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Abstract: In present article, we establish the exact solutions of lir@ar (2+1)- Dimensional Calogero Degasperis(CD) equaly
using Lie group of transformation method. The propertiethefsolutions of CD equation such as travelling waves, sisglitons,
singular periodic and singular kink, depending upon apgat@ arbitrary functiong(t) andA (t) have been discussed.
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1 Introduction

The study of multidimensional breaking soliton syste@jsq one of the main themes in solitons systems. Severabsalit
models have been recently developed in the context of (Birtiensional equations ir8]. The (2+1)-dimensional CD
equation or breaking soliton equation

is an important nonlinear wave equation. It is also knowrhagbtential form of Calogero-Bogoyavlenskii-Schiff (OBS
equation [L7]. Calogero and Degasperidl)(was established in1[2]. This equation is used to describe the
(2+1)-dimensional interaction of a Riemann wave propaggdiong the y-axis with a long wave along the x-axis. It also
admits a Lax representation and is integrable by the onexgsional inverse scattering transforiyd]. Bogoyavlenskii
proved in [[L0]] that CD equation has an overturning soliton. Mathematisihave also obtained periodic solution of CD
equation.

In this paper, we apply the classical Lie group method of itégimal transformation$[7,11] which, has always been
and still is, a great tool to find the analytical solution ofhAmear partial differential equations(PDES). A numbér o
mathematicians have used this tool in many areas of sceefiéfds such as solid state physics, plasma physics, fluid
dynamics, mathematical biology and chemical kinetics.

The usage of similarity method has been seenli#},[16] also. We point out that the classical Lie symmetries and
similarity reduction for systemlj by constructing invariant solutions from the system ofriitéisimals, we bring out
some similarity reductions that do not appear explicitlyother author’s work. We also obtained some new reduced
systems of 1+ 1)-PDEs and new systems of ordinary differential equatioBete).
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2 Lie Symmetry for the Caloger o Degasperis equation

In this section, we perform the application of symmetry grdor (2+1)-dimensional CD equation, i.e., the one
parameter Lie group of transformations acting on dependmiblev and independent variablg, y,t). We consider a
one-parameter Lie group of infinitesimal transformation& y,t, v), given by
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with group parametefe), which is admitted by the equatiof)( In other words, Lie group of transformations are such
that if v is a solution of equationlj thenv* is also a solution. The method for finding group symmetry idibgling
corresponding infinitesimal generator of Lie group of tfammations P]. This yields to overdetermined, linear equation
for infinitesimalsX (x,y,t,v) , Y(x,y,t,v), T(X,y,t,v) andV(x,y,t,v). The vector field associated with the above group of
transformation to CD equation can be written as

a a a a

X Y T V—
S=X Yoyt Ta TVay

The prolongation vector field is

0 0 a a a 7}
X Ay y avy t th i:(;y,t) i avij if(;y,t) ijk avijk i:(;y, ijkl dvijkl
j=(xy1) j=(xy) j=(xy)
k=(x.y;t) k=(x.y;t)
I=(x,y,t)
Thus the Infinitesimal criteria for the invariance of eqaat(l) is given by
Pri¥sa =0 (3)
V@ — avPvy — av@v, — 2V Py — 2V vy + Vigy = 0
Condition on infinitesimals can be found by solving “detering equation”, which yields the following:
V:—C]_Vt—2C2V+2C5V—C1X—y—C4X+M+A(t) 4)

2 2
X = c1xt 4 2cx — 2c5x+ (1)
Y = 2ciyt 4 4csy +4cat + Ce
T= 201t2 +4cot +c3

wherecy, €y, C3, Cs, Cs andcg are arbitrary constantg(t) andA (t) are arbitrary functions of t. The prime) denotes
the differentiation with respect to its indicated variatiieoughout the paper. The vector fields of the corresponidiag
algebra are given by
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Vi = (xt+y(t))§—x+2yt%+2tZ%+(vtX—g+@/+)\(t))%

