed point in the closed and bounded subset $D_{X \otimes_{\gamma} Y}$ of $X \otimes_{\gamma} Y$.
Example 3. Let $D_{l^{1} \otimes \gamma \mathbb{K}}$ (with the same 2-norm as defined above in the tensor product space), $D_{l^{1}}$ and $D_{\mathbb{K}}$ denote a closed and bounded subset of $l^{1} \otimes_{\gamma} \mathbb{K}, l^{1}$ and \mathbb{K}, bounded by K, \sqrt{K} and \sqrt{K} respectively $(K>0)$.

We define $T_{1}: D_{l^{1} \otimes \gamma^{\mathbb{K}}} \rightarrow D_{l^{1}}$ by

$$
T_{1}\left(\sum_{i} a_{i} \otimes x_{i}\right)=\frac{1}{2 K^{3}} \sum_{i}\left\{a_{i_{n}} x_{i}\right\}, \text { where } a_{i}=\left\{a_{i_{n}}\right\}_{n}
$$

and $T_{2}: D_{l^{1} \otimes \gamma^{K}} \rightarrow D_{\mathbb{K}} \quad$ by $\quad T_{2}\left(\sum_{i} a_{i} \otimes x_{i}\right)=\frac{1}{4} \sum_{i}\left\|a_{i}\right\| .\left|x_{i}\right|$. For arbitrary $b_{k}=\left\{b_{k_{n}}\right\} \in D_{l^{1}}, b \in D_{\mathbb{K}}$ with $\left\|b_{k}\right\| \geqslant 1$ and $|b| \geqslant 1$,

$$
\begin{aligned}
\left\|T_{1}\left(\sum_{i} a_{i} \otimes x_{i}\right)\right\| & =\left\|\frac{1}{2 K^{3}} \sum_{i}\left\{a_{i_{n}} x_{i}\right\}\right\| \leqslant \frac{1}{2 K^{3}} \sum_{i}\left\|\left\{a_{i_{n}} x_{i}\right\}\right\|\left\|b_{k}\right\||b| \\
& \leqslant \frac{1}{2 K^{3}}\left\|\sum_{i} a_{i} \otimes x_{i}\right\|\left\|b_{k} \otimes b\right\|\left[l^{1} \otimes \gamma X=l^{1}(X)(\text { refer to }[26])\right] \\
& \leqslant \frac{1}{2 K^{3}} K^{2}=\frac{1}{2 K}\left(=M_{1}\right)
\end{aligned}
$$

and

$$
\left\|T_{2}\left(\sum_{i} a_{i} \otimes x_{i}\right)\right\| \leqslant \frac{1}{4}\left\|\sum_{i} a_{i} \otimes x_{i}\right\|\left\|b_{k} \otimes b\right\| \leqslant \frac{K^{2}}{4}\left(=M_{2}\right)
$$

For $u=\sum_{i} a_{i} \otimes x_{i}$ and $v=\sum_{i} d_{i} \otimes y_{i}$ in $D_{l^{1} \otimes \gamma^{\mathbb{K}}}$, we have,

$$
\begin{aligned}
\left\|T_{1} u-T_{1} v\right\| & =\left\|\frac{1}{2 K^{3}} \sum_{i}\left\{a_{i_{n}} x_{i}\right\}-\frac{1}{2 K^{3}} \sum_{i}\left\{d_{i_{n}} y_{i}\right\}\right\| \\
& =\frac{\frac{1}{4}\left\|\sum_{i} a_{i} \otimes x_{i}-\sum_{i} d_{i} \otimes y_{i}\right\|}{\frac{K^{3}}{2}} \leqslant \frac{\frac{1}{4}\|u-v\|\left\|b_{k} \otimes b\right\|}{\frac{K^{3}}{2}} \\
& \leqslant 2\left[\frac{\frac{1}{2}\left\|u-v, b_{k} \otimes b\right\|-\frac{1}{2}\left[\frac{1}{2}\left\|u-v, b_{k} \otimes b\right\|\right]}{K \frac{K^{2}}{2}}\right] \\
& =\frac{1}{K M_{2}}\left[\frac{1}{2}\left\|u-v, b_{k} \otimes b\right\|-\psi\left(\frac{1}{2}\left\|u-v, b_{k} \otimes b\right\|\right)\right] ; \text { where } \psi(t)=\frac{t}{2}, k=\frac{1}{2}
\end{aligned}
$$

