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Abstract: Uninorms and nullnorms are associative monotonic and caativie operators. In this study, an operator UV is defined by
uninorm U and nullnorm V and showed that UV satisfies assoitiagtmonotonicity and commutativity properties. And & showed
that UV does not have neutral element and have zero elemégrig iflisjunctive uninorm on [0,k]. Moreover, it is show théitiis taken
smallest uninorm and nulnorm, UV is also smallest AMC opmrat
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1 Introduction

Aggregation functions have been a topic of study in receaty§]. A lot of studies have been done on some special
aggregation functions such as t-norms, t-conorms, unia@ma nullnorms. In addition to the relationships amongehes
operators, getting new functions with these operatorssis alvery popular work. Uninorms were introduced@ by
Yager and Rybalov10] are special aggregation operators many working on thgd §]. At the same time, they are
generalization of t-norms and t-conorn®].[Nullnorms are aggregation operators with zero elemet are also
generalizations of triangular norms and triangular corsrin [8], smallest and strongest nullnorms were determined
and some properties of these operators are studied. Unénanich nullnorms are linked to each other because they are
generalizations of t-norm and t-conorms. In this study, peratorUV is defined and studied some properties are
investigated.

The paper is organized as follows: We shortly recall somébaxtions and results in Section 2. In Section 3, a method
to obtain associative, commutative, monotonic operatoctmin L is given using uninorm off0,k] and nullnorm on
[e,1]. Some properties of this construction method are also figaged in Section 3.

2 Notations, definitions and a review of previous results

A bounded latticeL, <) is a lattice which has the top and bottom elements, which aiteew as 1 and 0, respectively,
i.e., there exist two elementsde L suchthat 6< x < 1, forallx € L.

Definition 1. [1] Given a bounded latticé_, <,0,1), and ab € L, if a and b are incomparable, in this case we use the
notation d|b. If all elements of bounded lattice L are comparable eatiepL is called as chain.

Definition 2. [1] Given a bounded latticel, <,0,1), and ab € L, a < b, a subintervala,b] of L is a sublattice of L
defined as
[a,b]={xeL|a<x< b}.
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Similarly, (a,b] = {xeL|a<x< b}, [ab)={xelL|a<x<b}and(ab)={xeL|a<x<b}.

Definition 3. [9] Let (L,<,0,1) be a bounded lattice. An operation 1.2 — L is called a uninorm on L, if it is
commutative, associative, increasing with respect to thith kariables and has a neutral elemer# &.

In this study, the notatiof¥ (e) will be used for the set of all uninorms with neutral elemerif® (0,1) =0, U is called
conjunctive uninorm and if (D,1) = 1, U is called disjunctive uninorm.

Consider the se# (e) of all uninorms orL with the following order:
ForU.,U, € % (e),
Uz < Uz <= Ug (xy) < Ua(xy) forall (xy) € L2.

Corollary 1. [9] Let(L,<,0,1) be a chain and & L\ {0,1}. Then the following uninormgJ : L?> — L is the smallest
uninorm on L with neutral element e.

xvy, if (xy)€le1?
Us, (x.y) = XAy, if (xy) €[0,€) x [e1]U[e 1] x [0,€)
0, otherwise

Definition 4. [3] An operation T (S) on a bounded lattice L is called a trianguiarm (triangular conorm) if it is
commutative, associative, increasing with respect to tith lariables and has a neutral elemdn(0).

Definition 5. [8] Let (L,<,0,1) be a bounded lattice. An operation M. — L is called a nullnorm on L, if it is
commutative, associative, increasing with respect to th#h lvariables and there is an elementcal such that
V(x,0) =xforallx<a,V(x,1) =xforall x> a.

It can be easily obtained that(¥,a) = a for all x € L. So, the element a L that provide \(x,a) = a for all xe L is
called (absorbing) zero element for operatorV on L.

In this study, the notatiott' (k) will be used for the set of all nullnorms with zero element a

Corollary 2. [8] Let(L,<,0,1) be a chain and & L\ {0,1}. Then the following nulinormy : L? — L is the smallest
nullnorm on L with zero element a

xVy, if (xy)€[0,a
Vo' (xy) = ¢ XAy, if (xy) € [2,1)20[0,a) x (a,1]U(a,1] x [0.a)
XAY, otherwise

3 Associative monotonic commutative operator (AMC) UV

In this section, an operatttV has been defined on chdirviaU € % (e) uninorm on sub-intervad0, k] of L andV € ¥'(k)
nullnorm on subintervek, 1] of L such that < e< k < 1 andU | [e,k|> =V | [e,k]2. For the operatddV defined in this
way, it is showed thdt)V satisfies that the properties of associativity, monotdyicommutativity.

