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1 Introduction

Generalized open sets play a very important role in general topology and they are now the research topics of many

topologists worldwide. Indeed a significant theme in general topology and real analysis concerns the variously modified

forms of continuity, separation axioms compactness, connectedness etc. by utilizing generalized open sets.

Generalized closed (g-closed) sets in a topological space were introduced by Levine [5] in order to extend many of the

important properties of closed sets to a larger family. For instance, it was shown that compactness, normality, and

completeness in a uniform space are inherited byg-closed subsets.

Kasahara [6] defined the concept of an operation onτ and introduced the concept ofα-closed graphs of functions. After

the work of Kasahara, Jankovic [4] defined the concept of operation-closures ofα and investigated function with

strongly closed graph. Ogata [8] defined and studied the concept of operation-open sets (γ-open sets), and used it to

investigate operation-separation axioms and operation-functions.

In recent years, many concepts of operationγ in a topological space(X,τ) have been developed. An, Cuong and Maki

[1] developed an operationγ on the collection of all preopen subsets of(X,τ) to introduce the notion of pre-γ-open sets.

Krishnan, Ganster and Balachandran [7] defined and investigated the concept of the mappingγ on the collection of all

semiopen subsets of(X,τ), and introduced the notion of semiγ-open sets and studied some of their properties. Tahiliani

[9] developed an operationγ on the collection of allβ -open subsets of(X,τ) to describe the notion ofβ -γ-open sets and

Carpintero, Rajesh and Rosas [2] developed an operationγ on the collection of allb-open subsets of(X,τ) to define the

notion ofb-γ-open sets.

The aim of this paper is to introduce the concept of an operation γ on τg and to define the notion ofg-γ-open sets of

(X,τ) by using the operationγ on τg. Also, some notions ofg-γ-open sets with their relationships are studied. In Section
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4, we introduce the concept ofgγ-generalized closed sets and then investigate some of its properties. In Section 5,g-γ-Ti

spaces wherei ∈ {0, 1
2,1,2} by utilizing the operationγ on τg are introduced and investigated. In the last two sections,

some basic properties ofg-(γ,β )-continuous functions withg-β -closed graphs have been obtained.

2 Preliminaries

Throughout this paper, the space(X,τ) (or simply X) always mean topological space on which no separation axioms

are assumed unless explicitly stated. For a subsetA of a spaceX, the closure ofA is denoted byCl(A). A subsetA of a

topological space(X,τ) is said to be generalized closed (brieflyg-closed) [5] if Cl(A) ⊆ U wheneverA ⊆ U andU is

an open set inX. The complement of ag-closed set ofX is g-open. The family of allg-open subsets of a space(X,τ) is

denoted byτg. In general, every closed set of a spaceX is g-closed. A space(X,τ) is T1
2

[5] if every g-closed subset ofX

is closed.

Definition 1.[8] An operationγ on the topologyτ on X is a mappingγ : τ → P(X) such that U⊆ γ(U) for each U∈ τ,

where P(X) is the power set of X andγ(U) denotes the value ofγ at U. A nonempty subset A of a topological space(X,τ)
with an operationγ onτ is said to beγ-open if for each x∈ A, there exists an open set U containing x such thatγ(U)⊆ A.

The complement of aγ-open subset of a space X asγ-closed. The family of allγ-open subsets of a space(X,τ) is denoted

byτγ .

Definition 2. [4] A point x∈ X is in theγ-closure of a set A⊆ X if γ(U)∩A 6= φ for each open set U containing x. The

set of allγ-closure points of A is calledγ-closure of A and is denoted by Clγ(A).

Definition 3. [8] A subset A of(X,τ) with an operationγ on τ is said to beγ-g-closed if Clγ (A) ⊆ U whenever A⊆ U

and U isγ-open in(X,τ).

Definition 4. [8] A topological space(X,τ) with an operationγ onτ is said to be

1.γ-T0 if for any two distinct points x,y in X, there exists an open set U such that x∈ U and y /∈ γ(U) or y ∈ U and

x /∈ γ(U).

2.γ-T1 if for any two distinct points x,y in X, there exist two open sets U and V containing x and y respectively such that

y /∈ γ(U) and x/∈ γ(V).

3.γ-T2 if for any two distinct points x,y in X, there exist two open sets U and V containing x and y respectively such that

γ(U) ∩ γ(V) = φ .

4.γ-T1
2

if everyγ-g-closed set in X isγ-closed.

Theorem 1.[5] If a topological space(X,τ) is T1
2
, thenτg = τ.

3 g-γ-Open Sets

Definition 5. An operationγ on τg is a mappingγ : τg → P(X) such that U⊆ γ(U) for every U∈ τg, where P(X) is the

power set of X andγ(U) is the value ofγ at U.

From this definition, we can easy to findγ(X) = X for any operationγ : τg → P(X).

Definition 6. Let (X,τ) be a topological space andγ : τg → P(X) be an operation onτg. A nonempty set A of X is said to

be g-γ-open if for each x∈ A, there exists a g-open set U such that x∈U andγ(U) ⊆ A. The complement of a g-γ-open

set of X is g-γ-closed. Assume that the empty setφ is also g-γ-open set for any operationγ : τg → P(X). The family of all

g-γ-open subsets of a space(X,τ) is denoted byτgγ .
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Theorem 2.The union of any collection of g-γ-open sets in a topological space X is a g-γ-open.

Proof. Let x ∈
⋃

λ∈Λ{Aλ}, where{Aλ}λ∈Λ be a class ofg-γ-open sets inX. Thenx ∈ Aλ for someλ ∈ Λ . SinceAλ is

g-γ-open set inX, then there exists ag-open setV such thatx∈V ⊆ γ(V)⊆ Aλ ⊆
⋃

λ∈Λ{Aλ}. Therefore,
⋃

λ∈Λ{Aλ} is

g-γ-open set inX.