and

$$
\left\|T_{2} u-T_{2} v\right\|=\left\|\frac{1}{4} \sum_{i}\right\| a_{i}\left\|\cdot\left|x_{i}\right|-\frac{1}{4} \sum_{i}\right\| d_{i}\left\|\cdot\left|y_{i}\right|\right\| \leqslant \frac{1}{4}\left|\sum_{i}\left\|a_{i}\right\| \cdot\right| x_{i}\left|-\sum_{i}\left\|d_{i}\right\| \cdot\right| y_{i}| |\left\|b_{k}\right\||b| .
$$

Taking the projective tensor norm,

$$
\begin{aligned}
\left\|T_{2} u-T_{2} v\right\| & \leqslant \frac{1}{4}|\|u\|-\|v\||\left\|b_{k} \otimes b\right\| \leqslant \frac{1}{4}\|u-v\|\left\|b_{k} \otimes b\right\|=\frac{1}{4}\left\|u-v, b_{k} \otimes b\right\| \\
& \leqslant \frac{\frac{1}{2}\left\|u-v, b_{k} \otimes b\right\|-\frac{1}{2}\left[\frac{1}{2}\left\|u-v, b_{k} \otimes b\right\|\right]}{K \frac{1}{2 K}} \\
& \leqslant \frac{\frac{1}{2}\left\|u-v, b_{k} \otimes b\right\|-\psi\left(\frac{1}{2}\left\|u-v, b_{k} \otimes b\right\|\right)}{K M_{1}} ; \text { where } \psi(t)=\frac{t}{2}, k^{\prime}=\frac{1}{2}
\end{aligned}
$$

Therefore, $\left(T_{1}, T_{2}\right)$ satisfies the conditions (a) and (b). Also, $k+k /=\frac{1}{2}+\frac{1}{2}=1$. So, the mapping $T: D_{l^{1} \otimes_{\gamma} \mathbb{K}} \rightarrow D_{l^{1} \otimes \gamma_{\gamma} \mathbb{K}}$ has a unique fixed point in $D_{l^{1} \otimes \gamma \mathbb{K}}$.

Let $T_{1}, S_{1}, P_{1}, T_{2}, S_{2}$ and P_{2} be some mappings where $T_{1}, S_{1}, P_{1}: D_{X \otimes_{\gamma} Y} \rightarrow D_{X}$ and $T_{2}, S_{2}, P_{2}: D_{X \otimes_{\gamma} Y} \rightarrow D_{Y}$ be two mappings such that for any $u, v \in D_{X \otimes_{\gamma} Y}$ and $a \otimes b \in X \otimes_{\gamma} Y$,
$(G)\left\|T_{1}(u)-S_{1}(v)\right\| \leqslant \frac{1}{M M_{2}}(k(\|P u-T v, a \otimes b\|+\|P u-S v, a \otimes b\|)-\psi(k\|P u-T v, a \otimes b\|, k\|P u-S v, a \otimes b\|))$
$(H)\left\|T_{2}(u)-S_{2}(v)\right\| \leqslant \frac{1}{M M_{1}}\left(k^{/}(\|P u-T v, a \otimes b\|+\|P u-S v, a \otimes b\|)-\psi\left(k^{\prime}\|P u-T v, a \otimes b\|, k^{/}\|P u-S v, a \otimes b\|\right)\right)$
where
(i) $\psi:[0, \infty) \rightarrow[0, \infty)$ is continuous and non-decreasing, $\psi(0)=0$
(ii) $\max \left[\left\|T_{1} u\right\|,\left\|S_{1} v\right\|\right] \leqslant M_{1}$ and $\max \left[\left\|T_{2} u\right\|,\left\|S_{2} v\right\|\right] \leqslant M_{2}, \forall u, v \in D_{X \otimes_{\gamma} Y}, a \in X$ and $b \in Y$. Here, $D_{X \otimes_{\gamma} Y}$ is bounded by M and $k, k^{/}$are positive.

