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Abstract: This paper presents the static behaviour of two-directional functionally graded sandwich beams by using the
Euler-Bernoulli, Timoshenko and Reddy-Bickford beam theories and the Symmetric Smoothed Particle Hydrodynamics (SSPH)
method. The SSPH code developed based on the present formulation of the functionally graded sandwich beam is validated by solving
a simply supported conventional functionally graded beam problem. Numerical results which are in terms of maximum dimensionless
transverse deflections, dimensionless axial and transverse shear stresses are compared with the analytical solutionsand the results
from previous studies. Various FG sandwich beam structuresare investigated by considering different beam theories, aspect ratios
(L/h) and sets of boundary conditions and using power-law distribution.
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1 Introduction

In recent years, the use of the structures which are made of functionally graded materials (FGM) have been increasing in

many modern engineering applications such as aerospace, marine, automotive, nuclear energy, biomedical and civil

engineering due to varying material properties over a changing dimension which allow to enhance the bond strength

through the layer interfaces, high resistance to temperature shocks, lower transverse shear stresses and high strength to

weigth ratio.

Researchers have been devoted a considerable number of studies to predict and to understand the mechanics of the

1D-FGM and 2D-FGM structures structures during the last decade [1-48].

As it is seen from above literature survey, the studies related to analytical and semi-analytical solutions for the 2D-FGM

structures which eliminate the inefficiency of the 1D-FGM structures to fullfill the technical requirements such as the

temperature and stress distributions in two or three directions for aerospace craft and shuttles and have complex

governing equations are very limited in the literature. Forinstance, the practical engineering applications of the 2D-FGM

were presented in [32], by using the Element Free Galerkin Method, 2D steady-state free and forced vibrations of

two-directional FG beams are analysed in [33]. The elasticity solutions are proposed for bending and thermal

deformations of FGBs with various end conditions by using the state-space based differential quadrature method in [34].

A symplectic elasticity solution for static and free vibration analyses of two-directional FG beams with the material

properties varying exponentially in both axial and thickness direction is presented in [35]. The buckling of Timoshenko

beams composed of two dimensional FGM was studied in [36]. The dynamic characteristics of the bi-directional

functionally graded beams were presented by using the Timoshenko beam formulation in [37]. The static behaviour of

two directional FG beams was studied by using a meshless method in [38]. Morever, the studies for the static, dynamic
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and buckling analysis of the FG sandwich structures are alsovery limited [39-48]. To the best of the author’s knowledge,

there is no reported work regarding to the static analysis ofthe two-directional FG sandwich beams based on the

different beam theories.

The main scope of this work is to investigate the static behaviour of the two-directional FG sandwich beams based on

various beam theories such as Euler Bernoulli Beam Theory (EBT), Timoshenko Beam Theory (TBT) and Reddy –

Bickford Beam Theory (RBT) by using the Symmetric Smoothed Particle Hydrodynamics (SSPH) method.

In this paper, the elastostatic analysis of the two-directional FG sandwich beams are presented by considering several

beam theories, aspect ratios (L/h), types of sandwich structures and sets of boundary conditions and using power-law

distribution.

In section 2, the formulation of the basis function of the SSPH method is given. In section 3, the homogenization of

material properties of the 2D-FG sandwich beam is presented. The formulation of the EBT, TBT and RBT based on the

studied 2D-FG sandwich beam problems and the SSPH method aregiven in Section 4. In Section 5, numerical results are

given for the problems with four different boundary conditions which are simply supported (SS), clamped- simply

supported (CS), clamped-clamped (CC) and clamped-free (CF).

2 Formulation of symmetric smoothed particle hydrodynamics method

A scalar function for 1D case can be presented by using TaylorSeries Expansion (TSE) as follows

f (ξ ) = f (x)+ (ξ − x) f
′
(x)+

1
2!
(ξ − x)2 f

′′
(x)+

1
3!
(ξ − x)3 f

′′′
(x)

+
1
4!
(ξ − x)4 f (IV ) (x)+

1
5!
(ξ − x)5 f (V) (x)+

1
6!
(ξ − x)6 f (VI) (x)+ ldots (1)

wheref (ξ ) is the value of the function atξ located in near ofx. The Eq. (1) can be given by employing the zeroth to sixht

order terms and neglecting the higher order terms

f (ξ ) = P(ξ ,x)Q(x) (2)

where

Q(x) =

[

f (x) ,
d f (x)

dx
,

1
2!

d2 f (x)
dx2 ,

1
6!

d6 f (x)
dx6

]T

(3)

P(ξ ,x) =
[

1,(ξ − x) ,(ξ − x)2,(ξ − x)6
]

. (4)

The number of terms employed in the TSE can be increased to improve the accuracy depending on the order of the

governing equations. However, increasing the number of terms to be employed definitely increases the CPU time and

may decrease the effectiveness of the method. Determination of the number of terms mainly depends on the experience

of the researcher. To determine the unknown variables givenin the Q(x), both sides of Eq. (2) are multiplied with

W(ξ ,x)P(ξ ,x)Tand evaluated for every node in the compact support domain (CSD). In the global numbering system, let

the particle number of thejth particle in the compact support ofW(ξ ,x)be r ( j ). The following equation is obtained

N(x)

∑
j=1

f
(

ξ r( j)
)

W
(

ξ r( j),x
)

P
(

ξ r( j),x
)T

=
N(x)

∑
j=1

[

P
(

ξ r( j),x
)T

W
(

ξ r( j),x
)

P
(

ξ r( j),x
)

]

Q(x) (5)
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whereN (x) is the number nodes in the (CSD) of theW(ξ ,x)as shown in Figure 1. Then, Eq. (5) can be given by
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Fig. 1: Compact support of the weight functionW(ξ ,x)for the node located atx= (xi ,yi).

C(ξ ,x)Q(x) = D(ξ ,x)F (x) (ξ ,x) (6)

whereF (x) (ξ ,x) are the values of the function f at all particles located in the compact support ofW(ξ ,x) associated with

point x,C(ξ ,x) = P(ξ ,x)TW (ξ ,x)P(ξ ,x) andD(ξ ,x) = P(ξ ,x)T W (ξ ,x).

