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Abstract: In this paper, we give a treatment of the mathematical properties for a new distribution named a pseudo Lindley
distribution (PsLD)[14]. The properties studied include:moments, cumulates, characteristic function, failure rate function, mean
residual life function, Lorenz curve, stochastic ordering, asymptotic distribution of the extreme order statistics,maximum likelihood
estimation and simulation schemes. An application to waiting time data at a bank is described.
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1 Introduction

Let X be a random variable following the one-parameter distribution with the density function

f (x;θ ) =





θ 2(1+ x)e−θx

1+θ
, x,θ > 0,

0, otherwise
(L)

introduced by Lindley(1958). Sankaran (1970) used (L) as mixing distribution of Poisson parameter which it named

Poisson- Lindley distribution. Recently, Asgharzadeh et al. (2013) ,Ghitany et al. (2008a) and (2008b) rediscovered and

studied the new distribution bounded to (L),

their derived is known Zero-truncated Poisson- Lindley andPareto Poisson-Lindley distributions. This work offers a two

parameters family of distributions which is PsLD because for Lindley distribution there is only one parameter and not

flexible for analyzing an modeling different types of lifetime data. Moreover, Zakerzadah and Dolati (2010) introduced

an other distribution with three parameters which Lindley distribution is a special case, but this distribution is difficult

handled and not flexible. Recently, Zeghdoudi and Nedjar (2016a,2016b) introduced a new distribution, named gamma

Lindley distribution, based on mixtures of gamma(2,θ ) and one-parameter Lindley(θ ) distributions.The idea of this

paper is based on mixtures of the ordinary exponential(θ ) and gamma(2,θ ) distributions.

2 Pseudo Lindley distribution(PsLD) and some properties

In this section, we give the pseudo lindley distribution andstudy its properties. LetY1 ∼ exp(θ ) andY2 ∼ gamma(2,θ ) be

two independent random variables. Forβ ≥ 0, we consider the random variableX =Y1 andX =Y2 with same probability
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β−1
β and 1

β respectively. Now, the density function ofX is given by

fPsLD(x;θ ,β ) =
θ (β −1+θx)e−θx

β
, x,θ > 0,β ≥ 1 (1)

Remark.If β = θ +1, this distribution is Lindley distribution.

Therefore, the mode of PsLD is given by

mode(X) =





2−β
θ , for 1≤ β < 2,

0, otherwise.

We can find easily the cumulative distribution function(c.d.f) of the PsLD :

FPsLD(x) = 1− (β +θx)e−θx

β
;x,θ > 0,β ≥ 1 (2)

2.1 Survival and hazard rate function

Let

S(x) = 1−FPsLD(x) =
(β +θx)e−θx

β

and

h(x) =
fPsLD(x)

1−FPsLD(x)
=

θ (β +θx−1)
β +θx

be the survival and hazard rate function, respectively.

Corollary 1. Let X∼ PsLD(β ,θ ), the mean and variance for X are:

E(X) =
β +1
θβ

,Var(X) =
β 2+2β −1

β 2θ 2

3 The quantile function of the Pseudo lindley distribution

3.1 The Lambert W function

Theorem 1.For anyθ > 0,β ≥ 1,the quantile function of the pseudo Lindley distribution X is

QX (u) = QX (u) =−β
θ
− 1

θ
W−1

(
βe−β (u−1)

)
, 0 ≺ u≺ 1, (3)

where W−1 denotes negative branche of lambert W function.

Proof.The proof is omitted because it is very similar to the proof ofTheorem 1 in Zeghdoudi and Nedjar (2016c).

Further the first three quantiles we obtained by substituting u= 1
4,

1
2,

3
4 in equation(3)

Q1 = F−1
(

1
4
,θ ,β

)
=−β

θ
− 1

θ
− 1

θ
LambertW

(
−1,βe−β

(
1
4
−1

))

c© 2017 BISKA Bilisim Technology



NTMSCI 5, No. 1, 59-65 (2017) /www.ntmsci.com 61

Median= Q2 = F−1
(

1
2
,θ ,β

)
=−β

θ
− 1

θ
− 1

θ
LambertW

(
−1,βe−β

(
1
2
−1

))

Q3 = F−1
(

3
4
,θ ,β

)
=−β

θ
− 1

θ
− 1

θ
LambertW

(
−1,βe−β

(
3
4
−1

))
.

Table 1 displays the mode, mean and median for PsLD distribution for different choices of parameterθ andβ . Also

for any choice ofθ andβ it is observed thatMean> Median> Mode. Table 1. Mode, mean and median for PsLD for

different values ofθ andβ .

