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Abstract: In the present article, a numerical method is proposed for the numerical solution of the KdV equation by using collocation
method with the modified exponential cubic B-spline. In this paper we convert the KdV equation to system of two equations. The
method is shown to be unconditionally stable using von-Neumann technique. To test accuracy the error norms L2, L∞ are computed.
Three invariants of motion are predestined to determine the preservation properties of the problem, and the numerical scheme leads
to careful and active results. Furthermore, interaction of two and three solitary waves is shown. These results show that the technique
introduced here is easy to apply.
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1 Introduction

We will solve the KdV equation in this form [1].

ut + εuux +µuxxx = 0, (1)

where ε ,µ are positive parameters and the subscripts xand t denote differentiation. Boundary conditions

u(a, t) = f1(a, t),u(b, t) = f2(b, t),
ux(a, t) = g1(a, t),ux(b, t) = g2(b, t),0 ≤ t ≤ T.

(2)

and initial conditions.
u(x,0) = f (x),
ux(x,0) = f ′(x) = g(x),a ≤ x ≤ b.

(3)

KdV equation is prototypical example of exactly solvable mathematical paradigm of waves on shallow water superficies.
It grow for evolution, interaction of waves, and generation in physics. Due to the term ut , (1) is called the evolution
equation, the nonlinear term causes the steepness of the wave, and the dispersive term defines the spreading of the wave.
It is known that the influence of the steepness and spreading results in soliton solutions for the KdV equation.

The KdV equation is a one-dimensional non-linear partial differential equation of third order, which plays a big role in
the discussion of non-linear dispersive waves. This equation was primarily derived by Korteweg-de Vries [2] to
characterize the action of one dimensional shallow water solitary waves. Solitary waves are wave packets or pulses
which diffuse in non-linear dispersive media. For stable solitary wave solutions the non-linear and dispersive terms in the
KdV equation must equilibrium, and in this status the KdV equation has wandering wave solutions called solitons. A
soliton is a very particular type of solitary waves which save its waveform after incosistency with other solitons. A small
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time solutions using a heat balance integral method to solve the KdV equation was gained by Kutluay et al. [1]. In their
article, comprehensive comparisons with the analytical values over the acquaint interval are given. Bahadir [3] studied
the exponential finite-difference technique to solve the KdV equation. This method has been shown to supply higher
accuracy than the classical explicit finite difference and the heat balance integral method. Ozer and Kutluay [4] applied
an analytical–numerical method, for solving the KdV equation and the obtained results are compared with that of the
heat balance integral method and the corresponding analytical solution. Irk et al. [5] studied a second order spline
approximation technique and made comparisons with earlier methods. Ozdes and Aksan [6] applied the method of lines
for solving the KdV equation. A. Ozdes and E.N. Aksan [7] used a quadratic B-spline Galerkin finite element method
and compared these techniques with the analytical solutions and other numerical solutions that are obtained earlier using
various numerical techniques. O. Ersoy and I. Dag [8] applied The Exponential Cubic B-Spline Algorithm for solving
the KdV Equation. B. Saka [9] used Cosine expansion-based differential quadrature method for numerical solution of the
KdV equation. Da?g and Y. Dereli [10] applied Numerical solutions of KdV equation using radial basis functions. A.
Can ı var et al. [11] applied A Taylor-Galerkin finite element method for the KdV equation using cubic B-splines and
also G. Micula and M. Micula [12] used on the numerical approach of Korteweg-de Vries-Burger equations by spline
finite element and collocation methods.

The paper is organized as follows. In Section 2, we convert the KdV equation to system of nonlinear equations. In
Section 3, we introduced the description of Method. In section 4, we introduced the decoction of modified exponential
cubic B-splines collocation method, dissection of initial state and stability. In section 5, numerical results for problem
and some related figures are given in order to show the efficiency as well as the accuracy of the proposed method and we
introduced the interaction of two and three solitary waves. Finally, conclusions are followed in section 6.

2 The KdV equation

Now we can convert the Eq. (1) to system of equations as. We take ux = v in the Eq. (1) we get

ut + εuux +µvxx = 0,
ux = v.

