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Abstract: In present article, we establish the exact solutions of non-linear (2+1)- Dimensional Calogero Degasperis(CD) equation by
using Lie group of transformation method. The properties ofthe solutions of CD equation such as travelling waves, single solitons,
singular periodic and singular kink, depending upon appropriate arbitrary functionsγ(t) andλ (t) have been discussed.
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1 Introduction

The study of multidimensional breaking soliton systems [2] is one of the main themes in solitons systems. Several solitons

models have been recently developed in the context of (2+1)-dimensional equations in [3]. The (2+1)-dimensional CD

equation or breaking soliton equation

∆ = vxt −4vxvxy −2vyvxx + vxxxy = 0 (1)

is an important nonlinear wave equation. It is also known as the potential form of Calogero-Bogoyavlenskii-Schiff (CBS)

equation [17]. Calogero and Degasperis (1) was established in [1,2]. This equation is used to describe the

(2+1)-dimensional interaction of a Riemann wave propagating along the y-axis with a long wave along the x-axis. It also

admits a Lax representation and is integrable by the one-dimensional inverse scattering transform [2,3]. Bogoyavlenskii

proved in [[10]] that CD equation has an overturning soliton. Mathematicians have also obtained periodic solution of CD

equation.

In this paper, we apply the classical Lie group method of infinitesimal transformations [5,7,11] which, has always been

and still is, a great tool to find the analytical solution of non-linear partial differential equations(PDEs). A number of

mathematicians have used this tool in many areas of scientific fields such as solid state physics, plasma physics, fluid

dynamics, mathematical biology and chemical kinetics.

The usage of similarity method has been seen in [12],[16] also. We point out that the classical Lie symmetries and

similarity reduction for system (1) by constructing invariant solutions from the system of infinitesimals, we bring out

some similarity reductions that do not appear explicitly inother author’s work. We also obtained some new reduced

systems of(1+1)-PDEs and new systems of ordinary differential equations(ODEs).
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2 Lie Symmetry for the Calogero Degasperis equation

In this section, we perform the application of symmetry group for (2+1)-dimensional CD equation, i.e., the one

parameter Lie group of transformations acting on dependentvariablev and independent variable(x,y, t). We consider a

one-parameter Lie group of infinitesimal transformations in (x,y, t,v), given by

x∗ = x+ εX(x,y, t,v)+O(ε2)

y∗ = y+ εY(x,y, t,v)+O(ε2)

t∗ = t + εT(x,y, t,v)+O(ε2)

v∗ = v+ εV(x,y, t,v)+O(ε2)



























(2)

with group parameter(ε), which is admitted by the equation (1). In other words, Lie group of transformations are such

that if v is a solution of equation (1) thenv∗ is also a solution. The method for finding group symmetry is byfinding

corresponding infinitesimal generator of Lie group of transformations [9]. This yields to overdetermined, linear equation

for infinitesimalsX(x,y, t,v) , Y (x,y, t,v), T (x,y, t,v) andV (x,y, t,v). The vector field associated with the above group of

transformation to CD equation can be written as

S = X
∂
∂x

+Y
∂
∂y

+T
∂
∂ t

+V
∂
∂v

The prolongation vector field is

Pr(4)S = S+V(1)
x

∂
∂vx

+V(1)
y

∂
∂vy

+V(1)
t

∂
∂vt

+ ∑
i=(x,y,t)
j=(x,y,t)

V(2)
i j

∂
∂vi j

+ ∑
i=(x,y,t)
j=(x,y,t)
k=(x,y,t)

V(3)
i jk

∂
∂vi jk

+ ∑
i=(x,y,t)
j=(x,y,t)
k=(x,y,t)
l=(x,y,t)

V(4)
i jkl

∂
∂vi jkl

Thus the Infinitesimal criteria for the invariance of equation (1) is given by

Pr(4)S∆ = 0 (3)

V(2)
xt −4V(1)

x vxy −4V(2)
xy vx −2V(1)

y vxx −2V(2)
xx vy +V(4)

xxxy = 0

Condition on infinitesimals can be found by solving “determining equation”, which yields the following:

V =− c1vt −2c2v+2c5v− c1
xy
2
− c4x+

γ ′(t)y
2

+λ (t) (4)

X = c1xt +2c2x−2c5x+ γ(t)

Y = 2c1yt +4c5y+4c4t + c6

T = 2c1t2+4c2t + c3

wherec1, c2, c3, c4, c5 andc6 are arbitrary constants.γ(t) andλ (t) are arbitrary functions of t. The prime(′) denotes

the differentiation with respect to its indicated variablethroughout the paper. The vector fields of the correspondingLie

algebra are given by
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V1 = (xt + γ(t))
∂
∂x

+2yt
∂
∂y

+2t2 ∂
∂ t

+(−vt − xy
2
+

γ ′(t)y
2

+λ (t))
∂
∂v

V2 = (2x+ γ(t))
∂
∂x

+4t
∂
∂ t

+(−2v+
γ ′(t)y

2
+λ (t))

∂
∂v

V3 = γ(t)
∂
∂x

+
∂
∂ t

+(
γ ′(t)y

2
+λ (t))

∂
∂v

(5)

V4 = γ(t)
∂
∂x

+4t
∂
∂y

+(−x+
γ ′(t)y

2
+λ (t))

∂
∂v

V5 = (−2x+ γ(t))
∂
∂x

+4y
∂
∂y

+(2v+
γ ′(t)y

2
+λ (t))

∂
∂v

V6 = γ(t)
∂
∂x

+
∂
∂y

+(
γ ′(t)y

2
+λ (t))

∂
∂v

Here, it is clear that Lie symmetry generator and the Lie algebra depend on the solutions forγ(t) andλ (t). Therefore,
we can say that the CD equation contain infinite continuous group of transformations which is generated by the infinite-
dimensional Lie algebra spanned by vector fields (4). These generators are linearly independent. Thus, to get the similarity
solution for Eq.(1), the corresponding characteristic equations are

dx
X(x,y, t,v)

=
dy

Y(x,y, t,v)
=

dt
T(x,y, t,v)

=
dv

V(x,y, t,v)
(6)

The different forms of the solution of equation(1) are obtained by assigning the particular values toci’s (1 ≤ i ≤ 6).
Therefore, there are following cases to generate the different form of exact solution.

Case 1. c1 6= 0 , λ (t) 6= 0; else parameters and arbitrary function are zero. Then comprising (4) and (6)

dx
c1xt

=
dy

2c1yt
=

dt
2c1t2 =

dv
−c1vt − c1xy

2 +λ (t)
(7)

The solution of equation(1) in similarity form is

v(x,y, t) =−xy
4t

+
F(µ ,δ )√

t
+

1√
t

∫ λ (t)
2c1t3/2

dt (8)

where

µ =
x√
t

andδ =
y
t

(9)

are the two invariants that we obtained. From Eqs.(2.7) and(1), we get the following equation

−2Fδ Fµµ −4FµFµδ +Fµµµδ = 0 (10)

and the new set of infinitesimals for Eq.(10) by applying STM is

ξ = a1µ + a2, ψ = P(δ ), η =−a1F + a3 (11)
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wherea1, a2 anda3 are arbitrary constants andP(δ ) is an arbitrary function ofδ . This follows the characteristic equation
for (10) is given by

dµ
a1µ + a2

=
dδ

P(δ )
=

dF
−a1F + a3

Further F can be written as

F(µ ,δ ) =−H(ζ )
a1

e
∫ −a1

P(δ ) dδ
+

a3

a1
, (12)

whereζ = (a1µ + a2)e
∫ −a1

P(δ ) dδ
is a similarity variable.