Definition 6. Let (L, <,0,1) be a chain, U: [0,k]?> — [0,k] be an uninorm with neutral element e and Y&, 1]> — [e,1]
be a nulinorm with zero element k such tBat e<k < 1and U [e,k?> =V | [e k2. Define the following operator on
L, forxyelL,as

U(xy), if (xy)e][0,k?
UV (xy) =<V (xy), if(xy)el[e1? @)

k otherwise.

)
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Proposition 1.Let (L, <,0,1) be a chain, UV be an operator a$)(on L under constraints as given in Definiti6nThen,

p—

UV satisfies that the properties of associativity, monatibyyicommutativity, namely UV is AMC operatoron L.

Proof. (i) Monotonicity: We prove that ik <y then for allze L, UV (x,z2) < UV (y,2). The proof is split into all
possible cases.
1. Letx € [0,€.
1.1ye[0,€,
1.1.1.ze[0,elorze [e k],

UV (x,2) =U(x,2) <U (y,2) =UV (y,2)

1.1.2.z¢ [k, 1],
UV (x,2) =k=UV (y,2)

1.2.ye ek,
1.2.1.ze[0,elorze [e k],
UV (x2) =U (x2) <U(y.2) =k=UV (,2

1.2.2.ze k1],
UV (x,2) =k=UV (y,2)

1.3. ye k1],
1.3.1.z€ [0,€,

UV (x,2) =U (x,2) <k=UV (y,2)
1.3.2.ze [ek],

UV (x,2) =U(x,2) <k=UV(y,2)
1.3.3.ze€ [k 1],

UV (x,2) =k<V(y,2 =UV (y,2

2. Letxe [e,k] Theny > e

2.1.ye ek,
2.1.1.z€ [0,K],
UV (x,2) =U (x,2) <U (y,2) =UV (y,2)
2.1.2.z¢ [k 1],
UV (x,2) =k=UV (y,2)
2.2. yelk1],
2.2.1z€0,¢,
UV (x,2) =U(x,2) <k=UV(y,2)

2.2.2z¢ e 1],

UV (x,2) =V (x,2) <V (y,2) =UV (y,2)

3. Letx € [k,1]. Theny > k.
3.1lye k1],
3.1.1.z¢[0,€,
UV (x,2) =k=UV (y,2)
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3.1.2ze[e 1],
UV (x,2) =V (x,2) <V (y,2 =UV (y,2).

(i) Associativity: We demonstrate thakV (x,UV (y,z)) = UV (UV (x,y),2) for all x,y,z € L. Again the proof is split
into all possible cases.
1. Letx € [O,€.
1.1.ye[0,€],
1.1.1.ze[0,elorze [ek],

uv (X7UV (yv )) uv (X U (ya )) (X U (ya )) ( (va) ,Z) =Uv (U (X,y),Z) =uVv (UV (X,y),Z)

1.1.2.z¢ [k, 1],
UV (x,UV (y,2)) =UV (x,k) =k=UV (U (x,y),2) = UV (UV (x,y),2)

l1.2.ye ek,
1.2.1.ze[0,el orze [e K],

UV (x,UV (y,2)) =UV (x,U (y,2)) =U (x,U (y,2)) =U (U (x,y),2) =UV (U (x,y),2) =UV (UV (x,y),2)

1.2.2.ze k1],
UV (x,UV (y,2)) =UV (x,k) =k=UV (U (x,y),2) =UV (UV (x,y),2)

1.3.ye [k 1],

1.3.1.z€ [0,€,

UV (x,UV (y,2)) =UV (x,k) =k=U (k,2 =UV (k,2) = UV (UV (x,y),2)
1.3.2.ze ek,
UV (x,UV (y,2)) =UV (x,k) = k=UV (k,2) = UV (UV (x,y),2)
1.3.3.ze k1],
UV (x,UV (y,2)) =UV (x,V(y,2)) =k=V (k,2) =UV (k,z) =UV (UV (x,y),2)

2. Letx e [eK].
2.1.ye[0,¢,

2.1.1.z€[0,¢orze ek,
UV (xUV (y,2) =UV(xU (y.2)) =U (xU (y,2)) =U (U (x,y),2) =UV (U (xy),2) =UV (UV (xy),2)
2.1.2.z¢€ [k 1],
UV (x,UV (y,2)) = UV (x,k) =U (x,k) =k =UV (U (x,y),2) = UV (UV (x,Y),2)

