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Abstract: A Mathematical model for the effect of integrase stand transfer inhibitor on the HIV infected human immune system is
proposed and analyzed. The model considers uninfected CD4+ T-cells, Pre-integrase inhibitor, Post- integrase inhibitor CD4+ T-cells
and the virus populations described by a system of ordinary differential equations. The relation between the administered drug efficacy
with the virus population has been discussed using numerical simulation. It is observed that the parameters p and q have a significant
effect on the CD4+ T-cells and Virus population.
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1 Introduction

Human immunodeficiency virus HIV has infected 78 million and out of this 39 million people have died of AIDS related
illnesses since the case of the virus reported in 1981 [1,2]. In 2015 about 36.7 million people were living with HIV and it
resulted in 1.1 million deaths. Most of those infected live in sub-Saharan Africa. Through this time it becomes the most
intensely studied viral pathogens but many characteristics of HIV infection dynamics and disease pathogenesis within a
host are still not understood. Besides, the only effective way for clinical treatment of HIV infection so far is highly active
antiretroviral therapy (HAART)consisting multiple anti-HIV drugs, including reverse transcriptase inhibitors (RTIs),
protease inhibitors (PIs), fusion inhibitor, co-receptor antagonists and integrase inhibitors (INIs) [3]. Integrase inhibitors
are relatively new class of agents with two generation of three drugs registered by U.S Food and Drug Administration
(FDA). The first generation drugs are raltegravir (RAL, Isentress, formerly MK-0518) and elvitegravir (EVG, GS-9137,
JTK-303) approved on 2007 and 2012 respectively, by FDA for AIDS treatment [4,5]. The second generation of drug is
Dolutegravir (DTG, TIVICAY, S/GSK1349572) approved by FDA for treatment-naive and treatment experienced
persons with HIV infection in August 2013. DTG appears to have a higher genetic barrier to resistance than RAL or
EVG [6].

A single HIV particle contains approximately 40− 100 integrase molecules [7,8]. The primary role of these integrase
molecules is to catalyze the insertion of the proviral DNA into the genome of infected cells. Integration, following fusion
and reverse transcription, is required to replicate viral particles inside the host cells. The insertion of HIV-1 viral
genomic DNA into the host chromosome is a process often referred to as strand transfer, and this will be catalyzed by the
enzyme called integrase. Integrase inhibitors inhibit this step, and as a result are often referred to as Integrase
strand-transfer inhibitors (INSTIs) [9]. Reviews shown that the latest INSTIs have demonstrated activity against isolates
resistant to both RTIs and PIs [9,10]. And also the drugs can be administered once per day without the need for a
pharmacokinetic booster and may be co-formulated with other antiretrovirals in a single-tablet regimen hence they offer
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advantages in safety, efficacy, and simplicity of dosing [11,12,13,14,15].

Mathematical modeling has helped to improve our understanding of the infection as well as the dynamics of the immune
response. Fitting models to clinical data has provided estimates for the turnover rate of target cells [16,17,18] the
lifetime of infected cells and viral particles [19,20], as well as for the rate of viral production by infected cells [21,22].
Most mathematical models applied to experimental data on viral infections have been formulated as systems of ordinary
differential equations [23,19,20]. The cytotoxic T Lymphocytes (CTLs) contribute a role to kill infected cells due to a
cell-mediated immune response, this will lead to decline in Viraemia for the primary infections of HIV [24,25,15].

In this model both the infections, the acute and chronic infections, are considered and as a result the cytotoxic T
Lymphocytes (CTLs), which will lead to decline in Viremia for the acute infections of HIV. [26,24] And the interaction
of T-cells and the virus population is not linear as it may be less than linear due to saturation at high virus concentration
and may be greater than linear if infectious fraction was very small or if multiple exposures were necessary for infection
[24]. Further, due to failure of entry of the virus in to the host cells [25], there is a fraction of pre-INSTI T-cells revert
back to uninfected class.

2 The model

We develop a mathematical model for primary infection with INSTI inhibitor under the above mentioned assumptions.
We consider three populations of CD4+ T cells and the virus population.

(1) T represents density of susceptible CD4+ T cells,
(2) T ∗

1 represents density of infected CD4+ T cells which are in pre-INSTI class,
(3) T ∗ represents density of infected CD4+ T cells in which integration is completed (post-INSTI class) and they are

capable of producing virus and
(4) V is virus density.