The solution of Eq. (6) is given by

Q(x) = K (ξ ,x)F (ξ ) (7)

whereF (ξ )are the values of the function at all particles in the entire domain andK(x) (ξ ,x) =C(ξ ,x)−1D(ξ ,x). Eq. (7)

can be also written as follows

QI (x) =
M

∑
J=1

KIJFJ, I = 1,2, . . . ,7 (8)

where M is the number of nodes, I is the number of terms employed in the TSE andFJ = f
(

ξ J
)

. Seven components of

Eq. (8) for 1D case are written as

f (x) = Q1 (x) =
M

∑
J=1

K1JFJ

d f (x)
dx

= Q2 (x) =
M

∑
J=1

K2JFJ

d2 f (x)
dx2 = 2!Q3 (x) = 2!

M

∑
J=1

K3JFJ

d3 f (x)
dx3 = 3!Q4 (x) = 3!

M

∑
J=1

K4JFJ

d4 f (x)
dx4 = 4!Q5 (x) = 4!

M

∑
J=1

K5JFJ

d5 f (x)
dx5 = 5!Q6 (x) =!

M

∑
J=1

K6JFJ
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d6 f (x)
dx6 = 6!Q7 (x) = 6!

M

∑
J=1

K7JFJ (9)

Details of the SSPH method can be found in [49-54].

3 Homogenization of material properties

Consider a two-directional functionally graded beam namely Type A as shown in Fig 2a, which is made of a mixture of

ceramic and metal, with length L, width b and thickness h. Twotypes of FG sandwich beams namely 2D-FG faces metal

core (Type B) and 2D-FG faces ceramic core (Type C) are considered.

The rule of mixture is used to find the effective material properties at a point. According to the rule of mixtures, the

effective material properties of the beam, Young’s modulusE and shear modulus G can be given by

E (x,z) = E1V1(x,z)+E2V2(x,z)

G(x,z) = G1V1(x,z)+G2V2(x,z) (10)

whereE1, E2,G1 andG2 are the material properties of two constituents,V1andV2are volume fractions of the constituents.

The relation of the volume fractions can be expressed as follows,

V1(x,z)+V2(x,z) = 1. (11)

3.1 Type A: 2D-FG beam

According to the power law form, the volume fraction of the ceramic can be given by

Vc(x,z) =
(

1− x
2L

)px
(

1
2
+

z
h

)pz

(12)

where px and pz are the gradation exponents (power-law index) which determine the material properties through the

thickness and length of the beam, respectively, L is the length of the beam and h is the heigth of the beam. When thepx

andpz are set to zero the beam becomes homogeneous. The effective material properties can be found by using the Eqs.

(10), (11) and (12) as follows

E (x,z) = (Ec−Em)
(

1− x
2L

)px
(

1
2
+

z
h

)pz

+Em

G(x,z) = (Gc−Gm)
(

1− x
2L

)px
(

1
2
+

z
h

)pz

+Gm. (13)
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Fig. 2: The variation of elasticity modulus and geometry of a two-directional FG sandwich beam.

3.2 Type B: sandwich beam with 2D-FG and ceramic faces and 1D-FG core

The upper face of the sandwich beam is made of 2D-FG, the lowerface is made of ceramic and the core is made of 1D-FG

as shown in Fig. 2b. The volume fraction of the ceramic phaseV(i)
c given by,

V(1)
c =

(

1− x
2L

)px
(

2(z−h2)

h−2h2

)pz

for z∈ [h2,h/2]

V(2)
c =

(

z−h2

h1−h2

)pz

for z∈ [h1,h2]

V(3)
c = 1 for z∈ [h1,−h/2] . (14)

3.3 Type C: sandwich beam with 2D-FG faces and ceramic core

The faces of the sandwich beam are made of 2D-FG and the core ismade of ceramic as shown in Fig. 2b. The volume

fraction of the metal phaseV(i)
m given by,

V(1)
m =

(

1− x
2L

)px
(

2(z−h2)

h−2h2

)pz

for z∈ [h2,h/2]

V(2)
m = 0 for z∈ [h1,h2]

V(3)
m =

(

1− x
2L

)px
(

2(h1− z)
h+2h1

)pz

for z∈ [h1,−h/2] . (15)
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4 Formulation of beam theories

The kinematics of deformation of a beam can be represented byusing various beam theories. Among them, the Euler

Bernoulli Beam Theory (EBT), the Timoshenko Beam Theory (TBT) and the Reddy-Bickford Beam Theory (RBT) are

commonly used. The effect of the transverse shear deformation neglected in the EBT is allowed in the latter two beam

theories.

To describe the EBT, TBT and RBT, the following coordinate system is introduced. The x-ccordinate is taken along the

axis of the beam and the z-coordinate is taken through the height (thickness) of the beam. In the general beam theory, all

the loads and the displacements (u,w) along the coordinates(x,z) are only the functions of the x and z coordinates. The

formulation of the beam theories based on the FG sandwich beams and the SSPH formulations are given below.

4.1 Euler Bernoulli beam theory

According to EBT, the displacement field is given by,

u(x,z) =−z
dw0

dx

w(x,z) = w0(x) (16)

where w0 is the transverse deflection of the beam. The axial strain which is nonzero is given by,

εxx =
du
dx

=−z
d2w0

dx2 . (17)

The virtual strain energy of the beam can be presented by using the axial stress and the axial strain as follows

δU =

∫ L

0

∫

A
σxxδεxxdAdx (18)

whereδ is the variational operator, A is the cross sectional area and σxx is the axial stress. The bending moment can be

given by,

Mxx =

∫

A
zσxxdA. (19)

By using Eq. (17) and Eq. (19), Eq. (18) can be rewritten as,

δU =−
∫ L

0
Mxx

d2δw0

dx2 dx. (20)

The virtual potential energy of the load q(x) is given by

δV =−
∫ L

0
q(x)δw0dx. (21)

If a body is in equilibrium,δW = δU + δV, the total virtual work (δW) done equals zero and is given by.