Then using Eq.(10) and(2.11), (1) can be reduced to a fourth order non-linear ODE forH(ζ ) as

a2
1ζH ′′′′(ζ )+4a2

1H ′′′(ζ )+6ζH ′(ζ )H ′′(ζ )+2H(ζ )H ′′(ζ )+8H ′2(ζ ) = 0 (13)

H(ζ ) = C0 is a solution of Eq.(2.12) andF(µ ,δ ) = α(µ)+C0, F(µ ,δ ) = A0µ +B0 +β (δ ) are the solutions of Eq.
(10). Hence, comprising Eqs.(2.7), (2.8) and(12), solutions of CD equation(1) are given by

v(x,y, t) =−xy
4t

+
a3

a1
√

t
− C0

a1
√

t
e
∫

(
−a1
P( y

t )
)d( y

t )
+

1√
t

∫ λ (t)
2c1t3/2

dt (14)

v(x,y, t) =−xy
4t

+
α( x√

t
)+C0
√

t
+

1√
t

∫ λ (t)
2c1t3/2

dt (15)

v(x,y, t) =−xy
4t

+
β ( y

t )+B0√
t

+
A0x

t
+

1√
t

∫ λ (t)
2c1t3/2

dt (16)

whereA0, B0 andC0 are arbitrary constants.α( x√
t
), β ( y

t ) andP( y
t ) are the arbitrary functions.

Case 2. c2 6= 0 , λ (t) 6= 0 ; From Eqs.(2.3) and (6), we have

dx
2c2x

=
dy
0

=
dt

4c2t
=

dv
−2c2v+λ (t)

(17)

To get the solution of Eq.(1), one can get the similarity form with the similarity variables using(17) as follows

v(x,y, t) =
F(µ1,δ1)√

t
+

1√
t

∫ λ (t)
4c2t1/2

dt, (18)

where

µ1 =
x√
t

andδ1 = y (19)

Incorporating Eqs. (18) and (1), we achieve the following PDE

−2Fµ1 − µ1Fµ1µ1 −8Fµ1Fµ1δ1
−4Fδ1

Fµ1µ1 +2Fµ1µ1µ1δ1
= 0 (20)

Applying the STM on (20) yields the following set of infinitesimals

ξ1 =−b1µ1+4b3, ψ1 = 2b1δ1+ b2, η1 =−b3δ1+ b1F + b4 (21)
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whereb1,b2 , b3 andb4 are arbitrary constants. The Lagrange’s system for (21) is given by

dµ1

−b1µ1+4b3
=

dδ1

2b1δ1+ b2
=

dF
−b3δ1+ b1F + b4

To reduce the PDE, we assume transformation of the form

F(µ1,δ1) =− b3

2b2
1

(2b1δ1+ b2)+
√

(2b1δ1+ b2)H(ζ1)+Q (22)

whereQ =− b2b3+2b1b4
2b2

1
and the similarity variable

ζ1 = (−b1µ1+4b3)
√

(2b1δ1+ b2) (23)

Further substitution of (22) into (20), provides a non-linear ODE

b3
1ζ1H ′′′′(ζ1)+4b3

1H ′′′(ζ1)+6b2
1ζ1H ′(ζ1)H

′′(ζ1)+2b2
1H(ζ1)H

′′(ζ1)+8b2
1H ′2(ζ1)−

ζ1

2
H ′′(ζ1)−H ′(ζ1) = 0 (24)

where(′) denotes differentiation w.r.t.ζ1. In this case,H(ζ1) = C1, H(ζ1) = C1 +
ζ1
8b2

1
are the solutions of Eq. (24).

Therefore we can deduce the following solutions of CD equation

v(x,y, t) =−b3(2b1y+ b2)

2b2
1

√
t

− b2b3+2b1b4

2b2
1

√
t

+
C1

√
2b1y+ b2√

t
+

1√
t

∫ λ (t)
4c2t1/2

dt (25)

v(x,y, t) =−b3(2b1y+ b2)

2b2
1

√
t

− b2b3+2b1b4

2b2
1

√
t

+
C1

√
2b1y+ b2√

t
− (2b1y+ b2)

(

x
8b1t

− b3

2b2
1

√
t

)

+
1√
t

∫ λ (t)
4c2t1/2

dt (26)

whereC1 is an arbitrary constant andλ (t) is an arbitrary function oft.

