Fixed point theorems for (F, ψ, φ) - contractions on ordered S-Complete Hausdorff uniform spaces

Vildan Ozturk ${ }^{1}$, Arslan Hojat Ansari ${ }^{2}$
${ }^{1}$ Department of elementary education, Faculty of Education, University Of Artvin Coruh, Artvin, Turkey
${ }^{2}$ Department of Mathematics, Karaj Branch,Islamic Azad University, Karaj, Iran

Received: 19 January 2016, Accepted: 27 February 2017
Published online: 25 March 2017.

Abstract

The aim of this paper is to proved some new fixed point theorems for (F, ψ, φ)-weak contractions on ordered S-complete Hausdorff uniform spaces. Our results extend existing results in the literature.

Keywords: Fixed point, (F, ψ, φ)-contraction, C-class function, E-distance ,S-complete space.

1 Introduction

Aamri and El Moutawakil [2] proved some common fixed point theorems for some new contractive or expansive maps in uniform spaces by introducing the notions of an E-distance. Some other authors proved fixed point theorems using this concept ([1],[3-5],[8],[10],[11],[18],[19],[22],[23]).

Existence of fixed points in partially ordered metric spaces was first investigated in 2004 by Ran and Reurings [21] and then by Nieto and Lopez [17]. Recently, some results were proved in this direction ([9],[10],[13],[16],[20]).

Definition 1. ([2]) Let (X, ϑ) be a uniform space. A function $p: X \times X \longrightarrow \mathbb{R}^{+}$is said to be an A-distance if for any $V \in \vartheta$, there exists $\delta>0$, such that $p(z, x) \leq \delta$ and $p(z, y) \leq \delta$ for some $z \in X$ imply $(x, y) \in V$.

Definition 2. ([2]) Let (X, ϑ) be a uniform space. A function $p: X \times X \longrightarrow \mathbb{R}^{+}$is said to be an $E-$ distance if
$(p 1) p$ is an A-distance, $(p 2) p(x, y) \leq p(x, z)+p(z, y)$ for all $x, y, z \in X$.
Example 1. ([2]) Let $X=[0,+\infty)$ and $p(x, y)=\max \{x, y\}$. The function p is an A-distance. Also, p is an E-distance.
The following lemma embodies some useful properties of E - distance.
Lemma 1. ([1], [2]) Let (X, ϑ) be a Hausdorff uniform space and p be an E-distance on X. Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be arbitrary sequences in X and $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ be sequences in \mathbb{R}^{+}converging to 0 . Then, for $x, y, z \in X$, the following holds
(a) If $p\left(x_{n}, y\right) \leq \alpha_{n}$ and $p\left(x_{n}, z\right) \leq \beta_{n}$ for all $n \in \mathbb{N}$, then $y=z$. In particular, if $p(x, y)=0$ and $p(x, z)=0$, then $y=z$.
(b) If $p\left(x_{n}, y_{n}\right) \leq \alpha_{n}$ and $p\left(x_{n}, z\right) \leq \beta_{n}$ for all $n \in \mathbb{N}$, then $\left\{y_{n}\right\}$ converges to z.
(c) If $p\left(x_{n}, x_{m}\right) \leq \alpha_{n}$ for all $m>n$, then $\left\{x_{n}\right\}$ is a Cauchy sequence in (X, ϑ).

Let (X, ϑ) be a uniform space equipped with E - distance p. A sequence in X is $p-$ Cauchy if it satisfies the usual metric condition. There are several concepts of completeness in this setting.

Definition 3. $([1],[2])$ Let (X, ϑ) be a uniform space and p be an $E-$ distance on X.Then
(i) X is said to be S-complete if for every p-Cauchy sequence $\left\{x_{n}\right\}$ there exists $x \in X$ with $\lim _{n \rightarrow \infty} p\left(x_{n}, x\right)=0$,
(ii) X is said to be p-Cauchy complete if for every p-Cauchy sequence $\left\{x_{n}\right\}$ there exists $x \in X$ with $\lim _{n \rightarrow \infty} x_{n}=x$ with respect to $\tau(\vartheta)$,
(iii) $f: X \longrightarrow X$ is p-continuous if $\lim _{n \rightarrow \infty} p\left(x_{n}, x\right)=0$ implies $\lim _{n \rightarrow \infty} p\left(f x_{n}, f x\right)=0$,
(iv) $f: X \longrightarrow X$ is $\tau(\vartheta)$-continuous if $\lim _{n \rightarrow \infty} x_{n}=x$ with respect to $\tau(\vartheta)$ implies $\lim _{n \rightarrow \infty} f x_{n}=f x$ with respect to $\tau(\vartheta)$.