(4)

where ε,µ are positive parameters and the subscripts xand t denote differentiation. Boundary conditions

u(a, t) = f1(a, t),u(b, t) = f2(b, t),
v(a, t) = g1(a, t),v(b, t) = g2(b, t),0 ≤ t ≤ T.

(5)

and initial conditions.
u(x,0) = f (x),
v(x,0) = g(x),a ≤ x ≤ b.

(6)

3 Description of method

To construct numerical solution, consider nodal points (x j, tn) defined in the region [a,b]× [0,T ] where

a = x0 < x1 < ... < xN = b,h = x j+1 − x j =
b−a

N
, j = 0,1, ...,N.

0 = t0 < t1 < ... < tn < ... < T, tn = n∆ t,n = 0,1, ... Our numerical treatment for solving (4) using the collocation method
with modified exponential B-splines is to find an approximate solutions UN(x, t),V N(x, t),to the exact solution
u(x, t),v(x, t),in the form,

UN(x, t) =
N+1

∑
j=−1

c j(t)B j(x),V N(x, t) =
N+1

∑
j=−1

δ j(t)B j(x). (7)
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The exponential cubic B-spline basis functions at knots are given by

B j(x) =



b2

(
(x j−2 − x) − 1

p

(
sinh

(
p(x j−2 − x)

)))
, x j−2 ≤ x ≤ x j−1

a1 +b1(x j − x) + c1 exp(p(x j − x))+d1 exp(−p(x j − x)) ,x j−1 ≤ x ≤ x j

a1 +b1(x− x j) + c1 exp(p(x− x j))+d1 exp(−p(x− x j)) ,x j ≤ x ≤ x j+1

b2

(
(x− x j+2) − 1

p

(
sinh

(
p(x− x j+2)

)))
, x j+1 ≤ x ≤ x j+2

0, otherwise

(8)

where
a1 =

phc
phc−s ,b1 =

p
2

[
c(c−1)+s2

(phc−s)(1−c)

]
,

b2 =
p

2(phc−s) ,d1 =
1
4

[
exp(−ph)(1−c)+s(exp(−ph)−1)

(phc−s)(1−c)

]
,

d2 =
1
4

[
exp(ph)(1−c)+s(exp(ph)−1)

(phc−s)(1−c)

]
,

s = sinh(ph) ,c = coh(ph) ,h = b−a
N ,

p is a free parameter and{B−1,B0, . . . ,BN ,BN+1} forms a basis over the region a ≤ x ≤ b. Each exponential cubic B-
spline covers four elements so that each element is covered by four exponential cubic B-splines. The values of B j(x)and
its derivative may be tabulated as in Table 1.

Table 1: The values of exponential Cubic B-splines and its first and second derivatives at the knots points

x x j−2 x j−1 x j x j+1 x j+2

B j 0 (s−ph)
2(phc−s) 1 (s−ph)

2(phc−s) 0

B′
j 0 p(1−c)

2(phc−s) 0 −p(1−c)
2(phc−s) 0

B′′
j 0 p2s

2(phc−s)
−p2s

(phc−s)
p2s

2(phc−s) 0

Using approximate function (7) and the values of B j(x)and its derivative in Table 1, the approximate values of
UN(x),V N(x)and its two derivatives at the knots/nodes are determined in terms of the time parameters c j,δ j as follows

(U1)j = (U1)(x j) = m1c j−1 + c j +m1c j+1,

(U′) j = (U′)(x j) = m2c j−1 −m2c j+1,

(U′′) j = (U′′)(x j) = m3c j−1 −2m3c j +m3c j+1

(V)j = (V)(x j) = m1δ j−1 +δ j +m1δ j+1,

(V′) j = (V′)(x j) = m2δ j−1 −m2δ j+1,

(V′′) j = (V′′)(x j) = m3δ j−1 −2m3δ j +m3δ j+1,

(9)

where

m1 =
(s− ph)

2(phc− s)
,m2 =

p(1− c)
2(phc− s)

,m3 =
p2s

2(phc− s)
.

