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Abstract: In this study, we are concerned with an inverse nodal problemfor second order differential pencil on a finite interval with
complex spectral parameter dependent boundary conditionsby using nodal points. We give some reconstruction formulasfor potential
functionsp andq as a limit.
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1 Introduction

Theory of inverse problems constitutes a vast field of mathematics. There are some approaches related to this subject;
one of them is to study inverse eigenvalue problem (see [1], [2], [3], [4], [5], [6], [7]) and the other one is to study inverse
nodal problem. The inverse nodal problem was introduced as anew type of spectral data which is so called nodal
points-zeros of eigenfunctions by McLaughlin in 1988 [8]. She proved that the knowledge of a dense subset of nodal
points of the eigenfunction can alone determine the potential function of Sturm-Liouville equation up to a constant.
Independently, Shen studied the relations between the nodal points and the density function of string equation in 1988
[9]. Later, many authors have studied inverse nodal problem for different operators (see [10], [11], [12], [13], [14], [15],
[16], [17], [18], [19], [20]).

In this study, we consider boundary value problemL = L(p,q,h0,h1,H0,H1) of the form

lλ y(x,λ ) = y′′(x)+
[

λ 2−2λ p(x)−q(x)
]

y(x) = 0, 0< x< π , (1)

with the boundary conditions
y′(0)+ (iλh1+h0)y(0) = 0,

y′(π)+ (iλH1+H0)y(π) = 0, (2)

where i2 = −1, λ is a spectral parameter;p ∈ W2
1 [0,π ],q ∈ L1[0,π ] are complex-valued functions;

h0,h1,H0,H1 ∈ C,h1 6=±1,H1 6=±1 [21]. Equation (1) is also known as diffusion equation in literature.

Let us emphasize some historical and physical improvement of differential pencils. Jaulent and Jean [22] stated the
actual background of diffusion operators and discussed theinverse problem for the diffusion equation. Also, Gasymov
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and Guseinov studied the spectral theory of this operator [23]. The problem of describing the interactions between
colliding particles is of fundemental interesting in physics. In many cases, a description can be carried out through a well
known theoretical model. In particular, one is interested in collisions of two spinless particles, and it is supposed that the
s− wave binding energies ands−wave scattering matrix are exactly known from collision experiments.s−wave
Schrödinger equation with a radial static potentialV can be written as

y′′+[E−V(x)]y= 0, x≥ 0, (3)

where the potential function depends on energy in some way and has the following form of energy dependence

V(x,E) =U(x)+2
√

EQ(x). (4)

U(x) andQ(x) are complex-valued functions. (3) reduces to the Klein-Gordons−wave equation with the static potential
Q(x), for a particle of zero mass and the energy

√
E with the additional conditionU(x) = −Q2(x) [22]. The Klein

Gordon equation is considered one of the most important mathematical models in quantum field theory. The equation
appears in relativistic physics and is used to describe dispersive wave phenomena in general. The Klein-Gordon equation
arise in physics in linear and nonlinear forms [24].

Differential equations with a nonlinear dependence on the spectral parameter frequently appear in mathematics as wellas
in applications. Some aspects of this type problems were studied by many authors (see [25], [26], [27], [28], [29], [30],
[31], [32], [33], [34], [35], [36], [37], [38]). Such problems play an important role in mathematics and have many
applications in natural sciences and engineering.

Let λn be then−th eigenvalue,Dπ
0 be a circle with radiusπ , centered 0 andxn

j be the nodal points of then−th
eigenfunction wherej = 1,2, ...,n−1 for the problem (1), (2). The numbersxn

j , j = 1,2, ...,n−1 are the nodal points of
the eigenfunctiony(x,λn), theny(xn

j ,λn) = 0. n− th eigenfunction of the problem (1.1),(1.2) has exactlyn−nodes inside
the circleDπ

0 . We assume thatlnj is the distance of two consecutive nodal pointsxn
j andxn

j+1, lnj = xn
j+1−xn

j . Let us define
the functionjn(x) to be the largest indexj such that 0≤ xn

j ≤ x for n> 0, and the functionjn(x) to be the largest indexj
such that 0≤ x≤ xn

j for n< 0. Thus, j = jn(x) iff x∈ [xn
j ,x

n
j+1) for n> 0 andx∈ [xn

j+1,x
n
j ) for n< 0 onDπ

0 .