Here we discuss the dynamics of the above populations: CD4+ T cells will be produced from bone marrow and thymus
with constant rate s and dies with natural death rate µ so that the population decreases by µT . We considered the
interactions of T-cells and Virus populations are non linear as it is less than linear when the saturation of the virus
population is high and greater than linear when the infection fraction is very small so we represent this situation with
incidence rate q and having the interaction-infection rate k, kV T q population will leave the population of T-cells and
progress to pre-INSTI T-cells, T ∗

1 . These pre-INSTI T-cells will leave to Post-INSTI T-cells, T ∗ with translation rate α
but due to the presence of INSTI drug of efficacy η where 0 < η < 1 , ηαT ∗

1 amount of cells will reverts back to
uninfected class of T , and the remaining (1− η)αT ∗

1 progress to class of T ∗. Besides, due to incomplete process of
integration of the virus bT ∗

1 amount revert back to uninfected T-cells[27]. Moreover the immune response of the CTLa
will kill productively infected cells, T ∗ with rate of p, so pT ∗V amount of cells will be cleared from the population.
Hence we have the following model.

dT
dt

= s− kV T q −µT +(ηα +b)T ∗
1 (1)

dT ∗
1

dt
= kV T q − (µ1 +α +b)T ∗

1 (2)

dT ∗

dt
= (1−η)αT ∗

1 −δT ∗− pT ∗V (3)

dV
dt

= NδT ∗− cV (4)
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with T (0) = T0,T ∗
1 (0) = 0,T ∗(0) = 0,V (0) = V0. Here µ1 is death rate of infected cells, δ represents death rate of

actively infected cells and includes the possibility of death by bursting of infected T cells, c is the clearance rate of virus
and N is the total number of viral particles produced by an infected cell. p is the efficacy of the immune response in
killing infected cells by CTLs.

The above system has the following two steady states.

(1) The non-infected steady state E1 = (T̂ = s
µ ,0,0,0) and

(2) The infected steady state E2 = (T ,T ∗
1 ,T

∗,V ) with components.

T =

(
(µ1 +α +b)c
Nαk(1−η)

) 1
q

,

T ∗
1 =

k2αNδ (1−η)

p(µ1 +α +b)2 T 2q − kδ
P(µ1 +α +b)

T q,

T ∗ =− c
2N p

+

√
c2

4N2P2 +
αc(1−η)

pNδ
T ∗

1

V =
Nδ
c

T ∗.

Feasible existence of E2 is ensured whenever basic reproduction number

R0 =

(
s
µ

)[
kαN(1−η)

c(µ1 +α +b)

] 1
q

> 1.

So we find the critical value for the drug efficacy.

ηcrit = 1− µc(µ1 +α +b)
Nαks

.

Whenever η < ηcrit both E1 and E2 coexist and when η > ηcrit , the infection is cleared and only uninfected steady state
E1 will exist.

Boundedness of solution: Equations (1) and (2) of the system give

d
dt
(T +T ∗

1 ) = s−µT −µ1T ∗
1 − (1−η)αT ∗

1 ≤ s−µm(T +T ∗
1 ),

where µm = min(µ ,µ1). Hence limsup(T + T ∗
1 ) ≤

s
µm

. Without loss of generality, we can assume that limsupT ≤ s
µm

and limsupT ∗
1 ≤ s

µm
. Now using the bound for T ∗

1 in Eq. (3), we get the bound for T ∗ and using this in (4), we get the
following positively invariant set

Γ = {(T,T ∗
1 ,T

∗,V ) ∈ R4 : 0 ≤ T,T ∗
1 ≤ s

µm
,0 ≤ T ∗ ≤ M,0 ≤V ≤ S}

with respect to the system (1) - (4), where

M =
αs(1−η)

µmδ
and S =

Nαs(1−η)

µmc
.
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3 Stability analysis

Theorem 1. The non-infected steady state E1 is locally stable if and only if R0 < 1.

Proof. The linearized matrix evaluated at E1 is given as
−µ ηα +b 0 −k( s

µ )
q

0 −(µ1 +α +b) 0 k( s
µ )

q

0 (1−η)α −δ 0
0 0 Nδ −c


and its characteristic equation is (λ +µ)(λ 3 +A1λ 2 +A2λ +A3) = 0, where

A1 = µ1 +α +b+δ + c > 0,

A2 = (µ1 +α +b)(δ + c)+ cδ > 0 and

A3 = cδ (µ1 +α +b)− kNδα(1−η)(
s
µ
)

q
.