Case 3. c5 6= 0 andλ (t) 6= 0, Now, symmetry reduction of Eq.(1) under one point symmetry group is given by using

standard method. Firstly, solving the corresponding characteristic equations by comprising Eqs. (4) and (6)

dx
−2c5x

=
dy

4c5y
=

dt
0

=
dv

2c5v+λ (t)
(27)

we obtain two invariants

µ2 = x
√

y andτ = t (28)

with similarity solution

v(x,y, t) =
√

yF(µ2,τ)−
λ (t)
2c5

(29)

Eq.(1) can be reduce to the following PDE, using Eq.(29)

Fµ2τ −4F2
µ2
−3µ2Fµ2Fµ2µ2 +2Fµ2µ2µ2 +

µ2

2
Fµ2µ2µ2µ2 −FFµ2µ2 = 0 (30)
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Further, applying STM, one can get a new set of infinitesimals

ξ2 = (
∗

a1τ + ∗
a2)µ2, ψ2 =

∗
a1τ2+2

∗
a2τ + ∗

a3, η2 =−(
∗

a1τ + ∗
a2)F −

∗
a1

4
µ2 (31)

where
∗

a1,
∗

a2 and
∗

a3, a new set of parameters, obtained by further applying STM.

Subcase 3.1.
∗

a1 6= 0 and
∗

a2 =
∗

a3 = 0. Therefore, infinitesimals in(31) become.

ξ2 =
∗

a1τµ2, ψ2 =
∗

a1τ2, η2 =− ∗
a1τF −

∗
a1

4
µ2 (32)

Solve the following Lagrange’s system corresponding to infinitesimals (32)

dµ2
∗

a1τµ2

=
τ

2
∗

a1τ2
=

dF

− ∗
a1τF −

∗
a1
4 µ2

It gives the transformation of the form

F(µ2,τ) =
H(ζ2)

τ
− µ2

4τ
with invariant ζ2 =

µ2

τ
(33)

which reduces Eq.(30) to the following fourth order non-linear ODE

ζ2H ′′′′(ζ2)+4H ′′′(ζ2)−6ζ2H ′(ζ2)H
′′(ζ2)−2H(ζ2)H

′′(ζ2)−8(H ′(ζ2))
2 = 0 (34)

solutions of (34) with constantC2 are following

H(ζ2) =C2

H(ζ2) =
6+C2

ζ2

Hence,we find the solutions of(1) which are given by

v(x,y, t) =
C2

√
y

t
− xy

4t
− λ (t)

2c5
(35)

v(x,y, t) =
C2+6

x
− xy

4t
− λ (t)

2c5
(36)

Subcase 3.2.
∗

a2 6= 0 and
∗

a1 =
∗

a3 = 0. Then we get the following infinitesimals

ξ2 =
∗

a2µ2, ψ2 = 2
∗

a2τ, η2 =− ∗
a2F. (37)

Solve the following Lagrange’s system for37

dµ2
∗

a2µ2

=
τ

2
∗

a2τ
=

dF

− ∗
a2F
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which reduce the PDE (30) to the transformation of the form

F(µ2,τ) =
H(ζ2)√

τ
, with invariant ζ2 =

µ2√
τ

(38)

Further use of STM reduces Eq.(30) to the following non-linear ODE

ζ2H ′′′′(ζ2)+4H ′′′(ζ2)−6ζ2H ′(ζ2)H
′′(ζ2)− ζ2H ′′(ζ2)−8(H ′(ζ2))

2−2H ′(ζ2)−2H(ζ2)H
′′(ζ2) = 0 (39)

H(ζ2) =C2

H(ζ2) =C2−
ζ2

4

H(ζ2) =− coth(C2+
ζ2

2
)

H(ζ2) =− tanh(C2+
ζ2

2
)

are solutions of (39). Hence,we find the solutions of(1) which are given by

v(x,y, t) =C2

√

y
t
− λ (t)

2c5
(40)

v(x,y, t) =C2

√

y
t
− xy

4t
− λ (t)

2c5
(41)

v(x,y, t) =−
√

y
t

coth

(

C2+ x

√

y
4t

)

− λ (t)
2c5

(42)

v(x,y, t) =−
√

y
t

tanh

(

C2+ x

√

y
4t

)

− λ (t)
2c5

(43)

Here,C2 is an arbitrary constant andλ (t) is an arbitrary function of t.