δW =−
∫ L

0

(

Mxx
d2δw0

dx2 +q(x)δw0

)

dx= 0. (22)
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After performing integration for the first term in Eq. (22) twice and sinceδw0 is arbitrary in (0< x < L), one can obtain

following equilibrium equation

−d2Mxx

dx2 = q(x) f or 0< x< L.(23) (23)

By introducing the shear forceQx and rewrite the Eq. (23) in the following form

−dMxx

dx
+Qx = 0, −dQx

dx
= q(x). (24)

By using Hooke’s law, one can obtain

σxx = E(x,z)εxx =−E(x,z)z
d2w0

dx2 . (25)

If the Eq. (25) is put into the Eq. (19), it is obtained,

Mxx =−b
∫ +h/2

−h/2
E(x,z)z2 d2w0

dx2 dz=−Dxx
d2w0

dx2 (26)

where

Dxx = b
∫ +h/2

−h/2
E(x,z)z2dz. (27)

The EBT governing equation for a FG sandwich beam subjected to the distributed load is given by

d2

dx2 (Dxx
d2w0

dx2 ) = q(x) for 0< x< L. (28)

4.2 Timoshenko beam theory

The following displacement field is given for the TBT,

u(x,z) = zφ(x)

w(x,z) = w0(x) (29)

whereφ (x) is the rotation of the cross section. By using the Eq. (29), the non zero strains can be given by

εxx =
du
dx

= z
dφ
dx

γxz=
du
dz

+
dw
dx

= φ +
dw0

dx
. (30)

The virtual strain energy of the beam including the virtual energy associated with the shearing strain can be written as,

δU =

∫ L

0

∫

A
(σ xxδεxx+σxzδγxz)dAdx (31)

whereσxz is the transverse shear stress andγxz is the shear strain. The bending momentMxx can be used as given in

Eq.(19) and the shear forceQx can be written as following

Qx =

∫

A
σxzdA (32)
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By using Eq. (30) and Eq. (32), one can rewrite the Eq.(31) as,

δU =
∫ L

0

[

Mxx
dδφ
dx

+Qx

(

δφ +
dδw0

dx

)]

dx (33)

The constituve equations can be written as follows

σxx = E (x,z)εxx = E (x,z)z
dφ
dx

(34)

σxz= G(x,z)γxz= G(x,z)

(

φ +
dw0

dx

)

. (35)

The bending momentMxx and the shear forceQx can be written in terms of generalized displacement (w0,φ) by using

Eqs. (34) and (35)

Mxx = b
∫ +h/2

−h/2
zσ xxdz= b

∫ +h/2

−h/2
E (x,z)z2 dφ

dx
dz= Dxx

dφ
dx

Qx = κsb
∫ + h

2

− h
2

σxzdz= κsb
∫ + h

2

− h
2

G(x,z)

(

φ +
dw0

dx

)

dz= κsAxz

(

φ +
dw0

dx

)

(36)

whereκs is the shear correction factor to be used to compensate the error caused by the assumption of a constant transverse

shear stress distribution along the beam thickness and

Dxx = b
∫ +h/2

−h/2
E (x,z)z2dz

Axz= b
∫ + h

2

− h
2

G(x,z)dz. (37)

The governing equations of the TBT is given by

− d
dx

(

Dxx
dφ
dx

)

+κsAxz

(

φ +
dw0

dx

)

= 0 (38)

− d
dx

[

κsAxz

(

φ +
dw0

dx

)]

= q(x) . (39)

4.3 Reddy-Bickford beam theory

The following displacement field is given for the RBT,

u(x,z) = zφ(x)−αz3
(

φ (x)+
dw(x)

dx

)

w(x,z) = w0(x) (40)

whereα = 4/
(

3h2
)

. By using the Eq. (40), the strain-displacement relations of the RBT are given by

εxx =
du
dx

= z
dφ
dx

−αz3
(

dφ
dx

+
d2w0

dx2

)

γxz=
du
dz

+
dw
dx

= φ +
dw0

dx
−βz2

(

φ +
dw0

dx

)

(41)
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whereβ = 3α = 4/
(

h2
)

. The virtual strain energy of the beam can be written as,

δU =

∫ L

0

∫

A
(σ xxδεxx+σxzδγxz)dAdx (42)

andPxx andRx are the higher order stress resultants can be written respectively

Pxx =

∫

A
z3σxxdA,

Rx =

∫

A
z2σxzdA. (43)

By using Eq. (19), Eq. (32), Eq.(41) and Eq. (43) one can rewrite the Eq.(42) as,

δU =
∫ L

0

[

(Mxx−αPxx)
dδφ
dx

−αPxx
d2δw0

dx2 +(Qx−βRx)

(

δφ +
dδw0

dx

)]

dx. (44)

The constituve equations can be written as follows

σxx = E(x,z)εxx = E(x,z)

[

z
dφ
dx

−αz3
(

dφ
dx

+
d2w0

dx2

)]

(45)

σxz= G(x,z)γxz= G(x,z)

[

φ +
dw0

dx
−βz2

(

φ +
dw0

dx

)]

. (46)

The governing equations of the RBT are obtained in terms of displacementsφandw0 as follows,

− d
dx

(

D̄xx
dφ
dx

−αF̂xx
d2w0

dx2

)

+ Āxz

(

φ +
dw0

dx

)

= 0 (47)

−α
d2

dx2

(

F̂xx
dφ
dx

−αHxx
d2w0

dx2

)

− d
dx

[

Āxz

(

φ +
dw0

dx

)]

= q(x) (48)

where

Āxz= Âxz− β D̂xz, D̄xx = D̂xx− αF̂xx,

D̂xx = Dxx−αFxx , F̂xx = Fxx−αHxx ,

Âxz= Axz−βDxz , D̂xz= Dxz−βFxz.

(Dxx, Fxx,Hxx) = b
∫ +h/2

−h/2
E(x,z)

(

z2,z4,z6
)

dz

(Axz, Dxz,Fxz) = b
∫ +h/2

−h/2
G(x,z)

(

1,z2,z4)dz. (49)

For the type C 2D-FG sandwich beam the followings can be writte

(Dxx,Fxx,Hxx) = b

(

∫ +h/2

h2

[

(Em−Ec)
(

1− x
2L

)px
(

2(z−h2)

h−2h2

)pz

+Em

]

+

∫ h2

h1

Ec+

∫ h1

−h/2

[

(Em−Ec)
(

1− x
2L

)px
(

2(h1− z)
h+2h1

)pz

+Ec

])

(

z2,z4,z6
)

dz
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(Axz,Dxz,Fxz) = b

(

∫ +h/2

h2

[

(Gm−Gc)
(

1− x
2L

)px
(

2(z−h2)

h−2h2

)pz

+Gc

]

+

∫ h2

h1

Gc+

∫ h1

−h/2

[

(Gm−Gc)
(

1− x
2L

)px
(

2(h1− z)
h+2h1

)pz

+Gc

])

(

1,z2,z4)dz. (50)

4.4 Representation of the governing equations by the SSPH method

Based on the EBT, the governing equation of the problem can bepresented as algebraic equations by using the SSPH

basis function given in Eq. (9) and replacingf (x)with w0(x) as follows,

M

∑
j=1

[2Dxx,xxK3J+12Dxx,xK4J +24DxxK5J]WJ = q0 for 0< x< L (51)

where

Dxx,xx =
d2Dxx

dx2 and Dxx,x =
dDxx

dx
.