Example 1.The intersection of any twog-γ-open sets in(X,τ) is generally not ag-γ-open sets. To see this, letX = {a,b,c}

andτ = P(X) = τg. Let γ : τg → P(X) be an operation onτg defined as follows:

For everyA∈ τg

γ(A) =

{

A if A 6= {c}

{b,c} if A= {c}

Thus,τgγ = P(X)\{c}. Then{a,c} ∈ τgγ and{b,c} ∈ τgγ , but{a,c} ∩ {b,c}= {c} /∈ τgγ .

Remark.Since the union of twog-open sets is generally not ag-open set. So the concept ofg-open set andg-γ-open set

are independent (That is,τg 6= τgγ ). It is shown by the following two examples.

Example 2.In 1, the set{c} is g-open, but it is notg-γ-open.

Example 3.LetX = {a,b,c} andτ = {φ ,X,{a}}. Thenτg =P(X)\{b,c}. Define an operationγ : τg →P(X) by γ(A) =A

for all A∈ τg. Here,τgγ = P(X). Then the set{b,c} is g-γ-open, but{b,c} is not ag-open set.

Definition 7. A topological space(X,τ) with an operationγ onτg is said to be g-γ-regular if for each x∈ X and for each

g-open set U containing x, there exists a g-open set W such that x∈W andγ(W)⊆U.

Theorem 3.Let(X,τ) be a topological space andγ : τg → P(X) be an operation onτg. Then the following conditions are

equivalent:

1.τg ⊆ τgγ .

2.(X,τ) is a g-γ-regular space.

3.For every x∈ X and for every g-open set U of(X,τ) containing x, there exists a g-γ-open set W of(X,τ) containing x

such that W⊆U.

Proof.1.⇒ (2) Letx∈ X andU be ag-open set inX such thatx∈U . It follows from assumption thatU is ag-γ-open set.

This implies that there exists ag-open setW such thatx∈W andγ(W)⊆U . Therefore, the space(X,τ) is g-γ-regular.

2.⇒ (3) Let x ∈ X and U be a g-open set in(X,τ) containingx. Then by (2), there is ag-open setW such that

x ∈ W ⊆ γ(W) ⊆ U . Again, by using (2) for the setW, it is shown thatW is g-γ-open. HenceW is a g-γ-open set

containingx such thatW ⊆U .

3.⇒ (1) By applying the part (3) and2, it follows that everyg-open set ofX is g-γ-open inX. That is,τg ⊆ τgγ .

Remark.Since every open set isg-open. Then by6 and1, everyγ-open set isg-γ-open (this means thatτγ ⊆ τgγ ), but the

converse is not true in general. For instance, in3, we haveτγ = τ. Therefore, the set{b} ∈ τgγ , but the set{b} /∈ τγ .

Lemma 1. If the space(X,τ) is T1
2
, then the concept of g-γ-open set andγ-open set coincide (That isτgγ = τγ ).

Proof.Follows from their definitions and1.

Definition 8. Let (X,τ) be any topological space. An operationγ on τg is said to be
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1.g-open if for each x∈ X and for every g-open set U containing x, there exists a g-γ-open set W containing x such that

W ⊆ γ(U).

2.g-regular if for each x∈ X and for every pair of g-open sets U1 and U2 such that both containing x, there exists a g-open

set W containing x such thatγ(W)⊆ γ(U1)∩ γ(U2).

Proposition 1.Let a mappingγ be g-regular operation onτg. If the subsets A and B are g-γ-open in a topological space

(X,τ), then A∩B is also g-γ-open set in(X,τ).

Proof. Supposex∈ A∩B for anyg-γ-open subsetsA andB in (X,τ) both containingx. Then there existg-open setsU1

andU2 such thatx ∈ U1 ⊆ A andx ∈ U2 ⊆ B. Sinceγ is a g-regular operation onτg, then there exists ag-open setW

containingx such thatγ(W)⊆ γ(U1)∩ γ(U2)⊆ A∩B. Therefore,A∩B is g-γ-open set in(X,τ).

Remark.By applying1, it is easy to show thatτgγ forms a topology onX for anyg-regular operationγ on τg.

Definition 9. The point x∈ X is in the g-closureγ of a set A ifγ(U)∩A 6= φ for each g-open set U containing x. The set of

all g-closureγ points of A is called g-closureγ of A and is denoted by gClγ(A).

Definition 10. Let A be any subset of a topological space(X,τ) and γ be an operation onτg. The g-γ-closure of A is

defined as the intersection of all g-γ-closed sets of X containing A and it is denoted by gγCl(A). That is,

gγCl(A) =
⋂

{F : A⊆ F, X\F ∈ τgγ}.

Theorem 4.Let A be any subset of a topological space(X,τ) andγ be an operation onτg. Then x∈ gγCl(A) if and only

if A ∩ U 6= φ for every g-γ-open set U of X containing x.

Proof. Let x ∈ gγCl(A) and letA ∩ U = φ for someg-γ-open setU of X containingx. ThenA ⊆ X\U and X\U is

g-γ-closed set inX. SogγCl(A)⊆ X\U . Thus,x∈ X\U . This is a contradiction. HenceA∩U 6= φ for everyg-γ-open set

U of X containingx.

Conversely, suppose thatx /∈ gγCl(A). So there exists ag-γ-closed setF such thatA ⊆ F andx /∈ F. ThenX\F is a

g-γ-open set such thatx∈ X\F andA∩ (X\F) = φ . Contradiction of hypothesis. Therefore,x∈ gγCl(A).

Lemma 2.The following statements are true for any subsets A and B of a topological space(X,τ) with an operationγ on

τg.

1.gγCl(A) is g-γ-closed set in X and gClγ(A) is g-closed set in X.

2.A⊆ gClγ(A)⊆ gγCl(A).

3.gγCl(φ) = gClγ(φ) = φ and gγCl(X) = gClγ(X) = X.

(a)A is g-γ-closed if and only if gγCl(A) = A and,

(b)A is g-γ-closed if and only if gClγ(A) = A.