From the mappings $T_{1}, S_{1}, P_{1}, T_{2}, S_{2}$ and P_{2} we define some mappings $T: D_{X \otimes_{\gamma} Y} \rightarrow D_{X \otimes_{\gamma} Y}$ such that $T u=T_{1} u \otimes T_{2} u$; $S: D_{X \otimes{ }_{\gamma} Y} \rightarrow D_{X \otimes_{\gamma} Y}$ such that $S u=S_{1} u \otimes S_{2} u$ and $P: D_{X \otimes_{\gamma} Y} \rightarrow D_{X \otimes_{\gamma} Y}$ such that $P u=P_{1} u \otimes P_{2} u$.

Theorem 5. Let T,S and P be self mappings as defined above such that
(i) $\{T, P\}$ and $\{S, P\}$ are wealy compatible
(ii) $T\left(X \otimes_{\gamma} Y\right) \subseteq P\left(X \otimes_{\gamma} Y\right)$ and $S\left(X \otimes_{\gamma} Y\right) \subseteq P\left(X \otimes_{\gamma} Y\right)$
(iii) satisfy (G) and (H), then T, S and P have a common unique fixed point on $D_{X \otimes \gamma} Y$ if $k+k / \leqslant \frac{1}{4}$

Proof. Let $x_{0} \in D_{X \otimes{ }_{\gamma} Y}$ be fixed. We define

$$
y_{n}=T x_{n}=P x_{n+1}, y_{n+1}=S x_{n+1}=P x_{n+2}
$$

Now, for any $a \otimes b \in D_{X \otimes_{\gamma} Y}$,

$$
\begin{aligned}
\|T u-S v, a \otimes b\| & \leqslant\left\|T_{1} u-S_{1} v\right\|\left\|T_{2} u\right\|\|a \otimes b\|+\left\|S_{1} v\right\|\left\|T_{2} u-S_{2} v\right\|\|a \otimes b\| \\
& \leqslant \frac{1}{4}(\|P u-T v, a \otimes b\|+\|P u-S v, a \otimes b\|)-\psi\left(k^{/}\|P u-T v, a \otimes b\|, k^{/}\|P u-S v, a \otimes b\|\right) .
\end{aligned}
$$