Vo = (2x+ y(t)):—X +4t%+(—2v+@/+)\(t));—v

Vi yt) 2+ o (Y a0 2 )
Vi = y(t)%+4t%+(—x+@/+)\(t))%

Vs = (—2x+ y(t)):—)(+4y%+(2v+@/+/\(t))%

Ve = y(t)%(jt%ﬂ@lw\(t));—v

Here, it is clear that Lie symmetry generator and the Lie lalge&lepend on the solutions fgft) andA (t). Therefore,
we can say that the CD equation contain infinite continuoasgof transformations which is generated by the infinite-
dimensional Lie algebra spanned by vector fiekjsThese generators are linearly independent. Thus, thhgsimilarity
solution for Eq.1), the corresponding characteristic equations are

dx dy dt dv

XOYtv) ~ YOoutvy) ~ TOoLY)  VOoyLY) ©

The different forms of the solution of equatidf) are obtained by assigning the particular values;® (1 <i < 6).
Therefore, there are following cases to generate the diftdorm of exact solution.

Casel.c; #0,A(t) # O; else parameters and arbitrary function are zero. Theprsimg @) and ©)

ﬁ _dy dt dv o
Cxt o 2ciyt o 2ct2 o —Civt — Clznyr/\(t)
The solution of equatiofil) in similarity form is
v Fud) 1 / A
V(X y,t) = —— — dt 8
( 7y7 ) 4t \/f +\/t_ 2C1t3/2 ( )
where
X y
=—andd=7 9
W=7 n (9)
are the two invariants that we obtained. From E@s7) and(1), we get the following equation
and the new set of infinitesimals for Ed.0) by applying STM is
{=aita, Y=P(5), n=-aF +a3 (11)
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wherea;, ay andag are arbitrary constants af{d) is an arbitrary function od. This follows the characteristic equation
for (10) is given by
du dd dF

ai+a P(O) —aF +as

Further F can be written as

H(Z)ef;—fjsl)d5+§7 (12)

F(I“aé)zi a a

—ag

where{ = (a1t + az)e[ 5% is a similarity variable.

Then using Eq(10) and(2.11), (1) can be reduced to a fourth order non-linear ODEHQZ ) as
a3CH" () +4a2H" ({) +6LH'(Q)H"({) +2H(H"() +8H" () =0 (13)

H({) = Cy is a solution of Eq(2.12) andF (u,0) = a(u) +Co, F(u,d8) = Aot +Bo + B(0) are the solutions of Eq.
(10). Hence, comprising Eq$2.7), (2.8) and(12), solutions of CD equatiofil) are given by

Xy , & Co Sz 1 / At)
=—"4+- = D g PD — | —Zdt 14
V(X7y7 ) 4t + aj_\/t_ aj_\/t_e + \/f 2C1t3/2 ( )
X
w 9p)+% 1 / Alt)
H)=—"4—"——+— [ — Lt 15
V(X yt) = -7+ N + Jt ) 2,132 (15)
xy B()+Bo Apx 1 / A(t)
Y ot = [ A 1
v(X,Y,t) 20 + T + n + 7 201t3/2dt (16)
whereAg, By andCy are arbitrary constanter.(%), B(¥) andP(¥) are the arbitrary functions.
Case2.c,#0,A(t) #0; From Egs(2.3) and @), we have
dx dy dt dv
26X 0 At 2wt A0 (A7)
To get the solution of Eq.1), one can get the similarity form with the similarity varieblusing17) as follows
F(H,8) 1 / AH)
t)=—F"+— dt 18
where
— X ands = (19)
IJl - \/t_ - y
Incorporating Egs.18) and (), we achieve the following PDE
— 2Ry — PPy — 8FH1FL1151 - 4':51':111111 + 2Fu1u1u151 =0 (20)
Applying the STM on 20) yields the following set of infinitesimals
&1 = —bypy +4b3, Y1 =2b181 +bp, N1 = —b3d +biF + by (21)
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whereb,b, , bs andb, are arbitrary constants. The Lagrange’s systemZay i€ given by