Remark. ([2]) Let (X, ϑ) be a Hausdorff uniform space and let $\left\{x_{n}\right\}$ be a p-Cauchy sequence. Suppose that X is S-complete, then there exists $x \in X$ such that $\lim _{n \rightarrow \infty} p\left(x_{n}, x\right)=0$. Lemma 4 (b) then gives $\lim _{n \rightarrow \infty} x_{n}=x$ with respect to the topology $\tau(\vartheta)$. Therefore S-completeness implies $p-$ Cauchy completeness.

In 2014, the concept of C-class functions were introduced by H. Ansari in [6]. After some fixed point theorems were gived using this concept ([7],[12],[14]).

Definition 4. ([6]) A mapping $F:[0, \infty)^{2} \rightarrow \mathbb{R}$ is called C-class function if it is continuous and satisfies following axioms.
(1) $F(s, t) \leq s$;
(2) $F(s, t)=s$ implies that either $s=0$ or $t=0$; for all $s, t \in[0, \infty)$.

Note for some F we have that $F(0,0)=0$. We denote C-class functions as \mathscr{C}.
Example 2. The following functions $F:[0, \infty)^{2} \rightarrow \mathbb{R}$ are elements of \mathscr{C}, for all $s, t \in[0, \infty)$.
(1) $F(s, t)=s-t, F(s, t)=s \Rightarrow t=0$;
(2) $F(s, t)=m s, 0<m<1, F(s, t)=s \Rightarrow s=0$;
(3) $F(s, t)=\frac{s}{(1+t)^{r}} ; r \in(0, \infty), F(s, t)=s \Rightarrow s=0$ or $t=0$;
(4) $F(s, t)=\log \left(t+a^{s}\right) /(1+t), a>1, F(s, t)=s \Rightarrow s=0$ or $t=0$;
(5) $F(s, t)=\ln \left(1+a^{s}\right) / 2, a>e, F(s, 1)=s \Rightarrow s=0$;
(6) $F(s, t)=(s+l)^{\left(1 /(1+t)^{r}\right)}-l, l>1, r \in(0, \infty), F(s, t)=s \Rightarrow t=0$;
(7) $F(s, t)=s \log _{t+a} a, a>1, F(s, t)=s \Rightarrow s=0$ or $t=0$;
(8) $F(s, t)=s-\left(\frac{1+s}{2+s}\right)\left(\frac{t}{1+t}\right), F(s, t)=s \Rightarrow t=0$;
(9) $F(s, t)=s \beta(s), \beta:[0, \infty) \rightarrow(0,1)$, and is continuous, $F(s, t)=s \Rightarrow s=0$;
(10) $F(s, t)=s-\frac{t}{k+t}, F(s, t)=s \Rightarrow t=0$;
(11) $F(s, t)=s-\varphi(s), F(s, t)=s \Rightarrow s=0$,here $\varphi:[0, \infty) \rightarrow[0, \infty)$ is a continuous function such that $\varphi(t)=0 \Leftrightarrow t=0$;
(12) $F(s, t)=\operatorname{sh}(s, t), F(s, t)=s \Rightarrow s=0$,here $h:[0, \infty) \times[0, \infty) \rightarrow[0, \infty)$ is a continuous function such that $h(t, s)<1$ for all $t, s>0$;
(13) $F(s, t)=s-\left(\frac{2+t}{1+t}\right) t, F(s, t)=s \Rightarrow t=0$;
(14) $F(s, t)=\sqrt[n]{\ln \left(1+s^{n}\right)}, F(s, t)=s \Rightarrow s=0$;
(15) $F(s, t)=\phi(s), F(s, t)=s \Rightarrow s=0$,here $\phi:[0, \infty) \rightarrow[0, \infty)$ is a upper semicontinuous function such that $\phi(0)=0$, and $\phi(t)<t$ for $t>0$;
(16) $F(s, t)=\frac{s}{(1+s)^{r}} ; r \in(0, \infty), F(s, t)=s \Rightarrow s=0$.

We shall also state the following definition of altering distance function which is required in the sequel to establish a fixed point theorem in uniform space.