$$
\begin{aligned}
\left\|y_{n}-y_{n+1}, a \otimes b\right\| & =\left\|T x_{n}-S x_{n+1}, a \otimes b\right\| \\
& \leqslant \frac{1}{4}\left(\left\|P x_{n}-T x_{n+1}, a \otimes b\right\|+\left\|P x_{n}-S x_{n+1}, a \otimes b\right\|\right) \\
& -\psi\left(k\left\|P x_{n}-T x_{n+1}, a \otimes b\right\|, k\left\|P x_{n}-S x_{n+1}, a \otimes b\right\|\right) \\
& -\psi\left(k^{\prime}\left\|P x_{n}-T x_{n+1}, a \otimes b\right\|, k^{\prime}\left\|P x_{n}-S x_{n+1}, a \otimes b\right\|\right) \\
& =\frac{1}{4}\left(\left\|y_{n-1}-y_{n+1}, a \otimes b\right\|+\left\|y_{n-1}-y_{n+1}, a \otimes b\right\|\right) \\
& -\psi\left(k\left\|y_{n-1}-y_{n+1}, a \otimes b\right\|, k\left\|y_{n-1}-y_{n+1}, a \otimes b\right\|\right) \\
& -\psi\left(k^{\prime}\left\|y_{n-1}-y_{n+1}, a \otimes b\right\|, k^{\prime}\left\|y_{n-1}-y_{n+1}, a \otimes b\right\|\right) \\
& \leqslant \frac{1}{2}\left(\left\|y_{n-1}-y_{n}, a \otimes b\right\|+\left\|y_{n}-y_{n+1}, a \otimes b\right\|\right) \\
& -\psi\left(k\left\|y_{n-1}-y_{n+1}, a \otimes b\right\|, k\left\|y_{n-1}-y_{n+1}, a \otimes b\right\|\right) \\
& -\psi\left(k^{\prime}\left\|y_{n-1}-y_{n+1}, a \otimes b\right\|, k^{\prime}\left\|y_{n-1}-y_{n+1}, a \otimes b\right\|\right) \\
& =\left\|y_{n-1}-y_{n}, a \otimes b\right\|-2 \psi\left(k\left\|y_{n-1}-y_{n+1}, a \otimes b\right\|, k\left\|y_{n-1}-y_{n+1}, a \otimes b\right\|\right) \\
& -2 \psi\left(k^{\prime}\left\|y_{n-1}-y_{n+1}, a \otimes b\right\|, k^{\prime}\left\|y_{n-1}-y_{n+1}, a \otimes b\right\|\right) \\
& \leqslant\left\|y_{n-1}-y_{n}, a \otimes b\right\| .
\end{aligned}
$$

Hence $\left\{\left\|y_{n+1}-y_{n}, a \otimes b\right\|\right\}$ is a monotonically decreasing sequence of non-negative real numbers and so, is convergent to some real, say r. If $r \neq 0$, then

$$
\begin{aligned}
\left\|y_{n}-y_{n+1}, a \otimes b\right\| & =\left\|T x_{n}-S x_{n+1}, a \otimes b\right\| \\
& \leqslant \frac{1}{4}\left(\left\|y_{n-1}-y_{n+1}, a \otimes b\right\|+\left\|y_{n-1}-y_{n+1}, a \otimes b\right\|\right) \\
& -\psi\left(k\left\|y_{n-1}-y_{n+1}, a \otimes b\right\|, k\left\|y_{n-1}-y_{n+1}, a \otimes b\right\|\right) \\
& -\psi\left(k^{\prime}\left\|y_{n-1}-y_{n+1}, a \otimes b\right\|, k^{\prime}\left\|y_{n-1}-y_{n+1}, a \otimes b\right\|\right) \\
& \leqslant \frac{1}{2}\left(\left\|y_{n-1}-y_{n+1}, a \otimes b\right\|\right) \leqslant \frac{1}{2}\left(\left\|y_{n-1}-y_{n}, a \otimes b\right\|+\left\|y_{n}-y_{n+1}, a \otimes b\right\|\right)
\end{aligned}
$$

Taking $n \rightarrow \infty$, we get $\left\|y_{n-1}-y_{n+1}, a \otimes b\right\| \rightarrow 2 r$ and
$r \leqslant r-2\left\{\psi(2 k r, 2 k r)+\psi\left(2 k^{/} r, 2 k^{/} r\right)\right\},($ by continuity of $\psi)$, therefore $2\left\{\psi(2 k r, 2 k r)+\psi\left(2 k^{/} r, 2 k^{/} r\right)\right\} \leqslant 0$,
this is possible only when $r=0$. So,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|y_{n+1}-y_{n}, a \otimes b\right\|=0 \tag{1}
\end{equation*}
$$