4.If A⊆ B, then gγCl(A)⊆ gγCl(B) and gClγ(A)⊆ gClγ(B).

(a)gγCl(A ∩ B)⊆ gγCl(A) ∩ gγCl(B) and,

(b)gClγ(A ∩ B)⊆ gClγ(A) ∩ gClγ(B).

(c)gγCl(A) ∪ gγCl(B)⊆ gγCl(A ∪ B) and,

(d)gClγ(A) ∪ gClγ(B)⊆ gClγ(A∪ B).

5.gγCl(gγCl(A)) = gγCl(A).

Proof.Straightforward.

Theorem 5.For any subsets A, B of a topological space(X,τ). If γ is a g-regular operation onτg, then

1.gγCl(A) ∪ gγCl(B) = gγCl(A ∪ B).
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2.gClγ(A) ∪ gClγ(B) = gClγ(A ∪ B).

Proof.1.It is enough to proof thatgγCl(A ∪ B)⊆ gγCl(A) ∪ gγCl(B) since the other part follows directly from2 (7). Let

x /∈ gγCl(A) ∪ gγCl(B). Then there exist twog-γ-open setsU andV containingx such thatA ∩ U = φ andB ∩ V = φ .

Sinceγ is ag-regular operation onτg, then by1, U ∩ V is g-γ-open inX such that

(U ∩V)∩ (A∪B) = φ .

Therefore, we havex /∈ gγCl(A ∪ B) and hence

gγCl(A∪B)⊆ gγCl(A)∪gγCl(B).

2.Let x /∈ gClγ(A) ∪ gClγ(B). Then there existg-open setsU1 andU2 such thatx ∈ U1, x ∈ U2, A ∩ γ(U1) = φ andA

∩ γ(U2) = φ . Sinceγ is a g-regular operation onτg, then there exists ag-open setW containingx such thatγ(W) ⊆

γ(U1)∩ γ(U2). Thus, we have

(A∪B)∩ γ(W)⊆ (A∪B)∩ (γ(U1)∩ γ(U2)).

This implies that(A ∪ B) ∩ γ(W) = φ since(A ∪ B) ∩ (γ(U1) ∩ γ(U2)) = φ . This means thatx /∈ gClγ(A ∪ B) and

hencegClγ(A∪ B)⊆ gClγ(A) ∪ gClγ(B). Using2 (7), we have the equality.

Theorem 6.Let A be any subset of a topological space(X,τ). If γ is a g-open operation onτg, then gClγ(A) = gγCl(A),

gClγ(gClγ(A)) = gClγ(A) and gClγ(A) is g-γ-closed set in X.

Proof. First we need to show thatgγCl(A) ⊆ gClγ (A) since by2 (2), we havegClγ(A) ⊆ gγCl(A). Now let x /∈ gClγ(A),

then there exists ag-open setU containingx such thatA ∩ γ(U) = φ . Sinceγ is ag-open onτg, then there exists ag-γ-

open setW containingx such thatW ⊆ γ(U). SoA∩W = φ and hence by4, x /∈ gγCl(A). Therefore,gγCl(A)⊆ gClγ(A).

HencegClγ(A) = gγCl(A). Moreover, using the above result and by2 (8), we getgClγ(gClγ (A)) = gClγ(A) and by2 (4b),

we obtaingClγ(A) is g-γ-closed set inX.

Theorem 7.Let A be any subset of a topological space(X,τ) andγ be an operation onτg. Then the following statements

are equivalent.

1. A is g-γ-open set.

2. gClγ(X\A) = X\A.

3. gγCl(X\A) = X\A.

4. X\A is g-γ-closed set.

Proof.Clear.

Definition 11. A subset N of a topological space(X,τ) is called a g-γ-neighbourhood of a point x∈ X, if there exists a

g-γ-open set U in X such that x∈U ⊆ N.

Lemma 3.Let U ⊆ (X,τ) be a g-γ-open if and only if it is a g-γ-neighbourhood of each of its points.

Proof. Let U be anyg-γ-open set in(X,τ). Then by11, it is clear thatU is a g-γ-neighbourhood of each of its points,

since for everyx∈U , x∈U ⊆U andU ∈ τgγ .

Conversely, supposeU is ag-γ-neighbourhood of each of its points. Then for eachx∈ U , there exists ag-γ-open setVx

containingx such thatVx ⊆U . ThenU =
⋃

x∈U Vx. Since eachVx is g-γ-open. It follows from2 thatU is g-γ-open set in

X.
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Definition 12. Let A be any subset of a topological space(X,τ) and γ be an operation onτg. The g-γ-interior of A is

defined as the union of all g-γ-open sets of X contained in A and it is denoted by gγ Int(A). That is,

gγ Int(A) =
⋃

{U : U ∈ τgγ and U ⊆ A}.

Some important properties ofg-γ-interior operator will be given in4.

Lemma 4.Let A and B be subset of a topological space(X,τ) andγ be an operation onτg. Then the following conditions

hold.

1. gγ Int(A) is g-γ-open set in X and gγ Int(A)⊆ A.

2. gγ Int(φ) = φ and gγ Int(X) = X.

3. A is g-γ-open if and only if gγ Int(A) = A.

4. If A⊆ B, then gγ Int(A)⊆ gγ Int(B).

5. gγ Int(A∩ B)⊆ gγ Int(A) ∩ gγ Int(B).

6. gγ Int(A) ∪ gγ Int(B)⊆ gγ Int(A∪ B).

7. gγ Int(gγ Int(A)) = gγ Int(A).

8. gγ Int(X\A) = X\gγCl(A).

Proof.Straightforward.

Theorem 8.If γ is a g-regular operation onτg, then for any subsets A, B of a space X, we have

gγ Int(A)∩gγ Int(B) = gγ Int(A∩B).

Proof.Follows directly from5 (1) and using4 (8).

Lemma 5.Let(X,τ) be a topological space andγ be a g-regular operation onτg. Then gγCl(A)∩U ⊆ gγCl(A∩U) holds

for every g-γ-open set U and every subset A of X.