Definition 5. ([15]) A function $\psi:[0, \infty) \rightarrow[0, \infty)$ is called an altering distance function if the following properties are satisfied:
(i) $\psi(0)=0$,
(ii) ψ is continuous and monotonically nondecreasing.

Remark. We denote set of altering distance functions by Ψ.
In this paper, we assume that
Definition 6. ([6])An ultra altering distance function is a continuous, nondecreasing mapping $\varphi:[0, \infty) \rightarrow[0, \infty)$ such that $\varphi(t)>0, t>0$ and $\varphi(0) \geq 0$.

Remark. We denote set ultra altering distance functions by Φ_{u}.

2 Fixed point results

In this section, we prove some fixed point results using C-class function in ordered uniform spaces.
Theorem 1. Let (X, ϑ, \preceq) be an ordered Hausdorff uniform space and p be an E-distance on S-complete and p-bounded space X. Let $f, g: X \rightarrow X$ be two commuting p-continuous or $\tau(\vartheta)$-continuos selfmappings such that
(i) $f(X) \subseteq g(X)$,
(ii) f is g-nondecreasing,
(iii) $\psi(p(f x, f y)) \leq F(\psi(p(g x, g y)), \varphi(p(g x, g y)))$ for all $x, y \in X$ with $g x \preceq$ gy where $\psi \in \Psi, \varphi \in \Phi_{u}$ and $F \in \mathscr{C}$

If there exists $x_{0} \in X$ with $g x_{0} \preceq f x_{0}$ then f and g have an unique common fixed point.
Proof. If $x_{0} \in X$ such that $g x_{0} \preceq f x_{0}$. Since $f(X) \subseteq g(X)$, we can choose $x_{1} \in X$ such that $f x_{0}=g x_{1}$. Then $g x_{0} \preceq f x_{0}=g x_{1}$. As f is g-nondecreasing, we get $f x_{0} \preceq f x_{1}$. Continuing this process, we can construct a sequence $\left\{x_{n}\right\}$ in X such that

$$
g x_{n}=f x_{n-1}, \quad n=1,2, \ldots
$$

for which

$$
g x_{0} \preceq f x_{0}=g x_{1} \preceq f x_{1}=g x_{2} \preceq \cdots \preceq f x_{n-1}=g x_{n} \preceq \cdots .
$$

From (iii),

$$
\begin{align*}
\psi\left(p\left(f x_{n}, f x_{n+1}\right)\right) & \leq F\left(\psi\left(p\left(g x_{n}, g x_{n+1}\right)\right), \varphi\left(p\left(g x_{n}, g x_{n+1}\right)\right)\right) \\
& \leq \psi\left(p\left(g x_{n}, g x_{n+1}\right)\right)=\psi\left(p\left(f x_{n-1}, f x_{n}\right)\right) \tag{1}
\end{align*}
$$

so $p\left(f x_{n}, f x_{n+1}\right) \leq p\left(f x_{n-1}, f x_{n}\right)$,therefore $\left\{p\left(f x_{n}, f x_{n+1}\right)\right\}$, is decreasing so tend to $r \geq 0$,

In (1), on taking limit as $n \rightarrow \infty$, by definiton of F,

$$
\psi(r) \leq F(\psi(r), \varphi(r)) \leq \psi(r)
$$

So, $\psi(r)=0$, or,$\varphi(r)=0$, therefore $r=0$. Hence

$$
\lim _{n \rightarrow \infty} p\left(x_{n+1}, x_{n}\right)=0
$$

Similarly, we can show

$$
\lim _{n \rightarrow \infty} p\left(x_{n}, x_{n+1}\right)=0
$$

Next we show that $\left\{x_{n}\right\}$ is a $p-$ Cauchy sequence. Assume $\left\{y_{n}=f x_{n}\right\}$ is not $p-$ Cauchy. Then there exists an $\varepsilon>0$ for which we can find subsequences $\left\{y_{m(k)}\right\}$ and $\left\{y_{n(k)}\right\}$ of $\left\{y_{n}\right\}$ with $m(k)>n(k)>k$ such that

$$
\begin{equation*}
p\left(y_{n(k)}, y_{m(k)}\right) \geq \varepsilon . \tag{2}
\end{equation*}
$$