4 Modified exponential cubic B-splines collocation method

In this paper, we have used the following modification in exponential cubic B-splines basis functions to get a diagonally
predominant system of differential equations for treatment with boundary conditions. The procedure for modifying the
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basis functions is as follows [13],

B̆0(x) = B0(x)+2B−1(x), f or j = 0
B̆1(x) = B1(x)−B−1(x), f or j = 1
B̆ j(x) = B j(x), f or j = 2,3, . . . ,N −2
B̆N−1(x) = BN−1(x)−BN+1(x), f or j = N −1
B̆N(x) = BN(x)+2BN+1(x), f or j = N.

(10)

Now, we assume the approximate solution using the modified exponential cubic B-splines basis functions in the form

UN(x0, t) = f1(t), f or j = 0
UN(x j, t) = ∑N

j=0 c j(t)B̆ j(x), f or j = 1,2, . . . ,N −1
UN(xN , t) = f2(t), f or j = N
V N(x0, t) = g1(t), f or j = 0
V N(x j, t) = ∑N

j=0 δ j(t)B̆ j(x), f or j = 1,2, . . . ,N −1
V N(xN , t) = g2(t), f or j = N.

(11)

Here, the new sets of exponential cubic B-splines basis functions B̆ j(x), j = 0,1, . . . ,N are modified in such a way that
resulting system of differential equations is diagonally dominant. To apply the proposed method with the modified set of
exponential cubic B-splines basis functions B̆ j(x), j = 0,1, . . . ,Nto Eqs. (4) - (6) we proceed as follows.

Our numerical treatment for solving (4) using the collocation method with modified exponential cubic B-splines is to
find an approximate solutions UN(x, t),V N(x, t), to the exact solutions u(x, t),v(x, t), given in (11), where c j(t),δ j(t) are
time dependent quantities to be determined from the boundary conditions and collocation from the differential equation.

Using approximate function (11) and modified exponential cubic B-splines functions (10), the approximate values of
UN(x, t),V N(x, t),at the knots/nodes are determined in terms of the time parameters c j(t),δ j(t) as follows,

UN(x0, t) = (1+2m1)c0(t), f or j = 0
UN(x j, t) = m1c j−1 + c j +m1c j+1, f or j = 1,2, . . . ,N −1
UN(xN , t) = (1+2m1)cN(t), f or j = N
V N(x0, t) = (1+2m1)δ0(t), f or j = 0
V N(x j, t) = m1δ j−1 +δ j +m1δ j+1, f or j = 1,2, . . . ,N −1
V N(xN , t) = (1+2m1)δN(t), f or j = N.

(12)

To apply the proposed method, we rewrite (4) as

∂u(x,t)
∂ t + εu(x, t) ∂u(x,t)

∂x +µ ∂ 2v(x,t)
∂x2 = 0,

∂u(x,t)
∂x = v(x, t),

(13)

we take the approximations u(x, t) =Un
j and v(x, t) =V n

j , then from famous Cranck–Nicolson scheme and forward finite
difference approximation for the derivative t [14]. We get

Un+1
j −Un

j
k + ε

[
(UUx)

n+1
j +(UUx)

n
j

2

]
+µ

[
(V )xx

n+1
j +(V )xx

n
j

2

]
= 0,[

Ux
n+1
j +Ux

n
j

2

]
=

V n+1
j +V n

j
2 ,

(14)
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where k = ∆ t is the time step. The nonlinear terms in (14) is linearized using the form given by Rubin and Graves [15] as:
we take linearization of the nonlinear term as

(UUx)
n+1
j =Un

j Ux
n+1
j +Un+1

j Ux
n
j −Un

j Ux
n
j , (15)

Using (9)–(12) and (15) in (14), we get a system of ordinary differential equations of the form:

(1+2m1)

[
cn+1

0 +cn
0

2

]
= f1(t), f or j = 0

m1cn+1
j−1 + cn+1

j +m1cn+1
j+1 −m1cn

j−1 − cn
j −m1cn

j+1+

kε
2

(
m1cn+1

j−1 + cn+1
j +m1cn+1

j+1

)(
m2cn

j−1 −m2cn
j+1

)
+(

m1cn
j−1 + cn

j +m1cn
j+1

)(
m2cn+1

j−1 −m2cn+1
j+1

) +

kµ
2

(
m3δ n+1

j−1 −2m3δ n+1
j +m3δ n+1

j+1 +m3δ n
j−1 −2m3δ n

j +m3δ n
j+1

)
= 0,

f or j = 1, . . . ,N −1

(1+2m1)