Proof.Suppose thatx∈ gγCl(A)∩U for everyg-γ-open setU, thenx∈ gγCl(A) andx∈U . LetV be anyg-γ-open set of

X containingx. Sinceγ is g-regular onτg. So by1, U ∩ V is g-γ-open set containingx. Sincex∈ gγCl(A), then by4, we

haveA ∩ (U ∩ V) 6= φ . This means that(A ∩ U)∩V 6= φ . Therefore, again by4, we obtain thatx∈ gγCl(A ∩ U). Thus,

gγCl(A) ∩ U ⊆ gγCl(A∩U).

The proof of the following lemma is similar to5 and using4 (8).

Lemma 6. Let (X,τ) be a topological space andγ be a g-regular operation onτg. Then gγ Int(A∪F) ⊆ gγ Int(A)∪F

holds for every g-γ-closed set F and every subset A of X.

4 gγg-closed sets

Definition 13. A subset A of a topological space(X,τ) with an operationγ on τg is said to be gγ-generalized closed

(briefly gγg-closed) if gClγ(A)⊆U whenever A⊆U and U is a g-γ-open set in X.

Lemma 7. Let (X,τ) be a topological space andγ be an operation onτg. A set A in(X,τ) is gγg-closed if and only if

A∩gγCl({x}) 6= φ for every x∈ gClγ(A).

Proof. SupposeA is gγg-closed set inX and suppose (if possible) that there exists an elementx ∈ gClγ(A) such that

A∩gγCl({x}) = φ . This follows thatA⊆ X\gγCl({x}). SincegγCl({x}) is g-γ-closed impliesX\gγCl({x}) is g-γ-open
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and A is gγg-closed set inX. Then, we have thatgClγ(A) ⊆ X\gγCl({x}). This means thatx /∈ gClγ(A). This is a

contradiction. HenceA ∩ gγCl({x}) 6= φ .

Conversely, letU ∈ τgγ such thatA ⊆ U . To show thatgClγ(A) ⊆ U . Let x ∈ gClγ(A). Then by hypothesis,

A∩gγCl({x}) 6= φ . So there exists an elementy∈ A∩gγCl({x}). Thusy∈ A⊆U andy∈ gγCl({x}). By 4, {x}∩U 6= φ .

Hencex∈U and sogClγ(A)⊆U . Therefore,A is gγg-closed set in(X,τ).

Theorem 9.Let A be a subset of topological space(X,τ) andγ be an operation onτg. If A is gγg-closed, then gClγ(A)\A

does not contain any non-empty g-γ-closed set.

Proof.Let F be a non-emptyg-γ-closed set inX such thatF ⊆ gClγ(A)\A. ThenF ⊆ X\A impliesA⊆ X\F . SinceX\F is

g-γ-open set andA is gγg-closed set, thengClγ(A)⊆ X\F. That isF ⊆ X\gClγ(A). HenceF ⊆X\gClγ (A)∩gClγ (A)\A⊆

X\gClγ(A)∩gClγ(A) = φ . This shows thatF = φ . This is contradiction. Therefore,F 6⊆ gClγ (A)\A.

Theorem 10.If γ : τg → P(X) is a g-open operation, then the converse of the9 is true.

Proof.LetU be ag-γ-open set in(X,τ) such thatA⊆U . Sinceγ : τg →P(X) is ag-open operation, then by6, gClγ(A) is g-

γ-closed set inX. Thus, using2, we havegClγ (A)∩X\U is ag-γ-closed set in(X,τ). SinceX\U ⊆X\A, gClγ(A)∩X\U ⊆

gClγ(A)\A. Using the assumption of the converse of the9, gClγ(A)⊆U . Therefore,A is gγg-closed set in(X,τ).

Corollary 1. Let A be a gγg-closed subset of topological space(X,τ) and letγ be an operation onτg. Then A is g-γ-closed

if and only if gClγ(A)\A is g-γ-closed set.

Proof.Let A be ag-γ-closed set in(X,τ). Then by2 (4b),gClγ(A) = A and hencegClγ(A)\A= φ which isg-γ-closed set.

Conversely, supposegClγ(A)\A is g-γ-closed andA is gγg-closed. Then by9, gClγ(A)\A does not contain any

non-empty g-γ-closed set and sincegClγ(A)\A is g-γ-closed subset of itself, thengClγ(A)\A = φ implies

gClγ(A)∩X\A= φ . HencegClγ(A) = A. This follows from2 (4b) thatA is g-γ-closed set in(X,τ).

Theorem 11.Let(X,τ) be a topological space andγ be an operation onτg. If a subset A of X is gγg-closed and g-γ-open,

then A is g-γ-closed.

Proof.SinceA is gγg-closed andg-γ-open set inX, thengClγ(A)⊆ A and hence by2 (4b),A is g-γ-closed.

Theorem 12.In any topological space(X,τ) with an operationγ onτg. For an element x∈X, the set X\{x} is gγg-closed

or g-γ-open.

Proof. Suppose thatX\{x} is not g-γ-open. ThenX is the only g-γ-open set containingX\{x}. This implies that

gClγ(X\{x})⊆ X. ThusX\{x} is agγg-closed set inX.

Corollary 2. In any topological space(X,τ) with an operationγ on τg. For an element x∈ X, either the set{x} is

g-γ-closed or the set X\{x} is gγg-closed.

Proof.Suppose{x} is notg-γ-closed, thenX\{x} is notg-γ-open. Hence by12, X\{x} is gγg-closed set inX.

Definition 14. Let A be any subset of a topological space(X,τ) andγ be an operation onτg. Then theτgγ -kernel of A is

denoted byτgγ -ker(A) and is defined as follows.

τgγ−ker(A) = ∩{U : A⊆UandU∈ τgγ}.

In other words,τgγ -ker(A) is the intersection of all g-γ-open sets of(X,τ) containing A.
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Theorem 13.Let A⊆ (X,τ) andγ be an operation onτg. Then A is gγg-closed if and only if gClγ (A)⊆ τgγ -ker(A).