The governing equations of the problem based on the TBT can bewritten in a similar way by replacingf (x)given in Eq.

(9) with w0(x) andφ (x) and by using the SSPH basis functions as follows,

M

∑
J=1

[

κsAxzK2J κsAxzK1J −Dxx,xK2J −2DxxK3J

−(κsAxz,xK2J+2κsAxzK3J) −(κsAxz,xK1J+κsAxzK2J)

][

WJ

ΦJ

]

=

[

0

q0

]

(52)

whereAxz,x =
dAxz
dx . The SCF is assumed to be constant asκs = 5/6 for the rectangular cross section. By using RBT and

the SSPH basis function the governing equations can be written by replacingf (x)given in Eq. (9) withw0(x) andφ (x)
as follows,

M

∑
J=1

[

ĀxzK2J +2αF̂xx,xK3J +6αF̂xxK4J ĀxzK1J − D̄xx,xK2J −2D̄xxK3J

φ1 φ2

][

WJ

ΦJ

]

=

[

0

q0

]

(53)

where

φ1 =−Āxz,xK2J −2ĀxzK3J +2α2Hxx,xxK3J +12α2Hxx,xK4J +24α2HxxK5J,

φ2 =−Āxz,xK1J − ĀxzK2J −αF̂xx,xxK2J −4αF̂xx,xK3J −6αF̂xxK4J

and

Āxz=
dAxz

dx
, F̂xx,x =

dF̂xx

dx
, F̂xx,xx =

d2F̂xx

dx2 ,Hxx,x =
dHxx

dx
and Hxx,xx =

d2Hxx

dx2 .

The boundary conditions which are presented according to the SSPH formulation are given below.

4.4.1 Simply supported (SS) two-directional FG sandwich beam

The boundary conditions regarding to the EBT are given as follows,

x= 0,
M

∑
J=1

2K3JWJ = 0 and
M

∑
J=1

K1JWJ = 0 m

x= L,
M

∑
J=1

2K3JWJ = 0 and
M

∑
J=1

K1JWJ = 0 m. (54)
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The boundary conditions regarding to the TBT are given as follows,

x= 0,
M

∑
J=1

K2JΦJ = 0 and
M

∑
J=1

K1JWJ = 0 m

x= L,
M

∑
J=1

K2JΦJ = 0 and
M

∑
J=1

K1JWJ = 0 m. (55)

The boundary conditions regarding to the RBT are given as follows,

x= 0,
M

∑
J=1

D̂xxK2JΦJ −
M

∑
J=1

2αFxx K3JWJ = 0, and
M

∑
J=1

K1JWJ = 0 m

x= L,
M

∑
J=1

D̂xxK2JΦJ −
M

∑
J=1

2αFxxK3JWJ = 0, and
M

∑
J=1

K1JWJ = 0 m. (56)

4.4.2 Clamped simply supported (CS) two-directional FG sandwich beam

The boundary conditions based on the EBT are given by,

x= 0,
M

∑
J=1

K2JWJ = 0 and
M

∑
J=1

K1JWJ = 0 m

x= L,
M

∑
J=1

2K3JWJ = 0 and
M

∑
J=1

K1JWJ = 0 m. (57)

The boundary conditions based on the TBT are given by,

x= 0,
M

∑
J=1

K1JΦJ = 0 and
M

∑
J=1

K1JWJ = 0 m

x= L,
M

∑
J=1

K2JΦJ = 0 and
M

∑
J=1

K1JWJ = 0 m. (58)

The boundary conditions based on the RBT are given by,

x= 0,
M

∑
J=1

K1JΦJ = 0 and
M

∑
J=1

K1JWJ = 0 m

x= L,
M

∑
J=1

D̂xxK2JΦJ −
M

∑
J=1

2αFxx K3JWJ = 0, and
M

∑
J=1

K1JWJ = 0 m. (59)

4.4.3 Clamped clamped (CC) two-directional FG sandwich beam

The boundary conditions based on the EBT are given by,

x= 0,
M

∑
J=1

K2JWJ = 0 and
M

∑
J=1

K1JWJ = 0 m

x= L,
M

∑
J=1

K2JWJ = 0 and
M

∑
J=1

K1JWJ = 0 m. (60)
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The boundary conditions based on the TBT are given by,

x= 0,
M

∑
J=1

K1JΦJ = 0 and
M

∑
J=1

K1JWJ = 0 m

x= L,
M

∑
J=1

K1JΦJ = 0 and
M

∑
J=1

K1JWJ = 0 m. (61)

The boundary conditions based on the RBT are given by,

x= 0,
M

∑
J=1

K1JΦJ = 0 and
M

∑
J=1

K1JWJ = 0 m

x= L,
M

∑
J=1

K1JΦJ = 0 and
M

∑
J=1

K1JWJ = 0 m. (62)

4.4.4 Cantilever (CF) two-directional FG sandwich beam

The boundary conditions based on the EBT are given by,

x= 0,
M

∑
J=1

K2JWJ = 0 and
M

∑
J=1

K1JWJ = 0 m

x= L,
M

∑
J=1

2K3JWJ = 0 and
M

∑
J=1

[

2Dxx,xK3J +6DxxK4J
]

WJ = 0. (63)

The boundary conditions regarding to the TBT are given as follows,

x= 0,
M

∑
J=1

K1JΦJ = 0 and
M

∑
J=1

K1JWJ = 0 m

x= L,
M

∑
J=1

K2JΦJ = 0 and
M

∑
J=1

K1JΦJ +
M

∑
J=1

K2JWJ = 0. (64)

The boundary conditions regarding to the RBT are given as follows,

x= 0,
M

∑
J=1

K1JΦJ = 0 and
M

∑
J=1

K1JWJ = 0 m

x= L,
M

∑
J=1

D̂xxK2JΦJ −
M

∑
J=1

2αFxx K3JWJ = 0, and
M

∑
J=1

K1JΦJ +
M

∑
J=1

K2JWJ = 0. (65)

5 Numerical results

The elastostatic behaviour of the 2D FG sandwich beams are investigated by considering the EBT, TBT and RBT formulations. The

numerical results are obtained by using the SSPH method for various gradation exponents, aspect ratios and boundary conditions. As

far as author aware, there is no available previous results regarding to the static analysis of 2D FG sandwich beams. At first, the SSPH

code is developed based on the 2D FG sandwich beam formulation and then the developed SSPH code is verified by solving a simply

supported conventional FG beam problem subjected to uniformly distributed load. The results from previous studies [55] along with

the analytical solutions in terms of dimensionless maximumtransverse deflections, axial and shear stresses are used for comparison

purposes. After the verification of the developed code, the number of nodes to be used in the problem domain for the numerical

calculations is determined and extensive analysis are performed.