Further, corresponding to $n(k)$, we can choose $m(k)$ in such a way that it is the smallest integer with $m(k)>n(k)$ and satisfying (2). Hence,

$$
p\left(y_{n(k)}, y_{m(k)-1}\right)<\varepsilon
$$

Then we have

$$
\varepsilon \leq p\left(y_{n(k)}, y_{m(k)}\right) \leq p\left(y_{n(k)}, y_{m(k)-1}\right)+p\left(y_{m(k)-1}, y_{m(k)}\right),
$$

that is

$$
\varepsilon \leq p\left(y_{n(k)}, y_{m(k)}\right)<\varepsilon+p\left(y_{m(k)-1}, y_{n(k)}\right) .
$$

Taking the limit as $k \rightarrow \infty$, we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty} p\left(x_{n(k)}, x_{m(k)}\right)=\varepsilon \tag{3}
\end{equation*}
$$

From (p2),

$$
p\left(y_{n(k)}, y_{m(k)}\right) \leq p\left(y_{n(k)}, y_{n(k)+1}\right)+p\left(y_{n(k)+1}, y_{m(k)+1}\right)+p\left(y_{m(k)+1}, y_{m(k)}\right)
$$

and

$$
p\left(y_{n(k)+1}, y_{m(k)+1}\right) \leq p\left(y_{n(k)+1}, y_{n(k)}\right)+p\left(y_{n(k)}, y_{m(k)}\right)+p\left(y_{m(k)}, y_{m(k)+1}\right) .
$$

Taking the limit as $k \rightarrow \infty$ we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty} p\left(y_{n(k)+1}, y_{m(k)+1}\right)=\varepsilon . \tag{4}
\end{equation*}
$$

From (iii),

$$
\begin{aligned}
\psi\left(p\left(y_{n(k)+1}, y_{m(k)+1}\right)\right) & =\psi\left(p\left(f x_{n(k)+1}, f x_{m(k)+1}\right)\right) \\
& \leq F\left(\psi\left(p\left(g x_{n(k)+1}, g x_{m(k)+1}\right)\right), \varphi\left(p\left(g x_{n(k)+1}, g x_{m(k)+1}\right)\right)\right) \\
& =F\left(\psi\left(p\left(f x_{n(k)}, f x_{m(k)}\right)\right), \varphi\left(p\left(f x_{n(k)}, f x_{m(k)}\right)\right)\right) \\
& =F\left(\psi\left(p\left(y_{n(k)}, y_{m(k)}\right)\right), \varphi\left(p\left(y_{n(k)}, y_{m(k)}\right)\right)\right)
\end{aligned}
$$

Letting $k \rightarrow \infty$ in the above inequality, using (3), (4), the continuities of ψ and φ and definition of F, we have

$$
\psi(\varepsilon) \leq F(\psi(\varepsilon), \varphi(\varepsilon)) \leq \psi(\varepsilon)
$$

So, $\psi(\varepsilon)=0$ or $\varphi(\varepsilon)=0$, therefore $\varepsilon=0$ which is a contradiction. Hence $\left\{f x_{n}\right\}$ is a p-Cauchy sequence. Since S-completeness of X, there exists a $z \in X$ such that

$$
\lim _{n \rightarrow \infty} p\left(f x_{n}, z\right)=0 \text { and } \lim _{n \rightarrow \infty} p\left(g x_{n}, z\right)=0
$$

Moreover, the p-continuity of f and g implies that

$$
\lim _{n \rightarrow \infty} p\left(g f x_{n}, g z\right)=\lim _{n \rightarrow \infty} p\left(f g x_{n}, f z\right)=0
$$

Since f and g are commuting, then $f g=g f$. So we have

$$
\lim _{n \rightarrow \infty} p\left(f g x_{n}, g z\right)=\lim _{n \rightarrow \infty} p\left(f g x_{n}, f z\right)=0
$$

By Lemma 4(a), we have $f z=g z$. Since $f g=g f$, we have $f f z=f g z=g f z=g g z$. . From (iii) and definition of F, ψ and φ,

$$
\begin{align*}
\psi(p(f z, f f z)) & \leq F(\psi(p(g z, g f z)), \varphi(p(g z, g f z))) \\
& =F(\psi(p(f z, f f z)), \varphi(p(f z, f f z))) \tag{5}
\end{align*}
$$

so, $\psi(p(f z, f f z))=0$, or,$\varphi(p(f z, f f z))=0$. Thus $p(f z, f f z)=0$. Again From (iii), we have

$$
\begin{align*}
\psi(p(f z, f z)) & \leq F(\psi(p(g z, g z)), \varphi(p(g z, g z))) \\
& =F(\psi(p(f z, f z)), \varphi(p(f z, f z))) \tag{6}
\end{align*}
$$

so, $\psi(p(f z, f z))=0$, or,$\varphi(p(f z, f z))=0$. Thus $p(f z, f z)=0$. Thus from (5), (6) and Lemma 4(a), we get $f f z=f z$. Hence $f z$ is common fixed point of f and g. The proof is similar when T is $\tau(\vartheta)$-continuous.

