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Abstract: In this short note we analyze the asymptotics of eigenvaaresAmbarzumyan type theorem for energy dependent patenti
problem with boundary condition including spectral partané/NVe should mention that results are more general therethats given

in [18].
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1 Introduction

Consider the boundary-value problem generated by the gtiadin the eigenvalug) differential equation

—y'+[a(x)+2Ap(x)]ly=A%, xe (0,m) 1)

with the homogeneous with the boundary conditions

)/ (0) =0, 2

(ao+a1A )y(m) +y(m) =0, (3)

whereag anda; are any real numbers angx) € W5 [0, 11], p(x) € W2 [0, 71].

In the literature, equation (1) is called as quadratic diedéntial pencil and it is very important in quantum thedtgr
instance, this type equation come to light in Klein-Gordgoations by seperation of variables, which define the motion
of particles. By the way, Sturm—Liouville energy-dependmotential is also used in viscous vibration of rope. (se&)[

We also emphasize that problems including the spectrahpeteaA in boundary condition is related to the energy of the
system. Inverse problems of quadratic pencil have beerddly many authors. Also, this eigenvalue problem arises in
many fields such as mechanics, physics, electronics, gs@mshyneteorology and other branches of sciences and there i
a lot of literature on solving this probler]{[2],[4],[10],[9],[12],[13],[14],[17],[24],[25).

Ambarzumyan’s paper can be viewed as first and vital referémthe history of inverse spectral problen;Ts associated
with Sturm-Liouville operators]]. In 1929, he showed that for the Neumann boundary conditién= x = E)’ if the
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spectrum (collection of the eigenvalues) in (1){i)§n =n?:n=0,1, 2,...}, then the potential functiog(x) is zero
almost everywhere of0, 1. Ambarzumyan’s theorem was extended to the second orderetdiffial systems of two
dimensions inT], to Sturm-Liouville differential systems of any dimensimn [8], to the Sturm—Liouville problem with
seperable conditions by adding more condition on the piatefi£2]. In addition, some different results of
Ambarzumyan’s theorem have been obtained]n[[L5], [20], [21], [23].

If p(x) = 0 the classical Sturm-Liouville operator is obtained. Soraesions of the eigenvalue problem (1)-(4) were
studied extensively ing], [11], [22], [19].

In this study, by extending the results of classical Sturimlille problem, we show that an explicit formula of
eigenvalues can determine two functions in the quadraticipef Sturm-Lioville operator with spectral parameter in

boundary condition.

We define
A(A) = (ag+agA)y(m) +y (1) 4

which is called the characteristic function. In the Sturrotlville theory, we known that if th@ is an eigenvalue of the
problem (1)-(4) the@\(A) = 0.
Theorem 1. [14] Letqx) € W5 [0, 71, p(x) € WZ[0, 7] and y(x,A) solution of (1) with the inital condition (2),

y(X,A) :cos(/\xfa(x))+/A(x,t)cosx\tdt+/B(x,t)sin)\tdt, (5)
0 0

where Ax,t) and Bx,t) satisfy the following equations

2 2
TAY 2000 PBEY _ggapt) = TAXY
2 2
PO gDy P
A0,0)=0, B(x0) =0, ZAXDI g
e

q(x) + pz(x) = 2%( [A(x,X) cosa (X) + B(x,x) sina (X)],

OA(X1)

A0.0)=0, B(x0)=0, —

= 07
t=0

a( = [ pt)dt=p(o)x+2 [ [A(Z.¢)sina(¢) - B(¢.¢)cosa({)]de.
0

2 Main results

In this section, some uniqueness theorems are given forribldgm (1)-(4). It is shown that an explicit formula of
eigenvalues can determine the functigi) be zero.
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Let's considering a second quadratic Sturm -Liouville peof

—Y'+[AX) +2Ap(X)ly =A%, x€ (0,m) (6)

y(0)=0, )

(80+a1A)y(m) +Y/ (1) = 0 ®)

and showing this problem brieff(p, q,a9,a; ). Also, we will show spectrums of the (1)-(4) and (6)-(8)a&p, g, a0, a1)

ando (p, q,a0, al) respectively.
Theorem 2. The eigenvalues of the problem satisfiying théA ) = 0 are as following.
() Ifay=0and & # 0anda(m) =0,

A B 1
An:n_m_@+w+o(_2),n%,
n n n n

(i) Ifaj,ap#0anda(m) =0,

An:n

arctare;  A(1T, M) aB(m, M) 1
— — =], Nn— 0.
m nm(l+a2) nm(l+a?) n2

Proof. From (8), we see thak is an eigenvalue of the problem (6-8) if and only if
A(A) = (ao+aiA)y(m) +y'(m) =0.