du  day dF
—bypy +4bs 2016 +by  —b3d +byF +by

To reduce the PDE, we assume transformation of the form

F (e, 1) — —zb—tf%<2b161+bz>+ 20157 B H () +Q 22)

whereQ = szb%b%blb“ and the similarity variable
1

(1= (—baps +4b3)/ (20101 + ) (23)
Further substitution ofa2) into (20), provides a non-linear ODE

b3Z1H"" (1) +4b3H" (Z1) + 603CH' (Lo)H" ({a) + 203H ({o)H" (o) + 803H (&1) — %H”(Zl) —H'(Q)=0 (24

where (1) denotes differentiation w.r.g1. In this caseH({;) = Ci, H({1) =C1 + % are the solutions of Eq26).
1
Therefore we can deduce the following solutions of CD equmati

VoY) = — b3(2byy+ by) B bobs +2b1by  Ci/2b1y+ by + i/ At) ot
¥ 2020 2020 A ) acu

(25)

b3(2b1y+ bz) B bobs + 2biby " C1\/2b1y+ by B
N NG NG

whereC; is an arbitrary constant ardt) is an arbitrary function off.

V(X yt) = — (2b1y+b2)< X _ >+%/ AL 4 (26)

8ot 2b2k 4cpt1/2

Case 3. ¢c5 # 0 andA (t) # 0, Now, symmetry reduction of E(.) under one point symmetry group is given by using

standard method. Firstly, solving the corresponding attarsstic equations by comprising Eq4) é&nd ©)

dx dy dt dv
- - __ 7 27
—2csX  4csy 0 2csvHA(t) 27)
we obtain two invariants
2 =Xy/yandr =t (28)
with similarity solution
Alt
Vo) = V5 (1) - S (29)
5
Eqg.(1) can be reduce to the following PDE, using BE§)(
Fuor — 4F4, — 3H2Fu, Fiops, + 2Fuopiop, + %Fuzuzuzuz —FFau=0 (30)
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Further, applying STM, one can get a new set of infinitesimals

*

* * * * * * * a
&= (aT+ap)lp, Yp=aT?+2aT+ag, N2 = —(a1T+ap)F — Zlﬂz (31)
whereay, a, andag, a new set of parameters, obtained by further applying STM.

Subcase3.1. a; #0 anda, = a*g = 0. Therefore, infinitesimals i(31) become.

*

* * * a
Sy =Ty, W =a1T% No=—aTF — lelz (32)

Solve the following Lagrange’s system corresponding taitdsimals 82)

d, T dF
51T[.l2 22;1'[2 fé‘lﬂ: _ %“2
It gives the transformation of the form
H({2) K o Uz
F =22 e th tlo=— 33
(U2, T) - P with invariant , - (33)
which reduces Eq30) to the following fourth order non-linear ODE
3oH"" (Z2) +4H"(Z2) — 6Z5H' ({2)H" ({2) — 2H (2)H" (Z2) — 8(H'(2))* =0 (34)
solutions of 84) with constantC, are following
H({2) =C2
6+C,
H(G) =5
{
Hence,we find the solutions ¢f) which are given by
_oW oy Al
V(Xayat) - t - At - 205 (35)
_C+6 xy A(l)
Subcase 3.2. a #0 anda; = a3 = 0. Then we get the following infinitesimals
& = apllp, Yo = 28T, o= —agF. (37)

Solve the following Lagrange’s system 87

duo T dF

* = * - *
AUy 281 —aF
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which reduce the PDE3() to the transformation of the form

H({2)

F(uz, 1) = Vil with invariant  {» = Ha

(38)