Case 4. c3 6= 0, λ (t) 6= 0; Eqs.(4) and (6) give the Lagrange’s system as follows:

dx
0

=
dy
0

=
dt
c3

=
dv

λ (t)
(44)

The similarity form of (1) can be written as:

v(x,y, t) = F(µ3,δ3)+

∫ λ (t)
c3

dt, (45)

with similarity variablesµ3 = x and δ3 = y. The reduced PDE in this case is same as in theCase(1) but the similarity
variables are different from theCase(1) Therefore, we get the following new solutions for the CD equation (1) which are
different from theCase(1).

v(x,y, t) =
a3

a1
− C0

a1
e
∫ −a1

P(y) dy
+

∫ λ (t)
c3

dt (46)

v(x,y, t) = α(x)+C0+

∫ λ (t)
c3

dt (47)

v(x,y, t) = A0x+B0+β (y)+
∫ λ (t)

c3
dt (48)
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(a) the figure of travelling wave
solution for Eq.(14)

(b) a figure of singularity
solution of (14)

(c) a figure of kink wave solution
for Eq.(14)

(d) the figure of solitons solution
of Eq.(15)

(e) a form of kink wave solution
of Eq.(16)

(f) the figure of periodic solution
for Eq.(16)

(g) a form of singular kink
solution of (23)

(h) a form of kink wave solution
for Eq.(24)

(i) a form of periodic kink wave
solution of Eq.(33)

(j) a profile of travelling wave
solution of (34)

(k) a form of singular periodic
solution for Eq.(34)

(l) a form of kink solution for
(38)
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(m) a form of singularity
solution of Eq.(39)

(n) a form of singularity solution
for Eq(40)

(o) a form of singular kink
profile for Eq.(41)

(p) a form of periodic function
having singularity at p(y)=0 for
Eq.(44)

(q) periodic solution for (45) (r) a form of kink solution of
Eq.(46)

Case 5. c6 6= 0, λ (t) 6= 0; Eqs.(4) and (6) give the Lagrange’s auxiliary equation as.

dx
0

=
dy
c6

=
dt
0

=
dv

λ (t)
(49)

On solving these characteristic equations, one can obtain similarity solution of Eq.(1) and the similarity variables which
are as follows.

v(x,y, t) =
λ (t)y

c6
+F(µ4,τ1), (50)

µ4 = x and τ1 = t

Substitute (50) into (1) to get the reduced PDE

Fµ4τ1 −4Fµ4 −
λ (t)

3
Fµ4,µ4 = 0 (51)

STM on (51) gives the following set of new infinitesimals

ξ3 =− λ (t)φ1(τ1)

3
+φ4

(

λ (t)τ1−3µ4

λ (t)

)

(52)

ψ3 =φ1(τ1)

η3 =(4φ1(τ1)+
∗

b1)F +φ2(τ1)+ e
(

12µ4
λ(t) )φ3

(

λ (t)τ1−3µ4

3

)

c© 2017 BISKA Bilisim Technology
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To reduce PDE (51) into an ODE by using STM with the help of the infinitesimals (52) is quite costly (in the sense of
computational cost).

3 Discussion

The exact solutions of Eq.(1)are supplemented by numericalsimulations with appropriate choice of arbitrary constants
and arbitrary functions in the following manners.
Fig.(a): Takinga1 = 9,a3 = 6,C0 = 1,P( y

t ) = y and λ (t) = 2c1t
7
2 , For Eq.(14) gives a travelling wave profile whent = 5.