Proof. Suppose thatA is gγg-closed. ThengClγ(A) ⊆ U , wheneverA⊆U andU is g-γ-open. Letx∈ gClγ(A). Then by

7, A∩ gγCl({x}) 6= φ . So there exists a pointz in X such thatz ∈ A∩ gγCl({x}) implies that z ∈ A ⊆ U and

z∈ gγCl({x}). By 4, {x}∩U 6= φ . Hence we show thatx∈ τgγ -ker(A). Therefore,gClγ(A)⊆ τgγ -ker(A).

Conversely, letgClγ(A) ⊆ τgγ -ker(A). Let U be any g-γ-open set containingA. Let x be a point inX such that

x ∈ gClγ(A). Then x ∈ τgγ -ker(A). Namely, we havex ∈ U , because A ⊆ U and U ∈ τgγ}. That is

gClγ(A)⊆ τgγ -ker(A)⊆U . Therefore,A is gγg-closed set inX.

5 g-γ-Ti Spaces fori ∈ {0, 1
2,1,2}

In this section, we introduce some types ofg-γ- separation axioms calledg-γ-Ti for i ∈ {0, 1
2,1,2}. Some basic properties

of these spaces are investigated.

Definition 15. A topological space(X,τ) with an operationγ on τg is said to be g-γ-T0 if for any two distinct points x,y

in X, there exists a g-open set U such that x∈U and y/∈ γ(U) or y∈U and x/∈ γ(U).

Definition 16. A topological space(X,τ) with an operationγ on τg is said to be g-γ-T1 if for any two distinct points x,y

in X, there exist two g-open sets U and V containing x and y respectively such that y/∈ γ(U) and x/∈ γ(V).

Definition 17. A topological space(X,τ) with an operationγ on τg is said to be g-γ-T2 if for any two distinct points x,y

in X, there exist two g-open sets U and V containing x and y respectively such thatγ(U) ∩ γ(V) = φ .

Definition 18. A topological space(X,τ) with an operationγ on τg is said to be g-γ-T1
2

if every gγg-closed set in X is

g-γ-closed set.

Theorem 14.For any topological space(X,τ) with an operationγ on τg. Then(X,τ) is g-γ-T1
2

if and only if for each

element x∈ X, the set{x} is g-γ-closed or g-γ-open.

Proof. Let X be ag-γ-T1
2

space and let{x} is not g-γ-closed set in(X,τ). By 2, X\{x} is gγg-closed. Since(X,τ) is

g-γ-T1
2
, thenX\{x} is g-γ-closed set which means that{x} is g-γ-open set inX.

Conversely, letF be anygγg-closed set in the space(X,τ). We have to show thatF is g-γ-closed (that isgClγ(F) = F

(by 2 (4b))). It is sufficient to show thatgClγ(F) ⊆ F . Let x∈ gClγ(F). By hypothesis{x} is g-γ-closed org-γ-open for

eachx∈ X. So we have two cases.

Case 1.If {x} is g-γ-closed set. Supposex /∈ F , then x ∈ gClγ(F)\F contains a non-emptyg-γ-closed set{x}. A

contradiction sinceF is gγg-closed set and according to the9. Hencex ∈ F . This follows thatgClγ (F) ⊆ F and hence

gClγ(F) = F. This means from by2 (4b) thatF is g-γ-closed set in(X,τ). Thus(X,τ) is g-γ-T1
2

space.

Case 1.If {x} is g-γ-open set. Then by4, F ∩{x} 6= φ which implies thatx∈ F . SogClγ (F) ⊆ F . Thus by2 (4b),F is

g-γ-closed. Therefore,(X,τ) is g-γ-T1
2

space.

Theorem 15.Let γ be a g-open operation onτg. Then(X,τ) is a g-γ-T0 space if and only if gClγ({x}) 6= gClγ({y}), for

every pair x, y of X with x6= y.
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Proof. Necessary Part.Let x, y be any two distinct points of ag-γ-T0 space(X,τ). Then by definition, we assume that

there exists ag-γ-open setU such thatx ∈ U andy /∈ γ(U). Sinceγ is a g-open operation onτg, then there exists a

g-γ-open setW such thatx ∈ W andW ⊆ γ(U). Hencey ∈ X\γ(U) ⊆ X\W. SinceX\W is a g-γ-closed set in(X,τ).
Then we obtain thatgClγ ({y})⊆ X\W and thereforegClγ ({x}) 6= gClγ ({y}).

Sufficient Part. Suppose for anyx,y∈ X with x 6= y, we havegClγ({x}) 6= gClγ({y}). Now, we assume that there exists

z ∈ X such thatz ∈ gClγ ({x}), but z /∈ gClγ({y}). If x ∈ gClγ({y}), then {x} ⊆ gClγ ({y}), which implies that

gClγ({x}) ⊆ gClγ({y}) (by 2 (5)). This implies thatz∈ gClγ({y}). This contradiction shows thatx /∈ gClγ ({y}). This

means that by9, there exists ag-open setU such thatx∈U andγ(U)∩{y}= φ . Thus, we have thatx∈U andy /∈ γ(U).

It gives that the space(X,τ) is g-γ-T0.

Theorem 16.The space(X,τ) is g-γ-T1 if and only if for every point x∈ X, {x} is a g-γ-closed set.

Proof.Necessary Part.Let x be a point of ag-γ-T1 space(X,τ). Then for any pointy∈ X such thatx 6= y, there exists a

g-open setVy such thaty∈Vy but x /∈ γ(Vy). Thus,y∈ γ(Vy)⊆ X\{x}. This implies thatX\{x}= ∪{γ(Vy) : y∈ X\{x}}.

It is shown thatX\{x} is g-γ-open set in(X,τ). Hence{x} is g-γ-closed set in(X,τ).