Now, proceeding as in Theorem 4.3 we have $\lim _{n \rightarrow \infty}\left\|y_{n+1}-y_{n}, q\right\|=0 \forall q \in D_{X \otimes_{\gamma} Y}$ and $\left\{y_{n}\right\}$ is a Cauchy sequence in $D_{X \otimes_{\gamma} Y}$. Let it converge to some $z \in D_{X \otimes_{\gamma} Y}$ i.e.,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} y_{n}=z \Rightarrow \lim _{n \rightarrow \infty} T x_{n} & =\lim _{n \rightarrow \infty} P x_{n+1}=z \text { and } \\
\lim _{n \rightarrow \infty} S x_{n+1} & =\lim _{n \rightarrow \infty} P x_{n+2}=z .
\end{aligned}
$$

Since $S(X) \subseteq P(X)$ and $T(X) \subseteq P(X)$, so there exists a point $u \in D_{X \otimes \gamma} Y$ such that $z=P u$. Now,

$$
\begin{aligned}
\|T u-z, q\| & \leqslant\left\|T u-S x_{n+1}, q\right\|+\left\|S x_{n+1}-z, q\right\| \\
& \leqslant \frac{1}{4}\left(\left\|P u-T x_{n+1}, q\right\|+\left\|P u-S x_{n+1}, q\right\|\right) \\
& -\psi\left(k\left\|P u-T x_{n+1}, q\right\|, k\left\|P u-S x_{n+1}, q\right\|\right) \\
& -\psi\left(k^{/}\left\|P u-T x_{n+1}, q\right\|, k^{/}\left\|P u-S x_{n+1}, q\right\|\right)+\left\|S x_{n+1}-z, q\right\| .
\end{aligned}
$$

Taking $n \rightarrow \infty$,

$$
\|T u-z, q\| \leqslant 0 \Rightarrow\|T u-z, q\|=0
$$

Therefore $T u=z$. So, $P u=T u=z$, i.e., u is a coincidence point of P and T. Since the pair of mappings are weakly compatiable, so,

$$
P T u=T P u \Rightarrow P z=T z .
$$

Again for $z=P u$ we have,

$$
\begin{aligned}
\|z-S u, q\| & =\|T u-S u, q\| \\
& \leqslant \frac{1}{4}(\|P u-T u, q\|+\|P u-S u, q\|) \\
& -\psi(k\|P u-T u, q\|, k\|P u-S u, q\|) \\
& -\psi\left(k^{\prime}\|P u-T u, q\|, k^{\prime}\|P u-S u, q\|\right)=0 .
\end{aligned}
$$

Thus, $\|z-S u, q\|=0$. So, $S u=z$. Thus $P u=S u=z$, i.e., w is a coincidence point of P and S. Since the pair of mappings are weakly compatiable, so,

$$
P S u=S P u \Rightarrow P z=S z
$$

Now, we show that z is a fixed point of T

$$
\begin{aligned}
\|T z-z, q\| & =\|T z-S u, q\| \\
& \leqslant \frac{1}{4}(\|P z-T u, q\|+\|P z-S u, q\|) \\
& -\psi(k\|P z-T u, q\|, k\|P z-S u, q\|) \\
& -\psi\left(k^{\prime}\|P z-T u, q\|, k^{\prime}\|P z-S u, q\|\right) \\
& =\frac{1}{2}\|T z-z, q\|
\end{aligned}
$$

possible only for $\|T z-z, q\|=0 \Rightarrow T z=z$ therefore $T z=P z=z$. Now, we show that z is a fixed point of S

$$
\begin{aligned}
\|z-S z, q\|= & \| \\
\hline & T z-S z, q \| \\
\leqslant & \frac{1}{4}(\|P z-T z, q\|+\|P z-S z, q\|) \\
& \quad-\psi(k\|P z-T z, q\|, k\|P z-S z, q\|) \\
& \quad-\psi\left(k^{\prime}\|P z-T z, q\|, k^{\prime}\|P z-S z, q\|\right)=0 \\
\Rightarrow\|S z-z, q\|=0 &
\end{aligned}
$$

possible only for $S z=z$ therefore $S z=P z=z$. Hence, $T z=P z=z=S z$. Uniqueness can be shown in a similar manner. Thus z is a common unique fixed point for the mappings T, S and P.