The physical parameters of the beam are L=1m and b=0.1m. Two different aspect ratios (L/h) 5 and 20 are considered. The distributed
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loadq0 is set to 10000 N/m. The material properties of the two constitutes are given as

Ceramic(Al2O3) : Ec = 380GPa andν1 = 0.3

Metal (Aluminium) : Em = 70GPa and ν2 = 0.3.

The following non-dimensional quantities are used for the representation of the results.

Non-dimensional maximum transverse deflection of the beam

w̄=
100Embh3

q0L4 w0

(

L
2
,z

)

for SS, CS and CC beams

w̄=
100Embh3

q0L4 w0(L,z) for CF beams. (66)

Non-dimensional axial and shear stresses of the beam:

σ̄ x =
bh
q0L

σx(
L
2
,z)

σ̄xz=
bh
q0L

σxz(0,z) . (67)

5.1 Verification, comparison and convergence studies

A simply supported FG beam under uniformly distributed loadis considered. The SSPH code developed for the Type B sandwich beam

is employed for the numerical calculations by settingpx as zero andh1 = h2 =−h/2. Four types of uniformly node distributions in the

problem domainx∈ [0, 1] for numerical calculations As the weight function, the following Revised Super Gauss Function (RSGF) is

employed.

W (x,ξ ) =
G

(h
√

π)λ

{

(

64−d2
)

e−d2
0≤ d ≤ 8

0 d > 8

}

d = |x−ξ |/h (68) (68)

wheredis the radius of the CSD,his the smoothing length.

The numerical calculations are performed according to the following meshless parameters; the radius of the support domain (d) is

chosen as 8 and the smoothing length (h) equals to 1.3∆ . ∆can be defined as the minimum distance between two adjacent nodes. The

meshless parameters,d andh, are selected to obtain the lowest error.

Based on the various node distributions, aspect ratios and gradation exponents, the maximum non-dimensional tranverse deflections,

axial and shear stresses are obtained by using different beam theories and given in Table 1-6 along with the results from previous

studies and the analytical solution of the problem. It is clear that the results obtained by using the SSPH method agree completely with

those of previous paper [55] and the analytical solution. Regarding to numerical results obtained by the EBT and TBT, thetransverse

deflections, axial and transverse shear stresses are almostthe same with the analytical solutions as shown in Table 1-6.And it is also

obvious that the results from RBT are in excellent agreementwith the results presented in [55]. Due to this agreement, the verification

of the developed code is established. For the extensive analysis and the sake of accuracy, uniformly distributed 161 nodes will be used

in the problem domain.

5.2 Elastostatic analysis of two-directional FG sandwich beams

Four different boundary conditions, SS, CS, CC and CF are considered respectively for the bending analysis of two directional FG

sandwich beams subjected to uniformly distributed load. The maximum transverse deflections, axial and shear stresses are computed

based on the various beam theories, gradation exponents andaspect ratios.
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Table 1: Verification and convergence studies of the code for S-S FGB,dimensionless maximum transverse deflections
for different number of nodes and gradation exponents,L/h= 5.

Theory Gradation
Exponent(pz)

Number of Nodes
Analytical
Solution

21 41 81 161 *Li et al [55]

EBT

0 2.8783 2.8783 2.8783 2.8783 2.8783
0.5 4.1296 4.1296 4.1296 4.1296 4.1296
1 4.8611 4.8611 4.8611 4.8611 4.8611
2 5.6378 5.6378 5.6378 5.6378 5.6378
5 6.8975 6.8975 6.8975 6.8975 6.8975

TBT

0 3.1657 3.1657 3.1657 3.1657 3.1657
0.5 4.5243 4.5243 4.5243 4.5243 4.5243
1 5.3464 5.3464 5.3464 5.3464 5.3464
2 6.2679 6.2679 6.2679 6.2679 6.2679
5 7.7951 7.7951 7.7951 7.7951 7.7951

RBT

0 3.1657 3.1657 3.1657 3.1658 *3.1657
0.5 4.5175 4.5175 4.5175 4.5177 *4.5183
1 5.3464 5.3464 5.3464 5.3464 *5.3464
2 6.3109 6.3109 6.3109 6.3109 *6.3002
5 7.9760 7.9759 7.9760 7.9760 *7.9268

* The values based on analytical solutions from the previousstudy done by Li et al.

Table 2: Verification and convergence studies of the code for S-S FGB,dimensionless maximum transverse deflections
for different number of nodes and gradation exponents,L/h= 20.

Theory Gradation
Exponent(pz)

Number of Nodes
Analytical
Solution

21 41 81 161 *Li et al [55]

EBT

0 2.8783 2.8783 2.8783 2.8783 2.8783
0.5 4.1296 4.1296 4.1296 4.1296 4.1296
1 4.8611 4.8611 4.8611 4.8611 4.8611
2 5.6378 5.6378 5.6378 5.6378 5.6378
5 6.8975 6.8975 6.8975 6.8975 6.8975

TBT

0 2.8962 2.8962 2.8962 2.8962 2.8962
0.5 4.1543 4.1543 4.1543 4.1543 4.1543
1 4.8914 4.8914 4.8914 4.8914 4.8914
2 5.6773 5.6773 5.6773 5.6773 5.6773
5 6.9536 6.9536 6.9536 6.9536 6.9536

RBT

0 2.8962 2.8962 2.8962 2.8962 *2.8962
0.5 4.1538 4.1538 4.1538 4.1538 *4.1539
1 4.8914 4.8914 4.8914 4.8914 *4.8914
2 5.6799 5.6799 5.6799 5.6799 *5.6793
5 6.9649 6.9649 6.9649 6.9649 *6.9619

* The values based on analytical solutions from the previousstudy done by Li et al.

5.2.1 SS two-directional FG sandwich beam

As the first example, simply supported 2D-FG sandwich beam under uniformly distributed load is studied. The maximum dimensionless

transverse deflections and stresses are computed from different beam theories for various gradation exponents and aspect ratios. As it

is seen form Tables 7-9, the minimum deflection value is obtained from the formulation of EBT is lowest one, as it is expected. The

difference between the EBT and the other two theories is significant for thick beam (L/h=5), however for thin beam (L/h=20), it is

negligible.

