
NTMSCI 5, No. 1, 287-293 (2017) 287

New Trends in Mathematical Sciences
http://dx.doi.org/10.20852/ntmsci.2017.148

Ordering based 2-uninorm on bounded lattice

Umit Ertugrul1, Mucahide Nesibe Kesicioglu2, Funda Karacal3

1,3Department of Mathematics, Karadeniz Technical University, Trabzon, Turkey
2Department of Mathematics, Recep Tayyip Erdogan University, Rize, Turkey

Received: 15 January 2017, Accepted: 10 February 2017
Published online: 2 April 2017.

Abstract: In this paper, an order induced by 2-uninorm on bounded lattices is given and some properties of the order are discussed. By
defining such an order on bounded lattice, the T-partial order, S-partial order and V-partial order are extended to a moregeneral form.
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1 Introduction

Uninorms on the unit interval[0,1] by Yager and Rybalov [15]. Because of applications of uninorm like fuzzy logic,

expert systems, neural networks, fuzzy system modelling [6,16], it is attracted interest. The generalization of uninorm to

a complete lattice has been an challenging problem for many researchers [2,4,10,14]. The order from logical operation

has gained interest [11,12,13] in recent years.

In [11], a partial order defined by means of t-norms bounded lattices has been introduced. This partial order�T is called

a T-partial order onL.

Another interesting problems is to get an order generated byuninorms on bounded lattices since uninorms are

generalization of t-norms and t-conorms. Hlinĕná et al. has introduced pre-order based on uninorm [8]. After this work,

ordering based on uninorms is studied [5]. In the same paper the order obtained by 2-uninorms is introduced without

proof and also on chain.

In this paper, we define an order induced by 2-uninorm on bounded lattices. Since uninorms are an combination of

t-norms, t-conorms, also order from 2-uninorm contains T-partial order, S-partial order and V-partial order (V is a

nullnorm) on bounded lattice with this order, the notion of ordering from 2-uninorm has importance. The paper is

organized as follows: We shortly recall some basic notions and results in Section 2. In Section 3, we give an order�U2

induced by a 2-uninormU2 on bounded latticeL. Some properties of order of 2-uninorm are investigated. Further, this

generalization is extended to the n-uninorms on bounded lattice.

2 Notations, definitions and a review of previous results

A bounded lattice(L,6) is a lattice which has the top and bottom elements, which are written as 1 and 0, respectively,

i.e., there exist two elements 1,0∈ L such that 06 x6 1, for all x∈ L.
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Definition 1. [2] Given a bounded lattice(L,≤,0,1), and a,b∈ L, if a and b are incomparable, in this case we use the

notation a‖b.

Definition 2. [2] Given a bounded lattice(L,≤,0,1), and a,b ∈ L, a≤ b, a subinterval[a,b] of L is a sublattice of L

defined as

[a,b] = {x∈ L | a≤ x≤ b}.

Similarly,(a,b] = {x∈ L | a< x≤ b}, [a,b) = {x∈ L | a≤ x< b} and(a,b) = {x∈ L | a< x< b}.

Definition 3. [10] Let (L,≤,0,1) be a bounded lattice. An operation U: L2 → L is called a uninorm on L, if it is

commutative, associative, increasing with respect to the both variables and has a neutral element e∈ L.

In this study, the notationU (e) will be used for the set of all uninorms on L with neutral element e∈ L. Moreover, if

U(0,1) = 0, U is called conjunctive uninorm and if U(0,1) = 1 U is called disjunctive uninorm.

Definition 4. [11] An operation T (S) on a bounded lattice L is called a triangular norm (triangular conorm) if it is

commutative, associative, increasing with respect to the both variables and has a neutral element1 (0).

Definition 5.[11,12] A t-norm T (or a t-conorm S) on a bounded lattice L is divisibleif the following condition holds.

For all x,y∈ L with x≤ y there is z∈ L such that x= T(y,z) (or y= S(x,z)).

Definition 6. [9] Let (L,≤,0,1) be a bounded lattice. A commutative, associative, non-decreasing in each variable

function V : L2 → L is called a nullnorm if there is an element a∈ L such that V(x,0) = x for all x≤ a , V(x,1) = x for

all x ≥ a. It can be easily obtained that V(x,a) = a for all x∈ L. So a∈ L is the zero element for V .

Definition 7. [11] Let L be a bounded lattice, T be a t-norm on L. The order defined by

x�T y :⇔ T(ℓ,y) = x for someℓ ∈ L

is called a T− partial order (triangular order) for t-norm T.