In this study, inverse nodal problem for differential pencil L on a finite interval is studied. We have reconstructed the
potential functionsp andq from the nodal points of eigenfunctions as complex, provided p,q are smooth enough.

2 Main results

In this section, we will try to obtain some asymptotic results for nodal parameters and some reconstruction formulas for
potentialsp andq which has been obtained as solution of an inverse nodal problem.

Lemma 1. [21] Let ϕ(x,λ ) andψ(x,λ ) be the solutions to lλ y(x,λ ) = 0 with the initial conditions

(

ϕ(0,λ ),ϕ ′(0,λ )
)

= (0,1) =
(

ψ ′(0,λ ),ψ(0,λ )
)

.

Then, the following representations hold:

ϕ(x,λ ) =
sin[λx−α(x)]

λ
−b1(x)

cos[λx−α(x)]
λ 2 +a1(x)

sin[λx−α(x)]
λ 2

+b2(x)
cos[λx−α(x)]

λ 3 +a2(x)
sin[λx−α(x)]

λ 3 +o

(

eτx

λ 3

)

,
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and

ψ(x,λ ) = cos[λx−α(x)]− c1(x)
cos[λx−α(x)]

λ
+b1(x)

sin[λx−α(x)]
λ

+d2(x)
cos[λx−α(x)]

λ 2 +d1(x)
sin[λx−α(x)]

λ 2 +o

(

eτx

λ 2

)

,

where

α(x) =
x
∫

0
p(t)dt,b1(x) =

1
2

x
∫

0

[

p2(t)+q(t)
]

dt, a1(x) =
1
2
[p(x)+ p(0)] ,

b2(x) =
1
4

[

p′(x)− p′(0)
]

− 1
2

b1(x) [p(x)+ p(0)]− 1
2

x
∫

0

p(t)
[

p2(t)+q(t)
]

dt,

a2(x) =
1
8

[

5p2(x)+5p2(0)+2p(0)p(x)
]

+
q(x)+q(0)

4
− 1

2
b2

1(x),

c1(x) =
1
2
[p(0)− p(x)] ,

d2(x) =
1
8

[

5p2(x)−2p(0)p(x)−3p2(0)+2q(x)−2q(0)
]

− 1
2

b2
1(x),

d1(x) =−1
4

[

p′(x)+ p′(0)
]

+
1
2

b1(x) [p(x)− p(0)]+
1
2

x
∫

0

p(t)
[

p2(t)+q(t)
]

dt,

andτ = |Imλ | .

Lemma 2. [21] Let λn,n ∈ A = {±0,±1,±2, ...}, be the eigenvalues of the pencil L. Then, the sequence{λn : n∈ A}
satisfies the following asymptotic expression as|n| → ∞

λn = n+
1

2π i
log

(h1+1)(H1−1)
(h1−1)(H1+1)

+
k5

n+ 1
2π i log (h1+1)(H1−1)

(h1−1)(H1+1)

+
k6+ k7

[

n+ 1
2π i log (h1+1)(H1−1)

(h1−1)(H1+1)

]2 +O

(

1
n3

)

.