The computed results in terms of maximum dimensionless transverse deflections by RBT are slightly higher than the results from TBT

for type A and type B. With the increasing of the gradation exponents in both directions, the deflection values are increasing. Table 9

shows that the maximum deflection value decreases as the gradation exponent increases in both directions.
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Table 3: Verification and convergence studies of the code for S-S FGB,dimensionless axial stress̄σx(
L
2 ,

h
2)for different

number of nodes and gradation exponents, L/h=5.

Theory
Gradation
Exponent(pz)

Number of Nodes Analytical
Solution

21 41 81 161 *Li et al [55]

EBT

0 3.7500 3.7500 3.7500 3.7500 3.7500
0.5 5.3803 5.3803 5.3803 5.3802 5.3803
1 6.3333 6.3333 6.3333 6.3333 6.3333
2 7.3454 7.3454 7.3454 7.3453 7.3454
5 8.9865 8.9865 8.9865 8.9864 8.9865

TBT

0 3.7500 3.7500 3.7500 3.7500 3.7500
0.5 5.3803 5.3803 5.3803 5.3803 5.3803
1 6.3333 6.3333 6.3333 6.3333 6.3333
2 7.3454 7.3454 7.3454 7.3454 7.3454
5 8.9865 8.9865 8.9865 8.9865 8.9865

RBT

0 3.8020 3.8020 3.8020 3.8020 *3.8020
0.5 5.4525 5.4525 5.4525 5.4525 *5.4526
1 6.4212 6.4212 6.4212 6.4212 *6.4212
2 7.4601 7.4601 7.4601 7.4601 *7.4583
5 9.1544 9.1544 9.1544 9.1544 *9.1467

* The values based on analytical solutions from the previousstudy done by Li et al.

Table 4: Verification and convergence studies of the code for S-S FGB,dimensionless axial stress̄σx(
L
2 ,

h
2) for different

number of nodes and gradation exponents, L/h=20.

Theory
Gradation
Exponent(pz)

Number of Nodes Analytical
Solution

21 41 81 161 *Li et al [55]

EBT

0 15.0000 15.0000 15.0000 15.0000 15.0000
0.5 21.5210 21.5210 21.5211 21.5209 21.5210
1 25.3333 25.3333 25.3334 25.3332 25.3333
2 29.3814 29.3815 29.3815 29.3813 29.3814
5 35.9459 35.9460 35.9460 35.9457 35.9459

TBT

0 15.0000 15.0000 15.0000 15.0000 15.0000
0.5 21.5210 21.5210 21.5211 21.5210 21.5210
1 25.3333 25.3333 25.3334 25.3332 25.3333
2 29.3814 29.3815 29.3815 29.3813 29.3814
5 35.9459 35.9460 35.9460 35.9460 35.9459

RBT

0 15.0130 15.0130 15.0130 15.0130 *15.0130
0.5 21.5391 21.5391 21.5391 21.5391 *21.5391
1 25.3553 25.3553 25.3553 25.3553 *25.3553
2 29.4101 29.4101 29.4101 29.4101 *29.4097
5 35.9879 35.9879 35.9879 35.9879 *35.9860

* The values based on analytical solutions from the previousstudy done by Li et al.

In figs. 3-6, the axial and shear stresses for various theories and gradation exponents in z and x directions are plotted, the aspect ratio is

set to L/h=5. It is found that the axial stresses computed based on the EBT and TBT formulation are almost same. However, the results

obtained based on the RBT formulation is slightly higher than the others as it is found for the problem studied for the verification

of the code. Based on the calculations of sandwich beam Type A, it is clear that the maximum shear stress increases by increasing

of gradation exponent in z direction whereas the maximum axial stress decreases for TBT by increasing of gradation exponent in x

direction. However, the same results are not obtained for RBT. When the gradation exponent pz is set to 5, the maximum shear stress is

lower than the stress obtained for the one obtained by pz =2. As it is expected, the shear stress is zero at the top and the bottom surface of

the beam for RBT. It is clear that the maximum dimensionless axial stress increases as the gradation exponent in x direction increases.

The maximum dimensionless shear stress increases with the increasing of the gradation exponent in z direction as it is presented in Fig.
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Table 5: Verification and convergence studies of the code for S-S FGB,dimensionless transverse shear stressσ̄xz(0,0)
for different number of nodes and gradation exponents,L/h= 5.

Theory Gradation
Exponent(pz)

Number of Nodes
Analytical
Solution

21 41 81 161 *Li et al [55]

TBT

0 0.6000 0.6000 0.6000 0.6000 0.6000
0.5 0.6272 0.6272 0.6272 0.6272 0.6272
1 0.6000 0.6000 0.6000 0.6000 0.6000
2 0.5106 0.5106 0.5106 0.5106 0.5106
5 0.3930 0.3930 0.3930 0.3930 0.3930

RBT

0 0.7500 0.7500 0.7500 0.7500 *0.7500
0.5 0.7662 0.7662 0.7662 0.7662 *0.7676
1 0.7500 0.7500 0.7500 0.7500 *0.7500
2 0.6897 0.6897 0.6897 0.6897 *0.6787
5 0.6067 0.6067 0.6067 0.6067 *0.5790

* The values based on analytical solutions from the previousstudy done by Li et al.

Table 6: Verification and convergence studies of the code for S-S FGB,dimensionless transverse shear stressσ̄xz(0,0)
for different number of nodes and gradation exponents,L/h= 20.

Theory
Gradation
Exponent(pz)

Number of Nodes
Analytical
Solution

21 41 81 161 *Li et al [55]

TBT

0 0.6000 0.6000 0.6000 0.6000 0.6000
1 0.6272 0.6272 0.6272 0.6272 0.6272
2 0.6000 0.6000 0.6000 0.6000 0.6000
5 0.5106 0.5106 0.5106 0.5106 0.5106
10 0.3930 0.3930 0.3930 0.3930 0.3930

RBT

0 0.7500 0.7500 0.7500 0.7500 *0.7500
1 0.7662 0.7662 0.7662 0.7662 *0.7676
2 0.7500 0.7500 0.7500 0.7500 *0.7500
5 0.6897 0.6897 0.6897 0.6897 *0.6787
10 0.6067 0.6067 0.6067 0.6067 *0.5790

*The values based on analytical solutions from the previousstudy done by Li et al.

6 for Type B. Regarding to the calculations performed for type C, it is found that the shear stress increases as the gradation exponent in

z direction increases. As it is seen from Fig. 6c, the jumps occur for both TBT and RBT because of the material discontinuity.