Similarly, the notionS− partial order can be defined as follows:

Definition 8. Let L be a bounded lattice, S be a t-conorm on L. The order defined by is called a S− partial order for

t-conorm S.

x�S y :⇔ S(ℓ,x) = y for someℓ ∈ L

is called a S− partial order for t-conorm S.

Note that many properties satisfied forT− partial order are also satisfied forS− partial order.

Definition 9. [5] Let (L,≤,0,1) be a bounded lattice and U∈ U (e). Define the following relation,for x,y∈ L, as

x�U y :⇔











if x,y∈ [0,e] and there exist k∈ [0,e] such that U(k,y) = x or,

if x,y∈ [e,1] and there exist ℓ ∈ [e,1] such that U(x, ℓ) = y or,

if (x,y) ∈ L∗ and x≤ y,

(1)

where Ie = {x∈ L | x‖e} and L∗ = [0,e]× [e,1]∪ [0,e]× Ie∪ [e,1]× [0,e]∪ [e,1]× Ie∪ Ie× [0,e]∪ Ie× [e,1]∪ Ie× Ie. Here,

note that the notation x||y denotes that x and y are incomparable.

Proposition 1. [5] The relation�U defined in (1) is a partial order on L.
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3 Ordering based 2-uninorm on bounded lattice

A 2-uninorm (introduced by Akella [1]) is an operation which is increasing, associative and commutative on the unit

interval with an absorbing element seperating two subintervals having their own neutral elements. Since 2- uninorms

is generalization of both nullnorms and uninorms, the operator is important. In this section, the order obtained from 2-

uninorms on bounded lattice is defined and the proof is given.By this way, we give more general form�U2 of the order

�U given in (1) on bounded lattice.

Definition 10. [3] Let (L,≤,0,1) be a bounded lattice. An operator F: L2 → L is called2-uninorm if it is commutative,

associative, increasing with respect to both variables andfulfilling

∀x≤ k F(e,x) = x and∀x≥ k F( f ,x) = x,

where e,k, f ∈ L with 0≤ e≤ k≤ f ≤ 1. By Uk(e, f ) we denote the class of all2-uninorms on bounded lattice L.

Definition 11. Let U2 ∈Uk(e, f ). Define the following relation: For every x,y∈ L,

x�U2 y :⇔



























∃ℓ≤ e such that U2(ℓ,y) = x, when x,y∈ [0,e] or,

∃m∈ [e,k] such that U2(x,m) = y, when x,y∈ [e,k] or,

∃n∈ [k, f ] such that U2(y,n) = x, when x,y∈ [k, f ] or,

∃p∈ [ f ,1] such that U2(x, p) = y, when x,y∈ [ f ,1] or,

x≤ y, otherwise.

(2)

Proposition 2.The relation�U2 defined in (2) is a partial order on bounded lattice L.

Proof. (1) If x ∈ [0,e] or x ∈ [e,k], x �U2 x sinceU2(x,e) = x. If x ∈ [k, f ] or x ∈ [ f ,1], x �U2 x sinceU2(x, f ) = x.

Otherwise, sincex≤ x, we have thatx�U2 x. So, the relation�U satisfies the reflexivity.

(2) Let x �U2 y andy�U2 x for elementsx,y ∈ L. Let x,y ∈ [0,e] (x,y∈ [k, f ]). Sincex �U2 y andy �U2 x, there exist

elementsℓ1, ℓ2 ∈ [0,e] (n1,n2 ∈ [k, f ]) such that

U2(ℓ1,y) = x andU2(ℓ2,x) = y (U2(n1,y) = x andU2(n2,x) = y).

By using the monotonicity ofU2, we have that

x=U2(ℓ1,y)≤U2(e,y) = y (x=U2(n1,y)≤U2( f ,y) = y)

and

y=U2(ℓ2,x)≤U2(e,x) = x (y=U2(n2,x)≤U2( f ,x) = x).

Thus,x = y. Let x,y ∈ [e,k] (x,y∈ [ f ,1]). Sincex �U2 y andy �U2 x, there exist elementsm1,m2 ∈ [e,k] (p1, p2 ∈

[ f ,1]) such that

U2(m1,x) = y andU2(m2,y) = x (U2(p1,x) = y andU2(p2,y) = x).

By using the monotonicity ofU2, we have that

x=U2(m2,y)≥U2(e,y) = y (x=U2(p2,y)≥U2( f ,y) = y)

and

y=U2(m1,x)≥U2(e,x) = x (y=U2(p1,x)≥U2( f ,x) = x).