2.2.ye ek,
2.2.1zc[0,gorze [ek],

uv (X7UV (yv )) uv (X U (ya )) (X U (ya )) ( (X7y> ,Z) =Uv (U (X,y),Z) =uv (UV (X,y),Z)
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2.2.2.z€ek 1],
UV (x,UV (y,2)) =UV (x,k) =U (x,k) =k=UV (U (x,y),2) =UV (UV (x,y),2)

2.3.ye k1],
2.3.1zc[0,el orze [e kK],

UV (x,UV (y,2)) =UV (x,k) =U (x,k) = k=UV (k,z) =UV (UV (x,y),2)
2.3.2.ze [k 1],

UV (x,UV (y,2)) =UV (x,V (v,2)) =V (x,U (y,2)) =V (V (X,y),2) =UV (V (X,¥),2) =UV (UV (x,Y),2)

3. Letx e [k, 1].
3.1.ye[0,g orye[ek],
3.1.1.z€ [0,¢],

UV (x,UV (y,2)) =UV (x,U(y,2)) =k=U (k,z) =UV (k,2) = UV (UV (x,Y),2)
3.1.2z¢c ek,

UV (x,UV (y,2)) =UV (x,U(y,z)) =k=V (k,z) = UV (k,2) =UV (UV (x,y),2)
3.1.3.z¢ [k 1],

UV (x,UV (y,2)) =UV (x,k) =V (x,k) =k =V (k,2) =UV (k,2) = UV (UV (x,y),2)

3.2.ye [k 1],
3.2.1zc[0,elorze [ek],

UV (X, UV (y,2)) =UV (x,k) =V (x,k) =k=V (k,2) =UV (V(x,y),2) =UV (UV (x,Y),2)
3.2.2.ze [k 1],
UV (x,UV (y,2) =UV (x,V (v,2) =V (x,V (y,2)) =V (V (X,Y),2) =UV (V (x,y),2) =UV (UV (x,y),2).

It is trivial to see the commutativity and the fact thv.
Let show that the class of all AMC operator obtained bydnL is represented by/ ¥ (.¥).

Proposition 2.Let (L, <,0,1) be a chain, UV be an operator a)(on L under constraints as given in DefinitiénThen,
UV does not have unit elementon L.

Proof. Suppose that* is neutral element dfV onL. ThenUV(x,e*) =xforallxe L. If & € [0,k], e =UV(e &) =e
sincee € [0,K] is neutral element) on [0,k] ande* is neutral element d}V on L. In this caseJV (x,e") = k # x for
x € (k,1]. Itis contradiction. Ife* € [k, 1], UV (x,€*) =k # xfor x € [0, €]. It is contradiction. Thereforé&]V does not have
unit element ori.

Proposition 3. Let (L,<,0,1) be a chain, UV be an operator a§)(on L under constraints as given in DefinitiénIf U
disjanktif uninorm orj0,k], k is zero element of UV on L.

(© 2017 BISKA Bilisim Technology


 ntmsci.com/cmma 

(_/
282 BISKA Umit Ertugrul: Associative monotonic commutative operg&MC) UV

Proof. SinceU disjanktif uninormJ (0,k) = k. Let show thak is zero element dJV onL. Letx € L.

(i) x€[0,K. Then,UV (x,k) = U (x,k) >U(0,k) = k. Thus,UV(x,k) = k.
(i) x ¢ [0,k]. Then, it is obtained thalV (x,k) = k.

Therefore, ifU disjanktif uninorm on0,Kk], k is zero element dJV onL.

Proposition 4. Let (L, <,0,1) be a chain, consider the AMC operatosW," by taking U= Us, and V=V," in (1).
Then, W, Vo' (x,y) <UV(x,y) forallUV € 7 (£) and(x,y) € L2, namely ,Va" <UV.

Proof. (i) (x,y) € [0,K]%. ThenUs,Va" = Us, andUV = U for all UV € % ¥ (). ConsideringJs, is the smallest
uninorm,Us, < U. ThereforeUs, V¥ <UV.
(i) (xy) € [e1)2 ThenUs, Va¥ =V," andUV =V for all UV € % ¥ (.£). Considering/," is the smallest nullnorm,
Va¥ < V. ThereforelUs,Va" <UV.
(iii) Otherwise,Ug,Va" =k=UV.
Therefore, it is obtained thals, Va" <UV.

4 Conclusion

Aggregation operators have been hot topic recent yeareaReeers are studying the comparison of these operators in
terms of some features and producing some new operatdraperator is defined and studied on some properties such
as associativity, monotonicity and commutativity via wmims and nullnorms in this study. In addition, neutral anze
element are investigated. The smallest operator definddsmay was identified.
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