Now, we show uniqueness. Suppose that there exists $u, t \in X$ such that $f u=g u=u$ and $f t=g t=t$. Then by (iii),

$$
\begin{aligned}
\psi(p(u, t)) & =\psi(p(f u, f t)) \leq F(\psi(p(g u, g t)), \varphi(p(g u, g t))) \\
& =F(\psi(p(u, t)), \varphi(p(u, t)))
\end{aligned}
$$

so, $\psi(p(u, t))=0$, or,$\varphi(p(u, t))=0$. Thus $p(u, t)=0$. Similarly, we show that $p(t, u)=0$. By (p2)

$$
p(u, u) \leq p(u, t)+p(t, u)
$$

and therefore $p(u, u)=0$. By Lemma 4 (a), we have $u=t$.
Corollary 1. Let (X, ϑ, \preceq) be an ordered Hausdorff uniform space. Suppose p be an E-distance on S-complete and $p-$ bounded space X. Let $f: X \rightarrow X$ be a p-continuous or $\tau(\vartheta)$-continuous nondecreasing mapping such that for all comparable $x, y \in X$ with

$$
\psi(p(f x, f y)) \leq F(\psi(p(x, y)), \varphi(p(x, y)))
$$

where $\psi \in \Psi, \varphi \in \Phi$ and $F \in \mathscr{C}$.

If there exists $x_{0} \in X$ with $x_{0} \preceq f\left(x_{0}\right)$ then f has a fixed point.
Corollary 2. ([23]) Let (X, ϑ, \preceq) be a Hausdorff uniform space, " $\preceq "$ be a partial order on X and p be an E-distance on S-complete space X. Let $f: X \rightarrow X$ be a p-continuous or $\tau(\vartheta)$-continuous nondecreasing mapping such that for all comparable $x, y \in X$ with

$$
\psi(p(f x, f y)) \leq \psi(p(x, y))-\varphi(p(x, y))
$$

where $\psi, \varphi:[0, \infty) \rightarrow[0, \infty)$ are altering distance functions.
If there exists $x_{0} \in X$ with $x_{0} \preceq f\left(x_{0}\right)$ then f has a fixed point.
Corollary 3. Let (X, ϑ, \preceq) be an ordered Hausdorff uniform space. Suppose p be an E-distance on S-complete and $p-$ bounded space X. Let $f: X \rightarrow X$ be a p-continuous or $\tau(\vartheta)$-continuous nondecreasing mapping such that for all
comparable $x, y \in X$ with

$$
\psi(p(f x, f y)) \leq k \psi(p(x, y))
$$

where $\psi:[0, \infty) \rightarrow[0, \infty)$ is an altering distance function and $0<k<1$.

If there exists $x_{0} \in X$ with $x_{0} \preceq f\left(x_{0}\right)$ then f has a fixed point.
Example 3. Let $F(s, t)=\ln (1+s), X=[0,1]$ equipped with usual metric $d(x, y)=|x-y|$ and a partial order be defined as $x \preceq y$ whenever $y \leq x$ and suppose

$$
\vartheta=\{V \subset X \times X: \Delta \subset V\} .
$$

Define the function p as $p(x, y)=y$ for all x, y in X and $f, g: X \rightarrow X$ defined by $f(t)=\frac{3 t}{4}$ and $g(t)=\frac{t}{16}$. Consider the function ψ and φ defined as follows

$$
\psi(t)=\frac{t}{5} \text { and } \varphi(t)=\frac{t}{3} .
$$

Definition of $\vartheta, \cap_{V \in \vartheta} V=\Delta$ and this show that the uniform space (X, ϑ) is Hausdorff uniform space. And also X is S-complete. On the other hand, p is an E-distance. f, g are commuting, p-continuous and f is g-nondecreasing. We have that for all $x, y \in X$

$$
p(f x, f y) \leq \ln (1+\psi(p(x, y)))=F(\psi(p(g x, g y)), \varphi(p(g x, g y))) .
$$

And 0 is the unique common fixed point of f and g.