Thus,x = y. Otherwise, sincex �U2 y and y �U2 x, it is obtained thatx ≤ y and y ≤ x, whencex = y. So, the

antisymmetry property holds.
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(3) Letx�U2 y andy�U2 z for elementsx,y,z∈ L.

Possible cases are as follows. 3.1.x∈ [0,e]

3.1.1.y∈ [0,e]

3.1.1.1.z∈ [0,e]

Sincex�U2 y andy�U2 z, there existℓ1, ℓ2 of [0,e] such thatU2(y, ℓ1) = x andU2(ℓ2,z) = y. Then,

x=U2(ℓ1,y) =U2(ℓ1,U2(ℓ2,z)) =U2(U2(ℓ1, ℓ2),z).

SinceU2(ℓ1, ℓ2)≤ e, it is obtained thatx�U2 z.

3.1.1.2.z 6∈ [0,e].

Sincey�U2 z, it is clear thaty ≤ z. Also, sincex�U2 y, there exists an elementℓ ≤ e such thatU2(ℓ,y) = x. It follows

x�U2 z from x=U2(ℓ,y)≤U2(e,y) = y≤ z, it is obtained thatx�U2 z.

3.1.2.y 6∈ [0,e].

Sincey 6∈ [0,e], it must be thatz 6∈ [0,e]. On the other hand, we have thatx≤ y.

3.1.2.1.y andzbe in one of interval[e,k], [k, f ] or [ f ,1] at the same time.

Let y,z ∈ [e,k]. Since y �U2 z, there existm ∈ [e,k] such thatU2(y,m) = z. It must be thatx �U2 z from

x≤ y=U2(y,e)≤U2(y,m) = z.

Same proof can be done for other cases.

3.1.2.2.y andzdon’t be in one of interval[e,k], [k, f ] or [ f ,1] at the same time.

In this case, we have thaty≤ z from y≤U2 z. Sincex≤ y andy≤ z, it is obtained thatx≤ z. Thusx≤U2 z.

3.2.x∈ [e,k].

Let y∈ [0,e]. Sincex≤U2 y, e≤ x≤ y≤ e. It is obvious.

3.2.1.y∈ [e,k].

Let z∈ [0,e]. Sincey≤U2 z, e≤ y≤ z≤ e. It is obvious.

3.2.1.1.z∈ [e,k].

Sincex�U2 y andy�U2 z, there existm1,m2 ∈ [e,k] such thatU2(x,m1) = y andU2(y,m2) = z. Then, it must be that

z=U2(y,m2) =U2(U2(x,m1),m2) =U2(x,U2(m1,m2)).

SinceU2(m1,m2) ∈ [e,k], x≤U2 z.

3.2.1.2.z 6∈ [e,k].

Sincey�U2 z, y≤ z. Also, there existm∈ [e,k] such thatU2(x,m) = y. Sincex=U2(x,e)≤U2(x,m) = y≤ z, x�U2 z.

3.2.1.y 6∈ [e,k].

Sincey 6∈ [e,k], it must be thatz 6∈ [e,k]. On the other hand, we have thatx≤ y.

3.2.2.1.y andzbe in one of interval[k, f ] or [ f ,1] at the same time.

Let y,z∈ [k, f ]. There existn∈ [k, f ] such thatU2(z,n) = y from y≤U2 z. Sincex≤ y=U2(z,n)≤U2(z, f ) = z, x�U2 z.

3.2.2.2.y andzdon’t be in one of interval[k, f ] or [ f ,1] at the same time.

In this case, we have thaty≤ z. Sincex≤ y andy≤ z, x≤ z. Thus,x�U2 z.

3.3.x∈ [k, f ] or x∈ [ f ,1].

Similar proof can be done forx∈ [k, f ] andx∈ [ f ,1] as done in[0,e] and[e, f ] respectively.

3.4.x 6∈ [0,e]∪ [e,k]∪ [k, f ]∪ [ f ,1].

In this case, we have thatx≤ y for all y∈ L.

3.4.1.y andzbe in one of interval[0,e], [e,k], [k, f ] or [ f ,1] at the same time.

Let y,z ∈ [0,e] Since y �U2 z, there existℓ ∈ [0,e] such thatU2(z, ℓ) = y. It is obtained thatx �U2 z since

x≤ y=U2(z, ℓ)≤U2(z,e) = z.

Similar proof can be done for other cases as[0,e].
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3.4.2. y and z don’t be in one of interval[0,e], [e,k], [k, f ] or [ f ,1] at the same time or eithery or z don’t be in

[0,e]∪ [e,k]∪ [k, f ]∪ [ f ,1] or neithery norzdon’t be in[0,e]∪ [e,k]∪ [k, f ]∪ [ f ,1].