For the convenience, Yang sets

a1 = a1(π),b1 = b1(π), ci = ci(π)(i = 1,2,3),di = di(π)(i = 1,2), ei = ei(π)(i = 1,2)

k1 = a1+a1h1H1+ i (H1b1−h1b1−h0H1−h1H0) ,

k2 = b1−h0+H0−b1h1H1− ic1(h1+H1),

k3 = e2− (h0−H0)b1+a2h1H1−h0H0+ i(H1d1−h1c3−a1h0H1−a1h1H0),

k4 = e1−h0c1−H0c1+b2h1H1+ i(H1d2−h1c2+b1h0H1+b1h1H0),

k5 =− 1
π

ik1(h1−H1)+ k2(h1H1−1)
(h1H1−1)2− (h1−H1)2 ,

k6 =− 1
π

ik3(h1−H1)+ k4(h1H1−1)
(h1H1−1)2− (h1−H1)2 ,

k7 =
[k1(h1−H1)i + k2(h1H1−1)] [k1(h1−H1)− k2(h1H1−1)i]

π [(h1H1−1)2− (h1−H1)2]
,

where

c2(x) =−1
8

[

3p2(x)+2p(0)p(x)−5p2(0)+2q(x)−2q(0)
]

− 1
2

b2
1(x),
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c3(x) =−1
4

[

p′(x)+ p′(0)
]

− 1
2

b1(x) [p(x)− p(0)]+
1
2

x
∫

0

p(t)
[

p2(t)+q(t)
]

dt,

e1(x) =
1
4

[

p′(x)− p′(0)
]

− 1
2

b1(x) [p(x)+ p(0)]+
1
2

x
∫

0

p(t)
[

p2(t)+q(t)
]

dt

and

e2(x) =
1
8

[

3p2(x)−2p(0)p(x)+3p2(0)+2q(x)+2q(0)
]

+
1
2

b2
1(x).

Theorem 1. Suppose that p∈W2
1 [0,π ] and q∈ L1[0,π ], then

xn
j =

π j
n

+
j logA
2n2i

+
1
n

xn
j

∫

0

p(t)dt+
logA
2n2iπ

xn
j

∫

0

p(t)dt+
1

2n2

xn
j

∫

0

[

p2(t)+q(t)
]

dt+O

(

1
n3

)

, (5)

and

lnj =
π
n
+

logA
2n2i

+
1
n

xn
j+1
∫

xn
j

p(t)dt+
logA
2n2iπ

xn
j+1
∫

xn
j

p(t)dt+
1

2n2

xn
j+1
∫

xn
j

[

p2(t)+q(t)
]

dt+O

(

1
n3

)

, (6)

where A=
(h1+1)(H1−1)
(h1−1)(H1+1)

and i2 =−1.

Proof.We will prove only forϕ(x,λ ). The other case forψ(x,λ ) can be proved similarly. Ifϕ(x,λ ) equals to zero, then
as long as cos[λx−α(x)] is not close to 0,

0=
tan[λx−α(x)]

λ
− b1(x)

λ 2 +a1(x)
tan[λx−α(x)]

λ 2 +
b2(x)

λ 3 +a2(x)
tan[λx−α(x)]

λ 3 +O

(

1
λ 3

)

.

Hence

tan[λx−α(x)]

[

1+O

(

1
λ

)]

=
b1(x)

λ
− b2(x)

λ 2 +O

(

1
λ 2

)

.

Now takeλ = λn andx= xn
j . Hence by Taylor’s expansion for the tangent function, we get

λnxn
j −α(x) = π j +

b1(x)
λn

− b2(x)
λ 2

n
+O

(

1
λ 2

n

)

,

or

xn
j =

α(x)
λn

+
π j
λn

+
b1(x)

λ 2
n

− b2(x)
λ 3

n
+O

(

1
λ 3

n

)

.