S

Further use of STM reduces EgQj to the following non-linear ODE

LoH" (82) +4H"(Zp) — 60oH! ({2)H" ({2) — LoH" ({2) — 8(H'(£2))? — 2H'({2) — 2H({2)H" ({2) =0 (39)

H({2)=C
H({2) =C2— %
H({2) =—cothC, + %)

H({;) =—tanhCo + %)

are solutions of39). Hence,we find the solutions ¢f) which are given by

v(x,y,t) = CZ\/g_ AZLCZ) (40)
V(Xayat) =C %/_Z_{_AZL(;) (41)

V(X y,t) = \/gcoth<cz+x\/4yt> _ /\2ch )
V(X yt) = \/tytanh<cz+x\/4y> _ /\2% )

Here,C; is an arbitrary constant andt) is an arbitrary function of t.
Case4.c3#0, A(t) #0; Egs.(4) and @) give the Lagrange’s system as follows:

dx dy dt dv
0 0 c A) (44)

The similarity form of () can be written as:
At
VX = F(hs &)+ [ et s)

with similarity variablesus = x and &z =y. The reduced PDE in this case is same as inGa(1) but the similarity
variables are different from thease(1) Therefore, we get the following new solutions for the CD dapra(1) which are
different from theCase(1).

_a G say (A
Voxwt) = 2 ale’ Y / -t (46)
V(X y,t) = a(x)+Co+/%;)dt 47)
V(X,Y,t) = AgX+ BO+B(y)+/%;)dt (48)
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(b) a figure of singularity (c) afigure of kink wave solution

(a) the figure of travelling wave
for Eq.(14)

solution for Eq.(14) solution of (14)

(e) a form of kink wave solution  (f) the figure of periodic solution

(d) the figure of solitons solution
of Eq.(16) for Eq.(16)

of Eq.(15)

(h) a form of kink wave solution (i) a form of periodic kink wave

(g0 a form of singular kink
solution of Eq.(33)
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solution of (23) for Eq.(24)
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N 1 .! o
s oS R
i oSN
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1
i
1

() a form of kink solution for

(i) a profile of travelling wave (k) a form of singular periodic
(38)

solution of (34) solution for Eq.(34)
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(m) a form of singularity (n) a form of singularity solution  (0) a form of singular kink
solution of Eq.(39) for Eq(40) profile for Eq.(41)

(p) a form of periodic function (q) periodic solution for (45) (r) a form of kink solution of
having singularity at p(y)=0 for Eq.(46)
Eq.(44)

Case5.cs #0, A(t) # 0; Eqs(4) and @) give the Lagrange’s auxiliary equation as.

dx dy dt dv

—_— == — = — 4

0 ¢ 0 A() (49)
On solving these characteristic equations, one can obitaitasty solution of Eq.() and the similarity variables which
are as follows.

V(Xa yvt) = )\(T'i)y + F(I-'l4; Tl)a (50)

Us=Xand 1y =t
Substitute §0) into (1) to get the reduced PDE

At
Fusr, — 4Fu, — %FIJAJJA =0 (51)

STM on (1) gives the following set of new infinitesimals

a=- 203 (M) (52)
Y3 =@(T2)

y Ly AT —3
n3(44)1(1'1)+b1)|:+g02(rl)+e(/\(tf)%(w)
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To reduce PDEXY) into an ODE by using STM with the help of the infinitesimal&) is quite costly (in the sense of
computational cost).

3 Discussion

The exact solutions of Eq.(1)are supplemented by numesioailations with appropriate choice of arbitrary conssant
and arbitrary functions in the following manners.

Fig.(a): Takinga; = 9,a3 = 6,Co=1,P(¥) =yand A (t) = 201'[%, For Eq(14) gives a travelling wave profile when=5.
Fig.(b): Takinga; = 9,a3 = 6,Co = 1,P({) = yand A(t) = 2c1t% in Eq.(14) that shows a singularity form of solution
whenx = 5 and range foy andt contain 0 and negative values as well.