In this case,y�U2 z implies thaty≤ z. Sincex≤ y andy≤ z, it is obtained thatx≤ z. Thus,x�U2 z. So the transitivity

holds.

Proposition 3.Let (L,≤,0,1) be a bounded lattice and U2 ∈Uk(e, f ). If x �U2 y for any x,y∈ L, then x≤ y.

Proof.Let x�U2 y for x,y∈ L. If x,y∈ [0,e](x,y∈ [k, f ]), then there exists an elementℓ≤ e(n∈ [k, f ]) such that

U2(ℓ,y) = x(U2(n,y) = x).

Sincex= U2(ℓ,y) ≤ U2(e,y) = y(x= U2(n,y) ≤ U2( f ,y) = y), we have thatx≤ y. Let x,y ∈ [e,k](x,y ∈ [ f ,1]). Then,

there exists an elementm∈ [e,k](n∈ [ f ,1]) such that

U2(m,x) = y(U2(n,x) = y).

Sincex=U2(e,x)≤U(m,x) = y(x=U( f ,x)≤U(n,x) = y), we have thatx≤ y. Otherwise, sincex�U2 y, it is clear that

x≤ y.

Remark.The converse of Proposition3 may not be satisfied. For example. Consider the lattice(L = {0,a,b,c,d,e,1},≤

,0,1) such that 0< a< b< c< d < e< 1 and define the functionU2 ∈Ub(a,c) as follows.

U2 0 a b c d e 1
0 0 0 b b b b b
a 0 a b b b b b
b b b b b b b b
c b b b c d e 1
d b b b d 1 1 1
e b b b e 1 1 1
1 b b b 1 1 1 1

Table 1: The 2-uninormU2 onL.

It is clear that the functionU2 is an 2-uninorm onL. Althoughd≤ e, d�U2 esince there doesn’t exist an elementm∈ [ f ,1]

such thate=U2(m,d). The order�U2 onL has its diagram as follows (see Figure 1).

1

ed

c

b

a

0

Fig. 1: (L,�U2).
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Remark.Even if (L,≤,0,1) is a chain, the partially ordered set(L,�U2) may not be a chain. To show that consider the

above mentioned lattice and 2-uninorm on it. It is easily seen that(L,�U2) even if(L,≤,0,1) is a chain.

Proposition 4.Let (L,≤,0,1) be a bounded lattice and U2 ∈Uk(e, f ). Then,(L,�U2) is a bounded partially ordered set.

Proof. It is clear that(L,�U ) is a partially ordered set by Proposition2. Let x∈ [0,e]. SinceU2(0,x) ≤ U(0,e) = 0, we

have thatU(0,x) = 0. Thus, 0�U2 x. Let x 6∈ [0,e]. Then, it follows 0�U2 x from 0≤ x. So, for anyx∈ L, 0�U2 x. That

1 is the greatest element with respect to�U2 is shown in a similar way.

Remark. (i) Note that ifU2 ∈Uk(e, f ) is an 2-uninorm on bounded latticeL, U2 ↓ [0,k]2 :=U1 is an disjunctive uninorm

on [0,k] with identity elemente and zero elementk andU2 ↓ [k,1]2 :=U2 is an conjunctive uninorm on[k,1] with

identity elementf and zero elementk .

(ii) Let U2 ∈Uk(e, f ) is an 2-uninorm on bounded latticeL.

(a) T1
∗ =U2

1 ↓ [0,e]2 : [0,e]2 → [0,e] andT2
∗ =U2

2 ↓ [k, f ]2 : [k, f ]2 → [k, f ] are t-norms.

(b) S1
∗ =U2

1 ↓ [e,k]2 : [e,k]2 → [e,k] andS2
∗ =U2

2 ↓ [ f ,1]2 : [ f ,1]2 → [ f ,1] are t-conorms.

Proposition 5.(L,≤,0,1) be a bounded lattice and U2 ∈Uk(e, f ) is an 2-uninorm on bounded lattice L. Then, T1
∗,T2

∗,S1
∗

and S2
∗ are divisible if and only if≤U2=≤ .