5 Conclusion

Thus, in this paper, we have derived different fixed point theorems in 2-Banach spaces and also in the tensor product of normed spaces as 2-Banach spaces.

In the paper of Misiak [17], in 1989, the idea of n-normed spaces can be found. Some recent results and related works in n-normed spaces can be found in [13], [16]. Let $n \in \mathbb{N}$ and X be a real vector space of dimension $d \geqslant n$. A real-valued function $\|., \ldots,$.$\| on X^{n}$ satisfying the following four properties,
(1) $\left\|x_{1}, \ldots, x_{n}\right\|=0$ if and only if x_{1}, \ldots, x_{n} are linearly dependent;
(2) $\left\|x_{1}, \ldots, x_{n}\right\|$ is invariant under permutation;
(3) $\left\|x_{1}, \ldots, x_{n-1}, \alpha x_{n}\right\|=|\alpha|\left\|x_{1}, \ldots, x_{n-1}, x_{n}\right\|$ for any $\alpha \in \mathbb{R}$;
(4) $\left\|x_{1}, \ldots, x_{n-1}, y+z\right\| \leqslant\left\|x_{1}, \ldots, x_{n-1}, y\right\|+\left\|x_{1}, \ldots, x_{n-1}, z\right\|$,
is called an n-norm on X and the pair $(X,\|., \ldots,\|$.$) is called an n$-normed space. Considering the study of fixed points, the following problem can be raised.

Can we make analogous study concerning fixed points for a mapping T in the n-normed spaces and their tensor product?

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors have contributed to all parts of the article. All authors read and approved the final manuscript.