Sufficient Part. Let x,y ∈ X such thatx 6= y. By hypothesis, we getX\{y} and X\{x} are g-γ-open sets such that

x ∈ X\{y} and y ∈ X\{x}. Therefore, there existg-open setsU andV such thatx ∈ U , y ∈ V, γ(U) ⊆ X\{y} and

γ(V)⊆ X\{x}. So,y /∈ γ(U) andx /∈ γ(V). This implies that(X,τ) is g-γ-T1.

Theorem 17.For any topological space(X,τ) and any operationγ on τg, the following properties hold.

1. Every g-γ-T2 space is g-γ-T1.

2. Every g-γ-T1 space is g-γ-T1
2
.

3. Every g-γ-T1
2

space is g-γ-T0.

Proof.The proofs are obvious by their definitions.

Remark.By 17, 3 and [8], we obtain the following diagram of implications. Moreover, the following?? below show that

the reverse implications are not true in general.

g− γ −T2 → g− γ −T1 → g− γ −T1
2
→ g− γ −T0

γ −T2 → γ −T1 → γ −T1
2
→ γ −T0

Example 4.Let X = {a,b,c} andτ = {φ ,X}. Thenτg = P(X). Define an operationγ : τg → P(X) by γ(A) = A for all

A∈ τg. Here,τgγ = P(X) andτ = τγ . Then the space(X,τ) is g-γ-Ti (i ∈ {0, 1
2,1,2}), but notγ-Ti (i ∈ {0, 1

2,1,2}).

Example 5. Let X = {a,b,c} andτ = {φ ,X,{a},{a,b}}. Thenτg = {φ ,X,{a},{b},{a,b}}. Let γ : τg → P(X) be an

operation onτg defined as follows. For every setA∈ τg

γ(A) =

{

A if b∈ A

Cl(A) if b /∈ A

Thus,τgγ = {φ ,X,{b},{a,b}}. Then the space(X,τ) is g-γ-T0, but it is notg-γ-T1
2
. Since{b,c} is gγg-closed set in

(X,τ), but{b,c} is notg-γ-closed set in(X,τ).

Example 6.Let X = {a,b,c} andτ = {φ ,X,{a},{b},{a,b},{a,c}}. Thenτg = τ. Let γ : τg → P(X) be an operation on

τg defined as follows:
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For every setA∈ τg

γ(A) =

{

A, if a∈ A

Cl(A), if a /∈ A

Thus,τgγ = τ. Therefore, the space(X,τ) is g-γ-T1
2
, but it is notg-γ-T1.

Example 7.SupposeX = {a,b,c} andτ be the discrete topology onX. Define an operationγ on τg as follows. For every

A∈ τg

γ(A) =

{

A, if A= {a,b} or {a,c} or {b,c}

X, otherwise

Then(X,τ) is g-γ-T1 space, but(X,τ) is notg-γ-T2.

Lemma 8.Let (X,τ) be a T1
2

space. Then(X,τ) is g-γ-Ti if and only if it isγ-Ti , where i∈ {0,1,2}.

6 g-(γ,β )-Continuous Functions

Throughout Section 6 and Section 7, let(X,τ) and(Y,σ) be two topological spaces and letγ : τg → P(X) andβ : σg →

P(Y) be operations onτg and σg respectively. In this section, we introduce a new class of functions calledg-(γ,β )-
continuous. Some characterizations and properties of thisfunction are investigated.

Definition 19. A function f: (X,τ) → (Y,σ) is said to be g-(γ,β )-continuous if for each x∈ X and each g-open set V

containing f(x), there exists a g-open set U containing x such that f(γ(U))⊆ β (V).

Theorem 18.Let f : (X,τ)→ (Y,σ) be a g-(γ,β )-continuous function, then,

1. f(gClγ (A))⊆ gClβ ( f (A)), for every A⊆ (X,τ).
2. f−1(F) is g-γ-closed set in(X,τ), for every g-β -closed set F of(Y,σ).

Proof.1. Let y ∈ f (gClγ (A)) andV be anyg-open set containingy. Then by hypothesis, there existsx ∈ X andg-open

setU containingx such thatf (x) = y and f (γ(U)) ⊆ β (V). Sincex ∈ gClγ(A), we haveγ(U)∩A 6= φ . Henceφ 6=

f (γ(U)∩A)⊆ f (γ(U))∩ f (A) ⊆ β (V)∩ f (A). This implies thaty∈ gClβ ( f (A)). Therefore,f (gClγ (A))⊆ gClβ ( f (A)).

2. Let F be any g-β -closed set of(Y,σ). By using (1), we havef (gClγ ( f−1(F))) ⊆ gClβ (F) = F . Therefore,

gClγ( f−1(F)) = f−1(F). Hencef−1(F) is g-γ-closed set in(X,τ).

Theorem 19.In 18, the properties of g-(γ,β )-continuity of f , (1) and (2) are equivalent to each other if either the space

(Y,σ) is g-β -regular or the operationβ is g-open.

Proof. It follows from the proof of18 that we know the following implications: ”g-(γ,β )-continuity of f ” ⇒ (1) ⇒ (2).

Thus, when the space(Y,σ) is g-β -regular, we prove the implication: (2)⇒ g-(γ,β )-continuity of f . Let x ∈ X and let

V ∈ σg such thatf (x) ∈ V. Since(Y,σ) is a g-β -regular space, then by3, V ∈ σgβ . By using (2) of18, f−1(V) ∈ τgγ

such thatx ∈ f−1(V). So there exists ag-open setU such thatx ∈ U and γ(U) ⊆ f−1(V). This implies that

f (γ(U))⊆V ⊆ β (V). Therefore,f is g-(γ,β )-continuous.

Now, whenβ is ag-open operation, we show the implication: (2)⇒ g-(γ,β )-continuity of f . Let x∈ X and letV ∈ σg

such thatf (x) ∈ V. Sinceβ is a g-open operation, then there existsW ∈ σgβ such thatf (x) ∈ W andW ⊆ β (V). By

using (2) of 18, f−1(W) ∈ τgγ such thatx ∈ f−1(W). So there exists ag-open setU such thatx ∈ U and

γ(U)⊆ f−1(W)⊆ f−1(β (V)). This implies thatf (γ(U))⊆ β (V). Hencef is g-(γ,β )-continuous.