Table 1

θ = 0.5,β = 1.5 θ = 1.5,β = 1.5 θ = 3,β = 1.5
Median= Q2 2.6537 0.88456 0.44228
Mean 3.33 1.11 0.55
mode 1 0.33 0.16

θ = 1.2,β = 1 θ = 1.2,β = 1.2 θ = 1.2,β = 1.9
Median= Q2 1.3986 1.2554 0.97867
Mean 1.66 1.52 1.271
mode 0.83 0.66 0.083

4 Lorenz curve

The Lorenz curve for a positive random variableX is defined as the graph of the ratio

L(F(x)) =
E(X|X ≤ x)F(x)

E(X)
(4)

againstF(x) with the propertiesL(p)≤ p,L(0) = 0 andL(1) = 1. If X represents annual income,L(p) is the proportion of

total income that accrues to individuals having the 100p% lowest incomes. If all individuals earn the same income then

L(p) = p for all p. The area between the lineL(p) = p and the Lorenz curve may be regarded as a measure of inequality

of income, or more generally, of the variability ofX, see Gail and Gastwirth[2] for extensive discussion of Lorenz curves.

For the exponential distribution, it is well known that the Lorenz curve is given by

L(p) = p{p+(1− p)log(1− p)}.

For the PsLD distribution in (2),

E(X|X ≤ x)F(x) =
β +1
θβ

− e−θx

β θ
[
β (xθ +1)+ x2θ 2+ xθ +1

]
.

Thus, from (4) we obtain the Lorenz curve for the pseudo Lindley distribution as

L(p) = 1− (1− p)β
(
β (xθ +1)+ x2θ 2+ xθ +1

)

(β +1)(β +θx)

wherex= F−1(p) with F(·) given by (2).
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5 Extreme order statistics

If X1, ...,Xn is a random sample from (1) and ifX = (X1+···+Xn)/n denotes the sample mean then by the usual central

limit theorem
√

n(X−E(X))√
Var(X)

approaches the standard normal distribution asn→ ∞. Sometimes one would be interested in

the asymptotics of the extreme valuesMn = max(X1, ...,Xn) andmn = min(X1, ...,Xn). For the c.d.f. in (2), it can be seen

that

lim
t→∞

1−F(t + x)
1−F(t)

= exp(−θx)

and

lim
t→0

F(tx)
F(t)

= x.

Thus, it follows from Theorem 1.6.2 in Leadbetter et al.[6] that there must be norming constantsan > 0,bn,cn > 0 anddn

such that

Pr{an(Mn−bn)≤ x}→−exp{−θx)} (5)

and

Pr{cn(mn−dn)≤ x}→ 1−exp(−x) (6)

asn→ ∞. The form of the norming constants can also be determined. For instance, using Corollary 1.6.3 in Leadbetter et

al. [6], one can see thatan = 1 andbn = F−1(1−1/n) with F(·) given by (2).

5.1 Maximum Likelihood Estimates (MLE)

In this section we shall discuss the point and interval estimation on the parameters that index thePsL(θ ,β ). Let the

log-likelihood function of single observation(sayxi) for the vector of parameter(θ ,β ) can be written as

ln l(x;β ,θ ) = lnθ − lnβ + ln(β −1+θxi)−θx.

The derivatives ofLnl(xi ;β ,θ ) with respect toθ andβ are

∂ ln l(x;β ,θ )
∂θ

=
1
θ
− x+

(
x

β −1+θx

)
(2)

∂ ln l(x;β ,θ )
∂β

=
−1
β

+

(
1

β −1+θx

)
(3)

The maximum likelihood estimator̂θ of θ andβ̂ of β is obtained by solving equation(7) and (8) numerically we give

{
θ̂ = 1

X

β̂ = 1
X−1

(9)

and 



E
(
θ̂
)
= β+1

θβ = m

E
(

β̂
)
= β+θ+1

β θ e−θ (10)
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6 Simulation

In this section, we investigate the behavior of the ML estimators for a nite sample size (n).Simulation study based on

differentPsLD(θ ,β ) is carried out. A simulation study consisting of following steps is being carried out for each triplet

(β ,θ ;n), whereθ = 0.5,0.9,1, β = 1.5,5,6 andn= 10,30,50.

– Choose the initial values ofθ0,β0 for the corresponding elements of the parameter vectorΘ = (θ ,β ) to specify GaL

distribution;

– choose sample sizen;

–generateN independent samples of sizen from PsLD(θ ,β );
–compute the ML estimatêΘn of Θ0 for each of theN samples;

–compute the mean of the obtained estimators over allN samples,

average bias(θ ) =
1
N

N

∑
i=1

(
Θ̂i −Θ0

)

and the average square error (see tables 2 and 3)

MSE(θ ) =
1
N

N

∑
i=1

(
Θ̂i −Θ0

)2
.

Table 2: Average bias of the simulated estimates.