[
cn+1

N +cn
N

2

]
= f2(t), f or j = N

(16)

(1+2m1)

[
δ n+1

0 +δ n
0

2

]
= g1(t), f or j = 0

m2cn+1
j−1 −m2cn+1

j+1 +m2cn
j−1 −m2cn

j+1 = m1δ n+1
j−1 +δ n+1

j +m1δ n+1
j+1 +m1δ n

j−1 +δ n
j +m1δ n

j+1, f or j = 1, . . . ,N −1

(1+2m1)

[
δ n+1

N +δ n
N

2

]
= g2(t), f or j = N

(17)

The system thus obtained on simplifying (16) and (17) consists of (2N + 2)linear equations in the(2N + 2)
unknowns(c0,.......,cN)

T , (δ0,.......,δN)
T , which is the tridiagonal system that can be solved by any algorithm.

4.1 Initial values

The initial vectors c0
j ,δ 0

j can be obtained from the initial condition and boundary values of the derivatives of the initial
condition as the following expressions:

UN(x0,0) = f1(x0,0), f or j = 0
UN(x j,0) = f (x j), f or j = 1,2, . . . ,N −1
UN(xN ,0) = f2(xN ,0), f or j = N
V N(x0,0) = g1(x0,0), f or j = 0
V N(x j,0) = g(x j), f or j = 1,2, . . . ,N −1
V N(xN ,0) = g2(xN ,0), f or j = N

(18)

This yields a (2N +2)× (2N +2) system equations of the form
1+2m1 0 0 0 · · · 0 0 0

m1 1 m1 0 · · · 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · m1 1 m1

0 0 0 0 · · · 0 0 1+2m1




c0

0
c0

1
...

c0
N−1
c0

N

=


f1(x0)

f (x1)
...

f (xN−1)

f2(xN)

 , (19)
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
1+2m1 0 0 0 · · · 0 0 0

m1 1 m1 0 · · · 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · m1 1 m1

0 0 0 0 · · · 0 0 1+2m1




δ 0

0
δ 0

1
...

δ 0
N−1
δ 0

N

=


g1(x0)

g(x1)
...

g(xN−1)

g2(xN)

 . (20)

The solution of (??) can be solved by any algorithm.

4.2 Stability analysis of the method

The stability analysis of nonlinear partial differential equations is not easy task to undertake. Most researchers copy with
the problem by linearizing the partial differential equation. Our stability analysis will be based on the Von-Neumann
concept in which the growth factor of a typical Fourier mode defined as

cn
j = Aζ n exp(i jϕ),

δ n
j = Bζ n exp(i jϕ),

(21)

g =
ζ n+1

ζ n ,

where A and B are the harmonics amplitude,ϕ = kh , k is the mode number, i =
√
−1 and g is the amplification factor of

the schemes. We will be applied the stability of the modified exponential cubic schemes by assuming the nonlinear term
as a constantsλ . System (14) can be written as

m1cn+1
j−1 + cn+1

j +m1cn+1
j+1 +

λkε
2

(
m2cn+1

j−1 −m2cn+1
j+1

)
+

kµ
2

(
m3δ n+1

j−1 −2m3δ n+1
j +m3δ n+1

j+1

)
= (22)

m1cn
j−1 + cn

j +m1cn
j+1 −

λkε
2

(
m2cn

j−1 −m2cn
j+1

)
− kµ

2
(
m3δ n

j−1 −2m3δ n
j +m3δ n

j+1
)
,

m2cn+1
j−1 −m2cn+1

j+1 −m1δ n+1
j−1 −δ n+1

j −m1δ n+1
j+1 =−m2cn

j−1 +m2cn
j+1 +m1δ n

j−1 +δ n
j +m1δ n

j+1, f or j = 1, . . . ,N −1. (23)