Definition 20. A function f: (X,τ)→ (Y,σ) is said to be
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1. g-(γ,β )-closed if the image of each g-γ-closed set of X is g-β -closed in Y .

2. g-β -closed if the image of each g-closed set of X is g-β -closed in Y.

Theorem 20.Suppose that a function f: (X,τ)→ (Y,σ) is both g-(γ,β )-continuous and g-β -closed,then,

1. For every gγg-closed set A of(X,τ), the image f(A) is gβg-closed in(Y,σ).

2. If (X,τ) is T1
2
, then the inverse set f−1(B) is gγg-closed in(X,τ), for every gβg-closed set B of(Y,σ).

Proof.1. LetG be anyg-β -open set in(Y,σ) such thatf (A) ⊆ G. Since f is g-(γ,β )-continuous function, then by using

18(2), f−1(G) is g-γ-open set in(X,τ). SinceA is gγg-closed andA⊆ f−1(G), we havegClγ (A)⊆ f−1(G), and hence

f (gClγ (A))⊆ G. Thus, by2 (1), gClγ(A) is g-closed set and sincef is g-β -closed, thenf (gClγ (A)) is g-β -closed set in

Y. Therefore,gClβ ( f (A)) ⊆ gClβ ( f (gClγ (A))) = f (gClγ (A))⊆ G. This implies thatf (A) is gβg-closed in(Y,σ).

2. Let H be anyg-γ-open set of aT1
2

space(X,τ) such thatf−1(B) ⊆ H. Let C = gClγ( f−1(B)) ∩ (X\H), then by7,

C = gClγ ( f−1(B)) ∩ gClγ(X\H) and hence by2 (1) and1, C is g-closed set in(X,τ). Since f is g-β -closed function.

Then f (C) is g-β -closed in(Y,σ). Since f is g-(γ,β )-continuous function, then by using18 (1), we havef (C) =

f (gClγ ( f−1(B))) ∩ f (X\H)⊆ gClβ (B) ∩ f (X\H)⊆ gClβ (B) ∩ (Y\B) = gClβ (B)\B. This implies from9 that f (C) =

φ , and henceC= φ . SogClγ( f−1(B))⊆ H. Therefore,f−1(B) is gγg-closed in(X,τ).

Theorem 21.Let f : (X,τ) → (Y,σ) be an injective, g-(γ,β )-continuous and g-β -closed function. If(Y,σ) is g-β -T1
2
,

then(X,τ) is g-γ-T1
2
.

Proof. Let G be anygγg-closed set of(X,τ). Since f is g-(γ,β )-continuous andg-β -closed function. Then by20 (1),

f (G) is gβg-closed in(Y,σ). Since(Y,σ) is g-β -T1
2
, then f (G) is g-β -closed inY. Again, sincef is g-(γ,β )-continuous,

then by18(2), f−1( f (G)) is g-γ-closed inX. HenceG is g-γ-closed inX since f is injective. Therefore,(X,τ) is ag-γ-T1
2

space.

Theorem 22.Let a function f: (X,τ)→ (Y,σ) be surjective, g-(γ,β )-continuous and g-β -closed. If(X,τ) is g-γ-T1
2
, then

(Y,σ) is g-β -T1
2
.

Proof. Let H be agβg-closed set of(Y,σ). Since f is g-(γ,β )-continuous andg-β -closed function. Then by20 (2),

f−1(H) is gγg-closed in(X,τ). Since(X,τ) is g-γ-T1
2
, then we have,f−1(H) is g-γ-closed set inX. Again, sincef is

g-β -closed function, thenf ( f−1(H)) is g-β -closed inY. Therefore,H is g-β -closed inY since f is surjective. Hence

(Y,σ) is g-β -T1
2

space.

Theorem 23.If a function f: (X,τ) → (Y,σ) is injective g-(γ,β )-continuous and the space(Y,σ) is g-β -T2, then the

space(X,τ) is g-γ-T2.

Proof. Let x1 andx2 be any distinct points of a space(X,τ). Since f is an injective function and(Y,σ) is g-β -T2. Then

there exist twog-open setsU1 andU2 in Y such thatf (x1) ∈U1, f (x2) ∈U2 andβ (U1) ∩ β (U2) = φ . Sincef is g-(γ,β )-
continuous, there existg-open setsV1 andV2 in X such thatx1 ∈ V1, x2 ∈ V2, f (γ(V1)) ⊆ β (U1) and f (γ(V2)) ⊆ β (U2).

Thereforeβ (U1) ∩ β (U2) = φ . Hence(X,τ) is g-γ-T2.

Theorem 24.If a function f: (X,τ) → (Y,σ) is injective g-(γ,β )-continuous and the space(Y,σ) is g-β -Ti, then the

space(X,τ) is g-γ-Ti for i ∈ {0,1}.

Proof.The proof is similar to23.

Definition 21. A function f: (X,τ) → (Y,σ) is said to be g-(γ,β )-homeomorphism if f is bijective, g-(γ,β )-continuous

and f−1 is g-(β ,γ)-continuous.

Theorem 25.Assume that a function f: (X,τ) → (Y,σ) is g-(γ,β )-homeomorphism. If(X,τ) is g-γ-T1
2
, then(Y,σ) is

g-β -T1
2
.

Proof. Let {y} be any singleton set of(Y,σ). Then there exists an elementx of X such thaty = f (x). So by hypothesis

and14, we have{x} is g-γ-closed org-γ-open set inX. By using18, {y} is g-β -closed org-β -open set. Hence the space

by 14, (Y,σ) is g-β -T1
2
.
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7 Functions with g−β -closed graphs

For a functionf : (X,τ) → (Y,σ), the subset{(x, f (x)) : x ∈ X} of the product space(X ×Y,τ ×σ) is called the graph

of f and is denoted byG( f ) [3]. In this section, we further investigate general operatorapproaches of closed graphs of

functions. Letλ : (τ ×σ)g → P(X×Y) be an operation on(τ ×σ)g.