Fig.(b): Takinga1 = 9,a3 = 6,C0 = 1,P( y
t ) = y and λ (t) = 2c1t

7
2 in Eq.(14) that shows a singularity form of solution

whenx = 5 and range fory andt contain 0 and negative values as well.
Fig.(c): If the range fory andt does not contain 0 anda1 = 9,a3 = 6,C0 = 1,P( y

t ) = y and λ (t) = 2c1t
7
2 then we get a

kink wave solution for Eq.(14).
Fig.(d): TakingC0 = 1,α( x√

t
) = sin( x√

t
) andλ (t) = 2c1t

3
2 , we get a soliton solution for Eq.(15).

Fig.(e): TakingA0 = 1,B0 = 2,β ( y
t ) = sinh( y

t )+ cos(t),λ (t) = 2c
3
2 cos(t), when t is constant(t = 3), we get a form of

kink solution for Eq.(16).
Fig.(f): When x is constant(x = 3) andA0 = 1,B0 = 2,β ( y

t ) = sinh( y
t )+cos(t),λ (t) = 2c

3
2 cos(t) gives a periodic profile

for(16).
Fig(g): Considerb1 = 1,b2 = 5,b3 = 6,b4 = 2, λ (t) = 4c2 tanh(t)

√
t gives a profile of singular kink solution for(23).

Fig.(h):Takingλ (t) = 4c2sech(t)
√

t andb1 = 1,b2 = 5,b3 = 6,b4 = 2 in eq.(24) we found a kink wave solution.
Fig.(i): AssumingC2 =

√
5,c5 = 5,λ (t) = sin(t) and y = 2 gives a periodic kink wave solution in Eq.(33).

Fig.(j): Eq.(34) gives a travelling wave solution having singularity at certain points by fixingy = 2 and assumingC2 =√
5,c5 = 5,λ (t) = sin(t).

Fig.(k): On consideringλ (t) = tan(t),C2 =
√

5,c5 = 5, we get a periodic type solution with some singularity for(34).
Fig.(l):(38)− (41):considerC2 =

√
5,c5 = 1 andλ (t) = t3, fig.(l) shows a kink solution for Eq.(38).

Fig.(m): C2 =
√

5,c5 = 1 andλ (t) = t3 andy = 2 then fig.(m) is also a kink type solution with some singularity for
Eq.(39).
Fig.(n):C2 =

√
5,c5 = 1 andλ (t) = t3 for Eq.(40) we get singularity form solution as shown in fig.(n) att = 2.

Fig.(o):For Eq.(41), we get a singular kink profile as in fig.(O) by fixingt = 2 andC2 =
√

5,c5 = 1,λ (t) = t3.
Fig(p): If λ (t) = sinh(t) and In Eq.(44) considera1 = 3,a3 = 5,C0 = 1,P(y) = y andλ (t) = cos(t) gives a form of
periodic solution having singularity atP(y) = 0.
Fig.(q): For Eq.(45) assumeC0 = 1,c3 = 5,λ (t) = cos(t) sin(t) andα(x) = sinx.cosx, we get a periodic solution as in
fig.(q).
Fig.(r): For Eq.(46) takeA0 = 1,B0 = 2,λ (t) = t3,β (y) = sin(y) and fixt = 1 gives a travelling wave solution as in fig.(r).

4 Conclusion

In this paper we have shown that the Calogero Degasperis equation can be transformed by a point transformation to
fourth order non-linear ODEs. The Lie point symmetry generators of the CD equation were obtained by using the Lie
symmetry group analysis.The analytical properties of the solutions are discussed, such as asymptotic behaviours, single
solitons, quasi periodic and singular periodic, travelling wave depending upon appropriate arbitrary functionsγ(t) and
λ (t). This work is significant since the exact solutions so obtained shall be helpful in other applied sciences as
condensed matter physics, field theory, fluid dynamics, plasma physics, non-linear optics, etc. where solitons and
periodic structures are involved. Our exact solutions may serve as benchmark in the accuracy testing and comparison of
their numerical algorithms. However, our solutions are soliton, periodic solutions and singular kink wave solutions.The
availability of computer systems like Mathematica or Maplefacilitates the tedious algebraic calculations. The method
which we have proposed in this letter is also a standard, direct and computer-literate method, which allows us to solve
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complicated and tedious algebraic calculation.
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