Substituting (21) into the difference (22), we get

ζ n+1 [A(2m1 cos(ϕ)+1)+Bkµm3 (cos(ϕ)−2)− iλkεAm2 sin(ϕ)] =
ζ n [A(2m1 cos(ϕ)+1)−Bkµm3 (cos(ϕ)−2)+ iλkεAm2 sin(ϕ)] ,

(24)

ζ n+1

ζ n =
[A(2m1 cos(ϕ)+1)−Bkµm3 (cos(ϕ)−2)+ iλkεAm2 sin(ϕ)]
[A(2m1 cos(ϕ)+1)+Bkµm3 (cos(ϕ)−2)− iλkεAm2 sin(ϕ)]

, (25)

g =
ζ n+1

ζ n =
X1 + iY
X2 − iY

, (26)

where

X1 = A(2m1 cos(ϕ)+1)−Bkµm3 (cos(ϕ)−2) ,

X2 = A(2m1 cos(ϕ)+1)+Bkµm3 (cos(ϕ)−2) ,

Y = λkεAm2 sin(ϕ).
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Substituting (21) into the difference (23), we get

ζ n+1 [−B(2m1 cos(ϕ)+1)−2iAm2 sin(ϕ)] = ζ n [B(2m1 cos(ϕ)+1)+2iAm2 sin(ϕ)] , (27)

ζ n+1

ζ n =
[B(2m1 cos(ϕ)+1)+2iAm2 sin(ϕ)]
[−B(2m1 cos(ϕ)+1)−2iAm2 sin(ϕ)]

, (28)

g =
ζ n+1

ζ n =
X3 + iZ
X4 − iZ

, (29)

where

X3 = B(2m1 cos(ϕ)+1) ,

X4 =−B(2m1 cos(ϕ)+1) ,

Z = 2Am2 sin(ϕ).

From (26) and (29) we get |g| ≤ 1, hence the schemes are unconditionally stable. It means that there is no restriction on
the grid size, i.e. on hand∆ t, but we should choose them in such a way that the accuracy of the scheme is not degraded.

5 Numerical tests and results of KdV equation

In this section, we present numerical example to test validity of our scheme for solving KDV equation. The norms L2-norm
and L∞-norm are used to compare the numerical solution with the analytical solution [16].

L2 =
∥∥uE −uN

∥∥=
√

h∑N
i=0(u

E
j −uN

j )
2,

L∞ = max
j

∣∣∣uE
j −uN

j

∣∣∣ , j = 0,1, · · · ,N.
(30)

Where uE is the exact solution u and uN is the approximation solution UN . And the quantities I1, I2 and I3 are shown to
measure conservation for the schemes.

I1 =
∫ ∞
−∞ u(x, t)dx ∼= h∑N

j=0 (U)n
j ,

I2 =
∫ ∞
−∞

(
u(x, t)2

)
dx ∼= h∑N

j=0
(
U2

)n
j ,

I3 =
∫ ∞
−∞

[(
u(x, t)3 − 3µ

ε ux(x, t)2
)]

dx ∼= h∑N
j=0

[((
U3

)n
j −

3µ
ε
(
U2

x
)n

j

)]
,

 . (31)

Now we consider this test problem.

5.1 Test problem

We assume that the solution of the KdV equation is negligible outside the interval [a,b] , together with all its x derivatives
tend to zero at the boundaries. Therefore, in our numerical study we replace Eq. (1) as shown in section 2 by

ut + εuux +µvxx = 0,
ux = v.

(32)

Where ε,µ are positive parameters and the subscripts x and t denote differentiation. Boundary conditions

u(a, t) = 0,u(b, t) = 0,
v(a, t) = 0,v(b, t) = 0,0 ≤ t ≤ T.

(33)
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And initial conditions.
u(x,0) = f (x),
v(x,0) = g(x),a ≤ x ≤ b.

(34)

Then the exact solutions of system (32) is

u(x, t) = 3csech2 (Ax−Bt +D) (35)

whereA = 1
2

√
3c
µ ,B = εcA. This solution represents propagation of single soliton, having velocity εc and amplitude 3c.

To investigate the performance of the proposed schemes we consider solving the following problem.