References

[1] M. Aamri, S. Bennari, D. El Moutawakil, Fixed points and variational principle in uniform spaces, Siberian Electronic Mathematical Reports 3 (2006) 137-142.
[2] M. Aamri, D. El Moutawakil, Common fixed point theorems for E-contractive or E-expansive maps in uniform spaces, Acta Mathematica Academiae Peadegogicae Nyiregyhaziensis 20 (2004) 83-91.
[3] M. Alimohammady, M. Ramzannezhad, On ϕ-fixed point for maps on uniform spaces, J. Nonlinear Sci. and Appl 4 (1) (2008) 241-143.
[4] I. Altun, Common fixed point theorems for weakly increasing mappings on ordered uniform spaces, Miskolc Mathematical Notes 12 (1) (2011) 3-10.
[5] I. Altun, M. Imdad, Some fixed point theorems on ordered uniform spaces, Filomat, 23 (3) (2009) 15-22.
[6] A. H.Ansari,Note on" $\varphi-\psi$-contractive type mappings and related fixed point", The 2nd Regional Conference on Mathematics And Applications,PNU,September (2014) 377-380.
[7] A. H. Ansari, S. Chandok, C. Ionescu, Fixed point theorems on b-metric spaces for weak contractions with auxiliary functions,Journal of Inequalities and Applications 2014 (2014) Article ID 429.
[8] A.O. Bosede, On some common fixed point theorems in uniform spaces, General Mathematics 19 (2) (2011) 41-48.
[9] L.J. Ćirić, N. Cakić, M. Rajović, J.S. Ume, Monotone generalized nonlinear contractions in partially ordered metric spaces, Fixed Point Theory Appl. 2008 (2008) Article ID 131294.
[10] R. Chugh, M. Aggarwal, Fixed points of intimate mappings in uniform spaces, Int. Journal of Math. Analysis 6 (9) (2012) 429 436.
[11] V.B. Dhagat, V. Singh, S. Nath, Fixed point theorems in uniform spaces, Int. Journal of Math. Analysis 3 (4) (2009) 197-202.
[12] Z. M. Fadail, A. G. Bin Ahmad, A. H. Ansari, S. Radenović , M. Rajović, Some common fixed point results of mappings in $0-\sigma$-complete metric-like spaces via new function, Applied Mathematical Sciences, 9 (83) (2015) 4109-4127
[13] J. Harjani, K. Sadarangani, Fixed point theorems for weakly contractive mappings in partially ordered sets, Nonlinear Anal. 71 (2009) 3403-3410.
[14] E. Hoxha, A. H.Ansari, K. Zoto, Some common fixed point results through generalized altering distances on dislocated metric spaces, Proceedings of EIIC, september 1-5 (2014) 403-409.
[15] M.S. Khan, M. Swaleh, S. Sessa, Fixed point theorems by altering distances between the points, Bulletin of the Australian Mathematical Society 30 (1) (1984) 1-9.
[16] H.K. Nashine, B. Samet, Fixed point results for mappings satisfying $(\psi, \varphi)-$ weakly contractive condition in partially ordered metric spaces, Nonlinear Anal. 74 (6) (2011) 2201-2209.
[17] J.J. Nieto, R.R. Lopez, Contractive mapping theorems in partially ordered sets applications to ordinary differantial equations, Order. 22 (2005) 223-239.
[18] M.O. Olatinwo, On some common fixed point theorems of Aamri and El Moutawakil in uniform spaces, Applied Mathematics E-Notes 8 (2008) 254-262.
[19] M.O. Olatinwo, Some common fixed point theorems for self-mappings in uniform space, Acta Mathematica Academiae Peadegogicae Nyiregyhaziensis 23 (2007) 47-54.
[20] V. Ozturk, D. Turkoglu, Common fixed point for (ψ, φ)-weak contractions on ordered gauge spaces and applications, Journal Of Nonlinear Sci. Appl. 16(3) (2015) 473-483
[21] A.C.M. Ran, M.C.B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132 (2004) 1435-1443.
[22] S. Sedghi, N. Shobkolaei, S. Firouzian, I. Altun, Cyclic ϕ-contractions on S-complete Hausdorff uniform spaces, Kuwait J. Sci., 42 (1) (2015) 55-63.
[23] D. Turkoglu, V. Ozturk, (ψ, φ)-weak contraction on ordered uniform spaces, Filomat 28:6 (2014) 1265-1269.
[24] S. Willard, General Topology, Addison-Wesley Publishing, 1970.