References

[1] M.Ackgoz, A review on 2-normed structures, Int. Journal of Math. Analysis, 1(2007), no.4, 187-191. MR2340939 (2008e:46012) Zbl 1132.46304.
[2] F. F. Bonsal and J. Duncan, Complete Normed algebras, Springer-Verlag, Berlin Heidelberg New York, 1973
[3] Y.J.Cho, M.S.Khan and S.L.Sing, Common fixed points of weakly commuting mappings, Univ.u. Novom Sadu, Zb.Rad. Period.Mat.Fak.Ser.Mat, 181(1988)129-142. MR1034710
[4] D. Das, N. Goswami, Fixed Points of Different Contractive Type Mappings on Tensor Product Spaces, IJIRSET, Vol.3, July 2014, No. 7.
[5] D. Das, N. Goswami,Fixed Points of Mapping Satisfying a Weakly Contractive Type Condition, Journal of Math. Res. with Appl., Vol 36(2016), No. 1 pp. 70-78
[6] Deepmala and H. K. Pathak, A study on some problems on existence of solutions for nonlinear functional-integral equations, Acta Mathematica Scientia, 33 B(5) (2013), 1305-1313.
[7] Deepmala, A Study on Fixed Point Theorems for Nonlinear Contractions and its Applications, Ph.D. Thesis (2014), Pt. Ravishankar Shukla University, Raipur 492 010, Chhatisgarh, India.
[8] Deepmala, L.N. Mishra, Differential operators over modules and rings as a path to the generalized differential geometry, FACTA UNIVERSITATIS (NI Š) Ser. Math. Inform. Vol. 30, No. 5 (2015), pp. 753-764.
[9] S. Elumalai, R.Vijayaragavan, Characterizations of best approximations in linear 2-normed spaces, General Mathematics Vol. 17, No. 3 (2009), 141-160
[10] S. Gähler, Lineare 2-normierte Riume, Math. Nachr. 28 (1965), 1-43.
[11] K. Iseki, Fixed point theorems in 2-metric space, Math.Seminar.Notes, Kobe Univ.,3(1975), 133-136. MR0405395
[12] M.S. Khan and M.D. Khan, Involutions with Fixed Points in 2-Banach Spaces, Internat. J. Math. and Math. Sci. VOL. 16 NO. 3 (1993) 429-434.
[13] S. S. Kim and Y.J. Cho, Strict Convexity in linear n-normed spaces, Demonstratio Math. 29(1996), no. 4, 739-744
[14] İ. Kisi, S. Büyükkütük, Deepmala, G. Ozturk, AW(k)-type Curves According to Parallel Transport Frame in Euclidean Space \mathbb{E}^{4}, FACTA UNIVERSITATIS (NIÅ) Ser. Math. Inform. Vol. 31, No. 4 (2016).
[15] Z. Liu, X. Zhang, J. Sheok Ume and S. Min Kang, Common fixed point theorems for four mappings satisfying ψ-weakly contractive conditions, Fixed Point Theory and Applications (2015), 1-22
[16] R. Malčeski, Strong n-convex n-normed spaces, Mat. Bilten 21(1997), 81-102 MR 99m:46059
[17] A. Misiak, n-inner product spaces, Math. Nachr. 140 (1989), 299-319. MR 91a:46021
[18] L.N. Mishra, S.K. Tiwari, V.N. Mishra; Fixed point theorems for generalized weakly S-contractive mappings in partial metric spaces, Journal of Applied Analysis and Computation, Volume 5, Number 4, 2015, pp. 600-612. doi:10.11948/2015047
[19] L.N. Mishra, On existence and behavior of solutions to some nonlinear integral equations with Applications, Ph.D. Thesis (2016), National Institute of Technology, Silchar 788 010, Assam, India.
[20] L.N. Mishra, M. Sen, R.N. Mohapatra, On existence theorems for some generalized nonlinear functional-integral equations with applications, Filomat, accepted on March 21, 2016, in press.
[21] L. N. Mishra, R. P. Agarwal, M. Sen, Solvability and asymptotic behavior for some nonlinear quadratic integral equation involving Erdélyi-Kober fractional integrals on the unbounded interval, Progress in Fractional Differentiation and Applications Vol. 2, No. 3 (2016), 153-168.
[22] L.N. Mishra, H.M. Srivastava, M. Sen, On existence results for some nonlinear functional-integral equations in Banach algebra with applications, Int. J. Anal. Appl., Vol. 11, No. 1, (2016), 1-10.
[23] L.N. Mishra, M. Sen, On the concept of existence and local attractivity of solutions for some quadratic Volterra integral equation of fractional order, Applied Mathematics and Computation Vol. 285, (2016), 174-183. DOI: 10.1016/j.amc.2016.03.002
[24] L.N. Mishra, S.K. Tiwari, V.N. Mishra, I.A. Khan; Unique Fixed Point Theorems for Generalized Contractive Mappings in Partial Metric Spaces, Journal of Function Spaces, Volume 2015 (2015), Article ID 960827, 8 pages.
[25] H.K. Pathak and Deepmala, Common fixed point theorems for PD-operator pairs under Relaxed conditions with applications, Journal of Computational and Applied Mathematics, 239 (2013), 103-113.
[26] A. Raymond Ryan, Introduction to Tensor Product of Banach Spaces, London,Springer -Verlag,2002.
[27] B.E. Rhoades, Contractive type mappings on a 2-metric space, Math.Nachr.,91(1979), 151-155. MR0563606
[28] M. Saha, D. Dey, A. Ganguly and L. Debnath, Fixed Point Theorems for a Class of Weakly C-Contractive Mappings in a Setting of 2-Banach Space, Journal of Mathematics, Volume 2013, Article ID 434205, 7 pages
[29] A. White, 2-Banach spaces, Math.Nachr., 42(1969), 43-60. MR0257716 (41 2365) Zbl 0185.20003