5.2 Single soliton

In previous section, we have provided modified exponential cubic B-spline schemes for the KdV equation, and we can
take the following initial condition.

u(x,0) = 3csech2 (Ax+D) (36)

where A = 1
2

√
3c
µ . The norms L2 and L∞ are used to compare the numerical results with the analytical values and the

quantities I1, I2 and I3 are shown to measure conservation for the schemes.

Now, for comparison, we consider a test problem where, k = 0.005, D = −6, ε = 1, µ = 4.84× 10−4, c = 0.3, a = 0,
b = 2. The simulations are done up tot = 3. The invariant I1 changed by less than 5.6×10−5, I2 approach to zero and I3

changed by less than 2.06×10−5 in the computer program for the scheme at p = 1.64×10−5 . The invariant I1 changed
by less than 1.01× 10−4, I2 approach to zero and I3 changed by less than 1.075× 10−4 for the scheme atp = 1× 10−5.
Errors, also, at time 3 are satisfactorily small L2-error =4 × 10−4and L∞-error = 9 × 10−4 for the scheme at
p = 1.64 × 10−5. Errors, also, at time 1 are satisfactorily small L2-error =4 × 10−3 and L∞-error = 1 × 10−2 for the
scheme atp = 1× 10−5. Our results are recorded in Table 1. The motion of solitary wave using our scheme is plotted at
timest = 0,1,1.5,2,2.5,3in Fig.1. These results illustrate that the scheme has a highest accuracy and best conservation at
p = 1.64× 10−5 than other scheme atp = 1× 10−5. So we use the scheme at p = 1.64× 10−5 to study the motion of
single solitary waves and interaction between two and three solitons.

Table 2: Invariants and errors for single solitary wave k = 0.005,D =−6,ε = 1,µ = 4.84×10−4,c = 0.3,a = 0,b = 2.

Scheme ×10−5 T I1 I2 I3 L2-norm L∞-norm
p = 1.64 0.0

0.5
1.0
1.5
2.0
2.5
3.0

0.144598
0.144577
0.144615
0.144613
0.144625
0.144618
0.144633

0.0867593
0.0867593
0.0867593
0.0867593
0.0867593
0.0867593
0.0867593

0.0624667
0.0624669
0.0624786
0.0624773
0.0624786
0.0624873
0.0624827

0.0000
0.0003
0.0004
0.0004
0.0004
0.0004
0.0004

0.0000
0.0009
0.0009
0.0009
0.0009
0.0009
0.0009

p = 1 0.0
0.2
0.4
0.6
0.8
1.0

0.144598
0.144621
0.144549
0.144603
0.144663
0.144699

0.0867593
0.0867593
0.0867595
0.0867592
0.0867593
0.0867597

0.0624667
0.0623948
0.0623723
0.0623666
0.0623594
0.0623592

0.000
0.001
0.002
0.002
0.003
0.004

0.000
0.003
0.006
0.008
0.010
0.010

In the next table we make comparison between the results of our scheme and the results have been published in [9], [11],
[10] and [8].
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Fig. 1: Single solitary wave with ε = 1,µ = 4.84×10−4,c = 0.3,a = 0,b = 2.0 ≤ x ≤ 2,t = 0,1,1.5,2,2.5,3 respectively.

Table 3: Invariants and errors for single solitary wavek = 0.005,D = −6,ε = 1, p = 1.64× 10−5,µ = 4.84× 10−4,0 ≤
x ≤ 2, t = 3.

Method I1 I2 L2-norm L∞-norm
Analytical
Our scheme
[9]
[11]
[10]a (G)
[10]b (TPS)
[10]c (IQ)
[10]d (IMQ)
[10]e (MQ)
[8]

0.144598
0.144633
0.014460
0.144597
0.144601
0.144261
0.144598
0.144623
0.144606
0.144597

0.0867593
0.0867593
0.08675
0.086761
0.086760
0.086762
0.086759
0.086765
0.086759
0.0867593

0.0000
0.0004
-
-
0.00004
0.002
0.001
0.002
0.00006
-

0.00000
0.0009
0.001
0.00004
0.0001
0.006
0.002
0.005
0.0001
0.0007

The results of our scheme are accurate than the results in [9], [10]b, [10]c and [10]d and related with the results in [10]a,
[10]e and [8] and not better than the results in [11].