One eigenvalue is negative, λ = −µ , the local stability of E1 demands all roots of λ 3 +A1λ 2 +A2λ +A3 = 0 to have
negative real parts. It can easily be see that A1A2 −A3 > 0. Moreover, R0 < 1 gives that A3 > 0, hence, Routh-Hurwitz
criterion is satisfied. If R0 < 1, the characteristic equation of the linearized matrix has a zero root which is simple and all
other roots have negative real parts. Hence, E1 will be locally stable for R0 < 1.

Theorem 2. The infected steady state E2 whenever it exists (i.e., for R0 > 1), is locally asymptotically stable.

Proof. The Jacobian matrix evaluated at E2 is given as
−qkV T q−1 −µ ηα +b 0 −kT q

qkV T q−1 −(µ1 +α +b) 0 kT q

0 (1−η)α −δ − pV −pT ∗

0 0 Nδ −c


and its characteristic equation is λ 4 +B1λ 3 +B2λ 2 +B3λ +B4 = 0 where

B1 = α +b+ c+δ +µ +µ1 + pV +qkV T q−1
,

B2 = c(δ + pV )+Nδ pT ∗+µ1qkV T q−1
+αkq(1−η)V T q−1

+µ(µ1 +α +b)+(δ + pV + c)(qkV T q−1
+µ +µ1 +α +b)

B3 = (c+δ + pV )[(µ1 +α(1−η))qkV T q−1
+µ(µ1 +α +b)]

+ cδ (µ +qkV T q−1
)+(cpV +NδPT ∗)(µ +µ1 +α +b+qkV T q−1

)+ cδ (µ1 +α +b)−Nαkδ (1−η)T q

B4 = (cpV +Nδ pT ∗)[µ(µ1 +α +b)+µ1qkV T q−1
+αk(1−η)qV T q−1

]

+(µ +α(1−η))cδqkV T q−1
+ cδ µ(µ1 +α +b)−µNαδk(1−η)T q

.

Since R0 < 1 and T q
< ( s

µ )
q the last two terms of B3 and B4

cδ (µ1 +α +b)−Nαkδ (1−η)T q
> 0 and

cδ µ(µ1 +α +b)−µNαδk(1−η)T q
> 0.
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Hence, each Bi > 0, for i = 1,2,3, and 4 as each of all the other terms are positive. Moreover, with the help of MAPLE it
is easy to show

∆1 = B1B2 −B3 > 0,∆2 = ∆1B3 −B2
1B4 > 0 and ∆3 = B4∆2 > 0,

Therefore, by the Routh Hurwitz criterion all the roots of the characteristic equation of have negative real parts.

Theorem 3. The non-infected steady state E1 is globally asymptotically stable if R0 ≤ 1.

Proof. Define a Lyapunov function L of system (1) - (4) as follows:

L =
α(1−η)p
(µ1 +α +b)

T ∗
1 + pT ∗+

p
N

V.

Its derivative along a solution of system (1) - (4),

dL
dt

=

[
(α(1−η)kT q

(µ1 +α +b)
− pT ∗− c

N

]
pV.

Then for R0 ≤ 1, we have (
s
µ

)[
Nαk(1−η)

(µ1 +α +b)c

] 1
q

≤ 1

which gives [
(α(1−η)k( s

µ )
q

(µ1 +α +b)
− pT ∗− c

N

]
pV ≤ 0,

at E1 we have have T = s
µ hence dL

dt ≤ 0. Then by Lyapunov-LaSalle Theorem The non infected steady E1 is globally
asymptotically stable.

4 Numerical simulations and results

To check the validity of the model (1) - (4)and to provide an illustration for analytical results, we solve the system
numerically in MATLAB using the selected parametric values shown in Table 1.

Parameter Value Reference
s=inflow rate of CD4+ T cells 10 mm3day−1 [28]
k=Interaction - infection Rate of T-cells 0.000024 mm3day−1 [28]
δ=Death rate of infected cells 0.26 day−1 [28]
c=Clearance rate of Virus 2.4 day−1 [28]
µ=Natural death rate of T cells 0.01 day−1 [16]
µ1=death Rate of Latent cells (T ∗

1 ) 0.015 day−1 [29]
η=INSTI Drug efficacy Varying 0.6,0.7,0.8,0.9 −

Table 1: Parametric values for numerical simulation

Based on literature [19,?,?,?,?,?,?] the other parameters vary,

(1) the translation rate α of T cells to T ∗
1 varies between 0.3 and 0.5 and α = 0.4 is taken for simulation

(2) the burst size of virus N varies between 100 and some thousands, we took N = 1000
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(3) the reverting rate b of infected T ∗
1 cells to T-cells has different values and we took b = 0.05.