θ = 1,β = 6 θ = 0.5,β = 1.5 θ = 0.9,β = 5
bias(θ ) bias(β ) bias(θ ) bias(β ) bias(θ ) bias(β )

n= 10 1.6667×10−2 0.5509 0.2833 9.2612×10−2 4.3333×10−2 0.4376
n= 30 5.5556×10−3 0.1836 9.4444×10−2 3.0871×10−2 1.4444×10−2 0.1458
n= 50 3.3333×10−3 0.1101 5.666×10−2 1.8522×10−2 8.6667×10−3 0.0875

Table 3: Average MSE of the simulated estimates.

θ = 1,β = 6 θ = 0.5,β = 1.5 θ = 0.9,β = 5
MSE(θ ) MSE(β ) MSE(θ ) MSE(β ) MSE(θ ) MSE(β )

n= 10 2.7778×10−3 3.0355 0.8027 0.08577 1.8778×10−2 1.9155
n= 30 9.2593×10−4 1.0118 0.2676 0.02859 6.2593×10−3 0.6384
n= 50 5.5556×10−4 0.6071 0.1605 0.0171 3.7556×10−3 0.3831

7 Application to Real Data sets

In this section, we illustrate, the applicability of PsLD byconsidering two different data sets used by different

researchers. We also fit generalized Lindley[11], quasi Lindley[9], two-parameter Lindley[8], gamma, Weibull and

lognormal distributions.

In each of these distributions, the parameters are estimated by using the moment method, and for comparison we use

negative log-likelihood values(−LL), the Akaike information criterion(AIC) and Bayesian information criterion(BIC)

which are defined by−2LL+2q and−2LL+qlog(n), respectively, whereq is the number of parameters estimated andn
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is the sample size. FurtherK −S (Kolmogorov-Smirnov) test statistic defined asK −S= supx |Fn(x)−F(x)|, where

Fn(x) is empirical distribution function andF(x) is cumulative distribution function is calculated and shown for all the

data sets.

Example 1.We consider from Lawless[5], pp 204 and 263 two series of real data. The first one, represents the failure

times (mm) for a sample of fifteen electronic components in anacceleration life test : 1.4, 5.1, 6.3, 10.8, 12.1, 18.5, 19.7,

22.2, 23, 30.6, 37.3, 46.3, 53.9, 59.8, 66.2. The second set of data, are the number of cycles to failure for 25 100-cm

specimens of yarn, tested at a particular strain level : 15, 20, 38, 42, 61, 76, 86, 98, 121, 146, 149, 157, 175, 176, 180,

180, 198, 220, 224, 251, 264, 282, 321, 325, 653.

According table 4, we can observe that pseudo Lindley distribution provide smallest k- S as compare to quasi Lindley,two-

parameter Lindley, generalized Lindley, Weibull and lognormal distributions.

Table 4: Comparison between several distributions.

Data Distribution β θ γ log-likelihood K −S AIC BIC
Serie1 Generalized Lindley 1.203 0.064 0.083 −64.080 0.095 134.16 136.28

n=15 PsLD 1.129 0.684 −62.075 0.082 128.15 129.57
m=27.546 QLD 4.016 −0.99 −1504 0.93 301.2 3013.4
s=20.059 TwoPLD 0.0704 1.110 −169.12 0.196 342.24 343.66

Gamma 1.442 0.052 −64.197 0.102 132.39 133.81
Weibull 1.306 0.034 −64.026 0.450 132.05 133.47
Lognormal 1.061 2.931 −65.626 0.163 135.25 136.67

Serie2 Generalized Lindley 1.505 0.012 0.018 −152.369 0.137 310.74 314.39

n=25 PsLD 1.086 0.010 −150.232 0.128 304.464 306.9
m=178.32 QLD 0.0107 8.514 −104.59 0.93 213.18 215.62
s= 131.097 TwoPLD 0.0107 0,125 −283.41 0.232 570.82 573.26

Gamma 1.794 0.010 −152.371 0.135 308.74 311.18
Weibull 1.414 0.005 −152.440 0.697 308.88 310.7
Lognormal 0.891 4.880 −154.092 0.155 312.18 314.62

8 Conclusion

In this work, we discussed more statistical properties of two parameter PsLD, including the quantile function, Lorenz

curve and probability density of the order statistics. The maximum likelihood estimates of the two parameters index to the

new distribution are discussed. The distribution includesthe Lindley and the exponential distributions as special cases.Two

real data sets are analyzed using the new distribution and itis compared with six immediate sub-models mentioned above

in addition to another distributions (quasi Lindley ,Two-Parameter Lindley, Generalized Lindley, Weibull and Lognormal

distributions). The results of the comparisons showed thatthe new distribution provides a better fit than those three

mentioned distributions to the three data sets. We hope our new distribution might attract wider sets of applications in

lifetime data reliability analysis and actuarial sciences. For future studies, we can explain the derivation of posterior

distributions for the Pseudo Lindley distribution under Linex loss functions and squared error using non-informativeand

informative priors(the extension of Jeffreys and InvertedGamma priors) respectively.
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