5.3 Interaction of two solitary waves

The interaction of two solitary waves having different amplitudes and traveling in the same direction is illustrated. We
consider KDV equation with initial conditions given by the linear sum of two well separated solitary waves of various
amplitudes

u(x,0) = 3c j sech2 (Ax+D j) (37)
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where A = 1
2

√
3c j
µ , j = 1,2, c j and D j are arbitrary constants. In our computational work. Now, we choose c1 = 0.9,c2 =

0.3,D1 = −6,D2 = −8,µ = 4.84× 10−4,ε = 1,h = 0.01, k = 0.005with interval [0, 2]. In Fig. 3, the interactions of
these solitary waves are plotted at different time levels. We also, observe an appearance of a tail of small amplitude after
interaction and the three invariants for this case are shown in Table 3. The invariants I1, I2 and I3are changed by less than
5.45×10−4,1.3×10−5 and 6.59×10−3, respectively for the scheme.

Table 4: Invariants of interaction two solitary waves of KDV equation c1 = 0.9, c2 = 0.3,D1 = −6, D2 = −8, µ =
4.84×10−4, ε = 1,h = 0.01, k = 0.005, 0 ≤ x ≤ 2.

T I1 I2 I3
0.00
0.10
0.85
0.90
0.95
1.00

0.395049
0.394955
0.394671
0.394651
0.394504
0.394541

0.537958
0.537951
0.537949
0.537954
0.537962
0.537962

1.03693
1.03034
1.03088
1.03306
1.03236
1.03313

Fig. 2: interaction two solitary waves with c1 = 0.9,c2 = 0.3,D1 = −6,D2 = −8,µ = 4.84× 10−4,ε = 1,h = 0.01,
k = 0.005,0 ≤ x ≤ 2 at time t = 0,1 respectively.

5.4 Interaction of three solitary waves

The interaction of three solitary waves having different amplitudes and traveling in the same direction is illustrated. We
consider the KDV equation with initial conditions given by the linear sum of three well separated solitary waves of various
amplitudes.

u(x,0) = 3c j sech2 (Ax+D j) (38)

where A = 1
2

√
3c j
µ , j = 1,2, 3, c j and D j are arbitrary constants. In our computational work. Now, we choose c1 =

0.9,c2 = 0.6,c3 = 0.3,D1 = −6,D2 = −10,D3 = −12,ε = 1,h = 0.01,µ = 4.84× 10−4,k = 0.005 with interval [0, 2].
In Fig. 4. The interactions of these solitary waves are plotted at different time levels. We also, observe an appearance of
a tail of small amplitude after interaction and the three invariants for this case are shown in Table 4. The invariants I1, I2

and I3 are changed by less than 6.5111×10−3,2.6×10−4 and 7.184×10−2, respectively for the scheme.
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Table 5: Invariants of interaction three solitary waves of KDV equation. c1 = 0.9,c2 = 0.6, c3 = 0.3,D1 =−6, D2 =−10,
D3 =−12,ε = 1, h = 0.01,µ = 4.84×10−4, k = 0.005,0 ≤ x ≤ 2.

T I1 I2 I3
0.0
0.2
0.4
1.2
1.4
1.6

0.599544
0.599504
0.599508
0.599214
0.599041
0.595433

0.783704
0.783628
0.783444
0.783616
0.783685
0.783695

1.39045
1.37638
1.31861
1.33984
1.37265
1.35966

Fig. 3: interaction three solitary waves with c1 = 0.9,c2 = 0.6,c3 = 0.3,D1 = −6,D2 = −10,D3 = −12,ε = 1,h =
0.01,µ = 4.84×10−4,k = 0.005,0 ≤ x ≤ 2. at times t = 0, 1.5 respectively.

6 Conclusions

In this paper, we applied the modified exponential cubic B-spline method to develop a numerical method for solving KDV
equation and shown that the scheme is unconditionally stable. We tested our schemes through a single solitary wave in
which the analytic solution is known, then extend it to study the interaction of solitons where no analytic solution is known
during the interaction and its accuracy was shown by calculating error norms L2 and L∞.
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