Fig.(c): If the range foy andt does not contain O anah = 9,a3 = 6,Co = 1,P(¥) =yand A(t) = 2c1t% then we get a
kink wave solution for Eq14).

Fig.(d): TakingCy = 1, a(%) = sin(\%) andA(t) = 2cit3, we get a soliton solution for E(L5).

Fig.(e): TakingAg = 1,Bo = 2,B(¥) = sinh(¥) 4+ cogt),A(t) = 2¢2 cogt), when t is constaft = 3), we get a form of
kink solution for Eq(16).

Fig.(f): When x is constanix = 3) andAo = 1,By = 2, B({) = sinh({) +cogt), A (t) = 2c? cogt) gives a periodic profile
for(16).

Fig(g): Consideb; = 1,b, = 5,b3 = 6,b; = 2, A (t) = 4cptanh(t)/t gives a profile of singular kink solution fg@3).
Fig.(h):TakingA (t) = 4cpsech(t)/t andb; = 1,b, = 5,b3 = 6,bs = 2 in eq(24) we found a kink wave solution.

Fig.(i): AssumingC, = v/5,c5 = 5,A (t) = sin(t) andy = 2 gives a periodic kink wave solution in E§3).

Fig.(j): Eq.(34) gives a travelling wave solution having singularity at eertpoints by fixingy = 2 and assumin@, =
VB,c5 =5,A(t) = sin(t).

Fig.(k): On considering (t) = tan(t),C; = v/5,c5 = 5, we get a periodic type solution with some singularity (@4).
Fig.(1):(38) — (41):considelC, = v/5,c5 = 1 andA (t) = t3, fig.(I) shows a kink solution for E¢38).

Fig.(m):C, = v/5,c5 = 1 andA(t) = t3 andy = 2 then fig.(m) is also a kink type solution with some singujafor
Eq.(39).

Fig.(n):C, = v/5,c5 = 1 andA (t) =t for Eq.(40) we get singularity form solution as shown in fig.(n} at 2.
Fig.(0):For Eq(41), we get a singular kink profile as in fig.(O) by fixitg= 2 andC, = v/5,c5 = 1, A (t) =t5.

Fig(p): If A(t) = sinh(t) and In Eq(44) considera; = 3,a3 = 5,Cop = 1,P(y) =y and A (t) = cogt) gives a form of
periodic solution having singularity &(y) = 0.

Fig.(q): For Eq(45) assuméCy = 1,c3 = 5,A (t) = cogt) sin(t) anda(x) = sinx.cosx, we get a periodic solution as in
fig.(q).

Fig.(r): For Eq(46) takeAg = 1,Bo = 2,A (t) =t3, B(y) = sin(y) and fixt = 1 gives a travelling wave solution as in fig.(r).

4 Conclusion

In this paper we have shown that the Calogero Degasperidiequzan be transformed by a point transformation to
fourth order non-linear ODEs. The Lie point symmetry getwsof the CD equation were obtained by using the Lie
symmetry group analysis.The analytical properties of tiat®ns are discussed, such as asymptotic behaviougdesin
solitons, quasi periodic and singular periodic, travellimave depending upon appropriate arbitrary functigft$ and

A(t). This work is significant since the exact solutions so oladishall be helpful in other applied sciences as
condensed matter physics, field theory, fluid dynamics,nmdaphysics, non-linear optics, etc. where solitons and
periodic structures are involved. Our exact solutions nayesas benchmark in the accuracy testing and comparison of
their numerical algorithms. However, our solutions arétsn| periodic solutions and singular kink wave solutidree
availability of computer systems like Mathematica or Mafaleilitates the tedious algebraic calculations. The metho
which we have proposed in this letter is also a standardctiéned computer-literate method, which allows us to solve
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complicated and tedious algebraic calculation.
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