5.2.2 CS two-directional FG sandwich beam

In this example, the static behavior of a clamped-simply supported two directional FG sandwich beam under uniformly distributed load

is considered. The results are given in Tables 10-12 and Figs. 7-10 for different beam theories, gradation exponents andaspect ratios. It

is clear from Tables 10-12 that, the EBT underestimates the transverse deflections for a thick beam, as expected it acts more stiff than

the other two beam models. However, for a thin beam (L/h=20),the difference is negligible. The computed results by RBT are again

slightly higher than the results from TBT in type A and type B.As the gradation exponents in both directions increase, thetransverse

deflections increase for type A and type B. However, for type C, as the gradation exponent increases the transverse deflection decreases.

It is found that the lowest maximum dimensionless axial stress value is obtained by the EBT formulation. However, the results obtained

based on the RBT formulation are slightly higher than the other two beam theories. The computed numerical results for sandwich beam

Type A show that the maximum dimensionless axial stress is obtained when the pz is set to 0. The shear stress increases by increasing

of gradation exponent in z direction whereas the maximum axial stress decreases for TBT by increasing of gradation exponent in x

direction. For RBT, the maximum shear stress is obtained when the pz is set to 2. As gradation exponent in z direction increase the

maximum axial stress increases for type B as shown in Fig. 8. Regarding to the calculations performed for type B, the shearstress
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Table 7: Dimensionless maximum transverse deflections of the FG sandwich S-S beams for different beam theories and
gradation exponents, Type A.

Theory Pz
L/h=5 L/h=20

px px

0 0.5 1 2 5 0 0.5 1 2 5

EBT

0 2.8783 3.2437 3.6487 4.5720 7.8224 2.8783 3.2437 3.6487 4.5720 7.8224
0.5 4.1296 4.5955 5.0960 6.1772 9.4607 4.1296 4.5955 5.0960 6.1772 9.4607
1 4.8611 5.3703 5.977 7.0356 10.22864.8611 5.3703 5.977 7.0356 10.2286
2 5.6378 6.1810 6.7436 7.8916 10.93425.6378 6.1810 6.7436 7.8916 10.9342
5 6.8975 7.4699 8.0458 9.1719 11.89766.8975 7.4699 8.0458 9.1719 11.8976

TBT

0 3.1657 3.5714 4.0238 5.0595 8.6549 2.8962 3.2642 3.6721 4.6024 7.8742
0.5 4.5243 5.0400 5.5961 6.8004 10.39994.1543 4.6232 5.1272 6.2161 9.5193
1 5.3464 5.9113 6.5087 7.7623 11.24354.8915 5.4041 5.9452 7.0809 10.2919
2 6.2679 6.8719 7.4972 8.7657 12.05245.6773 6.2241 6.7907 7.9462 11.0038
5 7.7951 8.4266 9.0584 10.2806 13.17066.9536 7.5296 8.1090 9.2412 11.9770

RBT

0 3.1658 3.5714 4.0237 5.0596 8.6546 2.8962 3.2641 3.6721 4.6023 7.8742
0.5 4.5177 5.0327 5.5887 6.7924 10.39394.1538 4.6228 5.1267 6.2156 9.5189
1 5.3464 5.9110 6.5085 7.7623 11.24334.8914 5.4041 5.9452 7.0808 10.2918
2 6.3111 6.9154 7.5397 8.8052 12.07935.6799 6.2268 6.7933 7.9486 11.0055
5 7.9761 8.5963 9.2143 10.4114 13.25746.9649 7.5402 8.1187 9.2493 11.9824

Table 8: Dimensionless maximum transverse deflections of the FG sandwich S-S beams for different beam theories and
gradation exponents, Type B.

Theory Pz
L/h=5 L/h=20

px px

0 0.5 1 2 5 0 0.5 1 2 5

EBT

0 2.8783 3.0256 3.1644 3.4115 3.9155 2.8783 3.0256 3.1644 3.4115 3.9155
0.5 3.2960 3.4399 3.5733 3.8062 4.2649 3.2960 3.4399 3.5733 3.8062 4.2649
1 3.5587 3.6934 3.8168 4.0291 4.4368 3.5587 3.6934 3.8168 4.0291 4.4368
2 3.8897 4.0061 4.1108 4.2876 4.6163 3.8897 4.0061 4.1108 4.2876 4.6163
5 4.3705 4.4515 4.5227 4.6395 4.8477 4.3705 4.4515 4.5227 4.6395 4.8477

TBT

0 3.1657 3.3216 3.4677 3.7261 4.2473 2.8962 3.0441 3.1834 3.4312 3.9363
0.5 3.6570 3.8098 3.9509 4.1952 4.6710 3.3186 3.4630 3.5969 3.8306 4.2903
1 3.9727 4.1163 4.2470 4.4704 4.8943 3.5846 3.7199 3.8437 4.0567 4.4654
2 4.3751 4.4995 4.6107 4.7974 5.1403 3.9201 4.0370 4.1420 4.3195 4.6491
5 4.9568 5.0437 5.1195 5.2431 5.4610 4.4072 4.4886 4.5601 4.6773 4.8860

RBT

0 3.1658 3.3172 3.4597 3.7126 4.2256 2.8962 3.0438 3.1829 3.4303 3.9349
0.5 3.6722 3.8205 3.9573 4.1959 4.6640 3.3195 3.4637 3.5973 3.8306 4.2898
1 4.0095 4.1483 4.2750 4.4930 4.9097 3.5869 3.7218 3.8454 4.0581 4.4664
2 4.4556 4.5754 4.6834 4.8657 5.2039 3.9251 4.0417 4.1466 4.3228 4.6531
5 5.1232 5.2073 5.2815 5.4033 5.6191 4.4175 4.4988 4.5702 4.6872 4.8959

increases as the gradation exponent increases in z direction as plotted in Fig. 10b. Again, the jumps occur for both TBT and RBT

because of the material discontinuity in Fig. 10c.

5.2.3 CC two-directional FG sandwich beam

The dimensionless maximum transverse deflections and the axial and shear stresses of the clamped-clamped FG sandwich beams are

investigated in the third example. The computed results aregiven in Tables 13-15 and Figs. 11-14. It is clear in that the transverse

deflections increase as the power low index increases for Type A and Type B. The difference between the EBT and the other two

theories is significant for thick beam (L/h=5), however it isnegligible for thin beam (L/h=20).
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Table 9: Dimensionless maximum transverse deflections of the FG sandwich S-S beams for different beam theories and
gradation exponents, Type C.