Proof. (i) If a ≤U2 b for anya,b∈ L, thena≤ b. Conversely, leta≤ b. Suppose thata,b ∈ [0,e]. ≤T1
∗=≤ sinceT1

∗

divisible. Thusa ≤T1
∗ b, whence there exist an elementℓ ∈ [0,e] such thatT1

∗(b, ℓ) = a. SinceU2(b, ℓ) = U2 ↓

[0,e](b, ℓ) = T1
∗(b, ℓ) = a, a≤U2 b. Suppose thata,b∈ [e,k]. ≤S1

∗=≤ sinceS1
∗ divisible. Thusa≤S1

∗ b, whence

there exist an elementm∈ [e,k] such thatS1
∗(a,m) = b. SinceU2(a,m) =U2 ↓ [e,k](a,m) =S1

∗(a,m) = b, a≤U2 b.

Suppose thata,b ∈ [k, f ]. ≤T2
∗=≤ sinceT2

∗ divisible. Thusa ≤T2
∗ b, whence there exist an elementn ∈ [k, f ]

such thatT2
∗(b,n) = a. SinceU2(b,n) = U2 ↓ [k, f ](b,n) = T2

∗(b,n) = a, a ≤U2 b. Suppose thata,b ∈ [ f ,1].

≤S2
∗=≤ sinceS2

∗ divisible. Thusa≤S2
∗ b, whence there exist an elementp∈ [ f ,1] such thatS2

∗(a, p) = b. Since

U2(a, p) =U2 ↓ [ f ,1](a, p) = S2
∗(a, p) = b, a≤U2 b. Otherwisea≤ b implies thata≤U2 b.

(ii) Let ≤U2=≤. Suppose thata≤ b for a,b∈ [0,e]. Then,a≤U2 b. Sincea,b ∈ [0,e], there existℓ ∈ [0,e] such that

U2(b, ℓ) = a. SinceU2(b, ℓ) = U2 ↓ [0,e](b, ℓ) = T1
∗(b, ℓ) = a, a ≤T1

∗ b. This implies thatT1
∗ divisible. Suppose

that a ≤ b for a,b ∈ [e,k]. Then,a ≤U2 b. Sincea,b ∈ [e,k], there existm∈ [e,k] such thatU2(a,m) = b. Since

U2(a,m) = U2 ↓ [e,k](a,m) = S1
∗(a,m) = b, a ≤S1

∗ b. This implies thatS1
∗ divisible. Suppose thata ≤ b for

a,b∈ [k, f ]. Then,a≤U2 b. Sincea,b∈ [k, f ], there existn∈ [k, f ] such thatU2(b,n) = a. SinceU2(b,n) = U2 ↓

[k, f ](b,n) = T2
∗(b,n) = a, a≤T2

∗ b. This implies thatT2
∗ divisible. Suppose thata≤ b for a,b∈ [ f ,1]. Then,a≤U2

b. Sincea,b∈ [ f ,1], there existp∈ [ f ,1] such thatU2(a, p) = b. SinceU2(a, p) =U2 ↓ [ f ,1](a, p) = S2
∗(a, p) = b,

a≤S2
∗ b. This implies thatS2

∗ divisible.

Definition 12. [1] Let (L,≤,0,1) be a bounded lattice and V a binary operator on L which is commutative. Then,

{e1,e2, ...,en}z1,z2,...,zn−1 is called an n-neutral element of V if V(ei ,x) = x for all x∈ [zi−1,zi ] for 0= z0 < z1 < ... < zn = 1

and ei ∈ [zi−1,zi ], i = 1,2, ...n.

Definition 13. [1] A binary operator Un on L, is an n-uninorm if it is associative, monotone, non-decreasing in each

variable and commutative and has an n-neutral element{e1,e2, ...,en}z1,z2,...,zn−1.

Similarly, the order given in (2) can be generalized for n-uninorms as follows.

Proposition 6. Let Un be an n-uninorm on a bounded lattice L with an n-neutral element {e1,e2, ...,en}z1,z2,...,zn−1, i =

1,2, ...,n. Then, the relation given in (3)

x�Un y :⇔











∃ℓ ∈ [zi−1,ei ] such that U(ℓ,y) = x, when x,y∈ [zi−1,ei ] or,

∃m∈ [ei ,zi ] such that U(m,x) = y, when x,y∈ [ei ,zi ] or,

x≤ y, otherwise,

(3)
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is a partial order on bounded lattice L.

Proof.The proof can be done as done in Proposition2.

4 Conclusion

A partial order on a bounded latticeL from a 2-uninorm onL is given and discussed. So, we have extended the T-partial

(S-partial) and V-order to a more general form. According tothe underlying t-norm and t-conorm of a uninorm, we have

characterized the order induced by the uninorm. We have studied some properties of the order induced by a uninorm.

Moreover, we have generalized n-uninorms.
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