Applying integration by parts to (5), we obtain

X
y(X,A) =cos(Ax—a(x)) + %A(x,x) SiNAX— /\EB(X,X) COSAX— %/At(x,t)sin)\tdtJr
0
1 X
+X/Bt(x,t)cos)\tdt,
0
or asymptotically
1 . 1 1
y(mA)=cos(Am—a(m)+ XA(T[, TT) SiNA TT— XB(H, mcosAt+ O (X)

and

y (mA)=— (/\ - a/(n)) sin(Am— a(m)) + A(1, 1) cosA T+ B(r, M) sinA 1+ O ()\l) .

Inserting (12) and (13) in (11), it is not difficult to obtaimtt

(/\ — a/(n)) sin(Am— a(m)) + A(m, 1) cosA 1T+ B(71, ) SinA 1

lB(n, mcosA i+ O (1)} =0,

+(ag+azh) {cos()\ n—a(rr))+EA(n, 1) SinA 1T— 3 3

A

9)

(10)

(11)

(12)

(13)

(14)
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whereA(x,t), B(xt), ﬁixtA(x,t) and%‘tB(x,t) are bounded functions for9Q x,t < 7.

If a1 = 0 andap # 0 anda (1) = O,we can easily see that from (14) for cog # 0

_ A(mm)  a B(mmtanAm  aA(r, mtanAm  agB(7, M) 1
tanA = — T ) - 32 + 32 +0 32 )

ForA — o, tanAm— 0. Then

A(mm a aB(mn) 1
tanAIT:—T—T-i-T-i-O ﬁ
and we see that A 5 L
Ann:nn—M—@erJrO(—z).
n n n

If a;,a0 # 0 anda (1) = 0, for cosA m# 0

tanApT+ag = —

An An An

A(m, 1) N a1B(m, ) e <A1 > '

After some trigonometric identities, we obtain that

)\n:n

_arctaras  A(1, 1) a;B(m, m) ( 1 >

n nm(l+a3)  nm(l+ad) n2

This completes the proof.

Theorem 3. Let consider the two problems (B q,a0,a1), E(p,Q,a0,a1) and their spectrumso (p,q,ao,a1),
o (p,a,ao,al), respectively. Assume(p,q,a0,a1) = 0 (p,a,ao,al) ; thenfol[qf qjdx=0.

Proof. By the hypotesisr (p,q,a0,a1) = 0 (p,a,ao,al) , then it follows An € 0 (p,q,a0,&1) = G(p,a,ao,al). Let's

consider the problemB(p,q,ao,a;) andE(p, g, ap,a;), multiply the first equation by, second by subracting them
after integration orf0, 1} ;

T[

7[(1 — gyydx= (Y/y— y/V) .
0

using the conditions (1) and (4) §§71) = —(ap+ a1A )y(71), ¥ (1) = —(ap+ a1A )¥(71) and inserting in above, we obtain
s

that [[g— glyydx= 0.
0

Let multiply y andy in (5) and using some trigonometric identities, we can gsilyaee that

T s

%/(qfq3dx+/(q—q cos(Ax— a(x)) dx+
0 0

/(qu)/H(s, 1)cos2AT— a(1)]drdx=0,
0 0

whereH (s,t) depends oi\(x,t), B(x,t), %A(x,t) and%B(x,t),then the first and second terms goes to zerd as «

because of the Riemann-Lebesque lemma. This completesabk p

Theorem 4. Assume that g € C[0, 1}, ando (p,0,a0,a1), 0(0, p,ap,a1). Then dx) =00n|0, 7).
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Proof. By assumption Theorem 2, we obtain that

.Zq(x)dx: 0.

The rest of proof is the same as itf]. Then, this completes the proof.

3 Conclusion

In this short note, we solve inverse problem for Sturm-Lidawroblem energy dependent potential containing the
spectral parameter in boundary condition. We note thatjtseeare more general then the results obtained &h [
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