Definition 22. The graph G( f ) of f : (X,τ) → (Y,σ) is called g-β -closed if for each(x,y) ∈ (X ×Y)\G( f ), there exist

g-open sets U⊆ X and V⊆Y containing x and y, respectively, such that(U ×β (V)) ∩ G( f ) = φ .

The proof of the following lemma follows directly from the above definition.

Lemma 9.A function f: (X,τ)→ (Y,σ) has g-β -closed graph if and only if for each(x,y) ∈ (X×Y)\G( f ), there exist

U ∈ τg containing x and V∈ σg containing y such that f(U) ∩ β (V) = φ .

Definition 23.An operationλ : (τ ×σ)g → P(X×Y) is said to be g-associated withγ andβ if λ (U ×V) = γ(U)×β (V)

holds for each U∈ τg and V∈ σg.

Definition 24. The operationλ : (τ ×σ)g → P(X×Y) is said to be g-regular with respect toγ andβ if for each(x,y) ∈

X ×Y and each g-open set W containing(x,y), there exist g-open sets U in X and V in Y such that x∈ U, y∈ V and

γ(U)×β (V)⊆ λ (W).

Theorem 26.Let λ : (τ × τ)g → P(X×X) be a g-associated operation withγ andγ. If f : (X,τ)→ (Y,σ) is a g-(γ,β )-
continuous function and(Y,σ) is a g-β -T2 space, then the set A= {(x,y) ∈ X×X : f (x) = f (y)} is a g-λ -closed set of

(X×X,τ × τ).

Proof. We want to prove thatgClλ (A) ⊆ A. Let (x,y) ∈ (X ×X)\A. Since(Y,σ) is g-β -T2. Then there exist twog-open

setsU andV in (Y,σ) such thatf (x) ∈ U , f (y) ∈ V andβ (U)∩ β (V) = φ . Moreover, forU andV there existg-open

setsR andS in (X,τ) such thatx ∈ R, y ∈ S and f (γ(R)) ⊆ β (U) and f (γ(S)) ⊆ β (V) since f is g-(γ,β )-continuous.

Therefore we have(x,y) ∈ γ(R)× γ(S) = λ (R×S)∩A= φ becauseR×S∈ (τ × τ)g. This shows that(x,y) /∈ gClλ (A).

Corollary 3. Supposeλ : (τ × τ)g → P(X×X) is g-associated operation withγ andγ, and it is g-regular withγ andγ. A

space(X,τ) is g-γ-T2 if and only if the diagonal set△= {(x,x) : x∈ X} is g-λ -closed of(X×X,τ × τ).

Theorem 27.Let λ : (τ ×σ)g → P(X ×Y) be a g-associated operation withγ andβ . If f : (X,τ)→ (Y,σ) is g-(γ,β )-
continuous and(Y,σ) is g-β -T2, then the graph of f , G( f ) = {(x, f (x)) ∈ X×Y} is a g-λ -closed set of(X×Y,τ ×σ).

Proof.The proof is similar to26.

Definition 25.Let(X,τ) be a topological space andγ be an operation onτg. A subset S of X is said to be g-γ-compact if for

every g-open cover{Ui, i ∈N} of S, there exists a finite subfamily{U1,U2, ...,Un} such that S⊆ γ(U1)∪γ(U2)∪ ...∪γ(Un).

Theorem 28. Suppose thatγ is g-regular andλ : (τ × σ)g → P(X ×Y) is g-regular with respect toγ and β . Let

f : (X,τ) → (Y,σ) be a function whose graph G( f ) is g-λ -closed in(X ×Y,τ ×σ). If a subset S is g-β -compact in

(Y,σ), then f−1(S) is g-γ-closed in(X,τ).

Proof. Suppose thatf−1(S) is not g-γ-closed then there exist a pointx such thatx ∈ gClγ( f−1(S)) and x 6∈ f−1(S).

Since(x,s) 6∈ G( f ) and eachs∈ S and gClλ (G( f )) ⊆ G( f ), there exists ag-open setW of (X ×Y,τ × σ) such that

(x,s) ∈ W andβ (W)∩G( f ) = φ . By g-regularity ofλ , for eachs∈ S we can take twog-open setsU(s) andV(s) in

(Y,σ) such thatx ∈ U(s), s∈ V(s) andγ(U(s))× β (V(s)) ⊆ λ (W). Then we havef (γ(U(s)))∩ β (V(s)) = φ . Since

{V(s) : s ∈ S} is g-open cover ofS, then byg-γ-compactness there exists a finite numbers1,s2, ...,sn ∈ S such that

S⊆ β (V(s1))∪β (V(s2))∪ ...∪β (V(sn)). By theg-regularity ofγ, there exist ag-open setU such thatx ∈ U , γ(U) ⊆

γ(U(s1))∩ γ(U(s2))∩ ...∩ γ(U(sn)). Therefore, we haveγ(U)∩ f−1(S) ⊆ U(si)∩ f−1(β (V(si))) = φ . This shows that

x 6∈ gClγ( f−1(S)). This is a contradiction. Therefore,f−1(S) is g-γ-closed.
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Theorem 29.Suppose that the following condition hold.

1. γ : τg → P(X) is g-open,

2. β : σg → P(Y) is g-regular, and

3. λ : (τ ×σ)g → P(X×Y) is associated withγ andβ , andλ is g-regular with respect toγ andβ .

Let f : (X,τ)→ (Y,σ) be a function whose graph G( f ) is g-λ -closed in(X ×Y,τ ×σ). If every cover of A by g-γ-open

sets of(X,τ) has finite sub cover, then f(A) is g-β -closed in(Y,σ).

Proof.Similar to28.
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