And, by using estimates ofb1(x), b2(x) andα(x), it yields

xn
j =

π j
λn

+
1
λn

xn
j

∫

0

p(t)dt+
1

2λ 2
n

xn
j

∫

0

[

p2(t)+q(t)
]

dt−
b2(xn

j )

λ 3
n

+O

(

1
λ 3

n

)

. (7)

Furthermore, by using following asymptotic formulas in (7)

1
λn

=
1
n
+

logA
2n2π i

+
k5

n2
(

n+ 1
2π i logA

) +O

(

1
n4

)

,

1
λ 2

n
=

1
n2 −

(logA)2

4n4π2 +
k2

5

n4
(

n+ 1
2π i logA

) +
logA
n3π i

+
2k5

n3
(

n+ 1
2π i logA

) +
(logA)k5

n4π i
(

n+ 1
2π i logA

) +O

(

1
n5

)

,
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and

1
λ 3

n
=

1
n3 −

3(logA)2

4n5π2 +
logA
n4π i

+
2k5

n4
(

n+ 1
2π i logA

) +
logA
2n4π i

+
k5

n4
(

n+ 1
2π i logA

) +O

(

1
n6

)

,

we conclude that

xn
j =

π j
n

+
j logA
2n2i

+
1
n

xn
j

∫

0

p(t)dt+
logA
2n2iπ

xn
j

∫

0

p(t)dt+
1

2n2

xn
j

∫

0

[

p2(t)+q(t)
]

dt+O

(

1
n3

)

.

Equality (5) gives the asymptotic expansion for nodal lengthslnj as

lnj =
π
n
+

logA
2n2i

+
1
n

xn
j+1
∫

xn
j

p(t)dt+
logA
2n2iπ

xn
j+1
∫

xn
j

p(t)dt+
1

2n2

xn
j+1
∫

xn
j

[

p2(t)+q(t)
]

dt+O

(

1
n3

)

.

Lemma 3. [12] Suppose that q∈ L1[0,π ]. Then, for almost every x∈ [0,π ] with j = jn(x)

lim
n→∞

λn

xn
j+1
∫

xn
j

q(t)dt = q(x).

Theorem 2. Let q∈ L1[0,π ], then

q(x) = lim
n→∞

[

2n2(nlnj −π
)

− n
i

logA− p(x)

(

2n+
1
π i

)

− p2(x)

]

where

p(x) = lim
n→∞

n

(

nlnj −
logA
2ni

−π
)

.

and i2 =−1.

Proof.Considering (6) in the form

lnj =
π
n
+

logA
2n2i

+
1
n

xn
j+1
∫

xn
j

p(t)dt+O

(

1
n2

)

,

so that

nπ
(

n
π

lnj −
logA
2nπ i

−1

)

= n

xn
j+1
∫

xn
j

p(t)dt+O

(

1
n

)

.

By Lemma 3, for almost everyx∈ [0,π ], we obtain

p(x) = lim
n→∞

n

(

nlnj −
logA
2ni

−π
)

.
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Now, we will get a reconstruction formula for the potential functionq. Let consider (6) in the form

lnj =
π
n
+

logA
2n2i

+
1
n

xn
j+1
∫

xn
j

p(t)dt+
logA
2n2iπ

xn
j+1
∫

xn
j

p(t)dt+
1

2n2

xn
j+1
∫

xn
j

[

p2(t)+q(t)
]

dt+O

(

1
n3

)

.

After some algebraic computations, we can get

nπ
( n

π
lnj −1

)

=
logA

2i
+n

xn
j+1
∫

xn
j

p(t)dt+
logA
2iπ

xn
j+1
∫

xn
j

p(t)dt+
1
2

xn
j+1
∫

xn
j

[

p2(t)+q(t)
]

dt+O

(

1
n

)

,

and

2n2(nlnj −π
)

=
n
i

logA+2np(x)+
p(x)
π i

+n

xn
j+1
∫

xn
j

[

p2(t)+q(t)
]

dt+O(1),

for sufficiently largen. Hence, by using Lemma 3, it yields

q(x) = lim
n→∞

[

2n2(nlnj −π
)

− n
i

logA− p(x)

(

2n+
1
π i

)

− p2(x)

]

.

This completes the proof.

3 Conclusion

In this study, we give some results about inverse nodal problem for differential pencils with complex spectral parameter
in boundary conditions. Asymptotic formulas of nodal parameters and potential functions for this problem are obtained.
We think that it will offer a different perspective to spectral theory.
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