(4) We also consider the two infection stages: the acute infection with p varies from 0.01 to 0.04 and the chronic infection
with p varies from 0.00025 to 0.001.

(5) we assumed the drug efficacy η to vary from 0.6 to 0.9.
(6) incidence rate q of Virus V and T cells to vary from 0.92 to 1.02.

For all of the simulations the initial conditions are taken to be the same as T (0) = 300mm−3,T ∗
1 (0) = 10mm−3,T ∗(0) =

10mm−3 and V (0) = 10mm−3.

Fig. 1: Solution Trajectories of system (1) - (4) for different values of η keeping p=0.0005 and q=0.97

In Fig. 1 the numerical simulation done for INSTI inhibitor drug efficacy η varying from 0.6 to 0.9, p=0.0005, q=0.97 and
the other parameters as described above. In the left top piece of Fig. 1 it is shown that the level of CD4+ T cells increases
with increase in η .
The right top piece show also for η close to 0.9 the latent T ∗

1 cells populations drops down towards 0. It can also be seen
that for η = 0.6, 0.7 and 0.8 the density of T ∗

1 decreases for the first few weeks and increases back in few months. The
initial value T ∗

1 (0) = 10mm−3 will increase to around 16, 13 and 7 resp.
In left bottom piece the infected cells density T ∗ will be below half mark of the initial value T ∗(0) = 10mm−3 specially
for η close to 0.9 T ∗ closes down to 0.
In right bottom piece shows when the drug efficacy η increases towards 0.9 the system approaches to the infection free
steady state and as η increases from 0.6 to 0.9 the viral level decreases and in case when η = 0.9 it approaches to zero.
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Fig. 2: Solution Trajectories of system (1) - (4) for different values of p keeping η = 0.6 and q=0.97

In Fig. 2 we simulated numerically for p = 0.00025 to 0.001 again for same set of parameters as above keeping η = 0.6
and q=0.97. It can be easily seen that increase in p results increasing in CD4+ T cells and decreasing in viral level.

Fig. 3: Solution Trajectories of system (1) - (4) for different values of q keeping η=0.6, and p=0.0005

In Fig. 3 the simulation is done for q=0.92 to 1.02, η=0.6, and p=0.0005 with remaining parameters in 1. The figure shows
that whenever q increases the CD4+ T cells decreases and the Virus density increases.
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Fig. 4: Solution Trajectories of system (1) - (4) for acute infection taking different values of η keeping p=0.02 and q=0.97

In Fig. 4 the simulation of the system (1) - (4) has been done for acute infection stage taking η to vary from 0.6 to 0.9
keeping p=0.02 and q=0.97. It shows that the change in drug efficacy doesn’t produce much difference.
In Fig. 5 the simulation is done for p=0.01 to 0.04 and the result indicate there is no such a big difference in both T-celss
and the viral loads.

Fig. 5: Solution Trajectories of system (1) - (4) for acute infection taking different values of p keeping η=0.6 and q=0.97
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5 Conclusion

In this paper we proposed a mathematical model for HIV infection in the presence of INSTI inhibitor drug. It was
considered that only INST inhibitor was given. This model is different from others in literature since it considers the
possibility of incidence rate of V and T, i.e q, being non-linear; the killing rate of virus producing cells by CTL; and the
reverting rate of infected cells back into healthy T-cells with INSTI inhibitor administered whenever the drug efficacy is
not 100%. We analyzed the stability of the equilibrium points. If the basic reproduction number R0 ≤ 1 is satisfied then
the infection will be cleared and the non-infected steady state E1 will be globally stable and The infected steady state E2

is locally asymptotically stable if R0 > 1. It was shown using numerical simulations that when the efficacy was increased
to 90% the infection was cleared. Whenever the incidence rate q is getting lower below linear the Viral load increases
and getting grater than linear the viral load decreases. It is also shown that whenever CTL killing rate increased the viral
load decreases.
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