Theory Pz
L/h=5 L/h=20

px px

0 0.5 1 2 5 0 0.5 1 2 5

EBT

0 10.05747.5933 6.3254 5.0051 3.6549 10.05747.5933 6.3254 5.0051 3.6549
0.5 6.2044 5.3800 4.8472 4.1951 3.4037 6.2044 5.3800 4.8472 4.1951 3.4037
1 5.0798 4.6093 4.2793 3.8479 3.2815 5.0798 4.6093 4.2793 3.8479 3.2815
2 4.2087 3.9628 3.7783 3.5211 3.1566 4.2087 3.9628 3.7783 3.5211 3.1566
5 3.4957 3.3974 3.3188 3.2028 3.0249 3.4957 3.3974 3.3188 3.2028 3.0249

TBT

0 10.54288.0382 6.7451 5.3942 4.0056 10.08787.6211 6.3517 5.0294 3.6769
0.5 6.5991 5.7557 5.2098 4.5410 3.7278 6.2291 5.4035 4.8699 4.2168 3.4240
1 5.4408 4.9581 4.6193 4.1764 3.5947 5.1024 4.6311 4.3006 3.8684 3.3011
2 4.5413 4.2883 4.0986 3.8343 3.4603 4.2295 3.9832 3.7983 3.5407 3.1756
5 3.8041 3.7027 3.6217 3.5024 3.3200 3.5150 3.4165 3.3378 3.2216 3.0433

RBT

0 10.45117.9600 6.6767 5.3384 3.9678 10.08217.6162 6.3473 5.0259 3.6745
0.5 6.5551 5.7167 5.1746 4.5113 3.7058 6.2293 5.4011 4.8677 4.2149 3.4226
1 5.4127 4.9329 4.5967 4.1567 3.5795 5.1006 4.6295 4.2991 3.8672 3.3001
2 4.5259 4.2748 4.0861 3.8232 3.4508 4.2286 3.9823 3.7975 3.5400 3.1750
5 3.7991 3.6980 3.6173 3.4983 3.3161 10.05747.5933 6.3254 5.0051 3.6549

Table 10: Dimensionless maximum transverse deflections of the FG sandwich C-S beams for different beam theories and
gradation exponents, Type A.

Theory Pz
L/h=5 L/h=20

px px

0 0.5 1 2 5 0 0.5 1 2 5

EBT

0 1.1972 1.3301 1.4733 1.7845 2.7279 1.1972 1.3301 1.4733 1.7845 2.7279
0.5 1.7176 1.8872 2.0643 2.4296 3.3975 1.7176 1.8872 2.0643 2.4296 3.3975
1 2.0219 2.2072 2.3975 2.7791 3.7281 2.0219 2.2072 2.3975 2.7791 3.7281
2 2.3450 2.5426 2.7419 3.1311 4.0432 2.3450 2.5426 2.7419 3.1311 4.0432
5 2.8689 3.0772 3.2817 3.6642 4.4918 2.8689 3.0772 3.2817 3.6642 4.4918

TBT

0 1.5275 1.6915 1.8695 2.2591 3.4454 1.2178 1.3527 1.4981 1.8142 2.7728
0.5 2.1713 2.3794 2.5980 3.0524 4.2647 1.7460 1.9179 2.0977 2.4686 3.4518
1 2.5797 2.8082 3.0440 3.5191 4.7064 2.0568 2.2447 2.4376 2.8254 3.7894
2 3.0691 3.3145 3.5624 4.0457 5.1784 2.3903 2.5908 2.7932 3.1883 4.1142
5 3.9005 4.1567 4.4065 4.8710 5.8706 2.9334 3.1448 3.3520 3.7398 4.5779

RBT

0 1.5883 1.7549 1.9357 2.3312 3.5308 1.2217 1.3568 1.5023 1.8187 2.7782
0.5 2.2436 2.4542 2.6758 3.1360 4.3615 1.7506 1.9227 2.1026 2.4739 3.4580
1 2.6823 2.9146 3.1540 3.6363 4.8378 2.0634 2.2515 2.4449 2.8329 3.7978
2 3.2683 3.5193 3.7722 4.2632 5.4062 2.4030 2.6039 2.8066 3.2021 4.1287
5 4.3637 4.6197 4.8680 5.3283 6.3107 2.9631 3.1744 3.3815 3.7689 4.6059

In Figs. 11-14, the axial and shear stresses for various theories and gradation exponents in z and directions are given for a clamped-

clamped FG sandwich beam where the aspect ratio is set to L/h=5. The computed axial stresses for the EBT and TBT formulation

are almost same. However, the results based on the RBT formulation are slightly higher than the two beam theories. Based on the

calculations of sandwich beam Type A, it is clear that the maximum axial stress increases by decreasing of gradation exponent in x

direction whereas the maximum shear stress decreases for TBT by increasing of gradation exponent in z direction. It is interesting that

the maximum shear stress value is obtained by the RBT formulation when thepz is set to 2. As it is expected, the shear stress is zero

at the top and the bottom surface of the beam for RBT for all types of sandwich beams. For type B, the axial stress increase asthe

gradation exponent increase in x direction as plotted in Fig. 12. Because of the symmetry in Type C, the axial and shear stress values

are symmetrical according to the midplane of the beam. The maximum dimensionless shear stress is obtained for RBT beam asit is
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Fig. 3: Dimensionless axial stress̄σx(
L
2 ,z) through the thickness of the FG sandwich S-S beams for different beam

theories and pz=1, L/h=5, Type A.

presented in Fig. 14b for Type B. Computed results show that in Fig. 14c, the shear stress increases as the gradation exponent in z

direction increases. The jumps are still available based onthe material discontinuity.

5.2.4 CF two-directional FG sandwich beam

Finally, the results of elastostatic anaylsis of the clamped free 2D-FG sandwich beam under uniformly distributed loadare given in this

example for varios beam theories, gradation exponents and aspect ratios. As it is seen from Tables 16-17, the transversedeflections

increase as the gradation exponent increases. The results presented in Table 18 show that the deflections decreases by increasing of

the gradation exponent for both directions. Due to the higher stiffness, the dimensionless maximum taransverse deflections values

computed based on the EBT are smaller than the ones obtained by TBT and RBT for the aspect ratio set to 5. However, the computed

results are very close to each other when the aspect ratio is set to 20. To obtain more accurate results for the EBT, the smoothing

length (h) is set to 1.5∆ for the problem studied here. The dimensionless axial stress increases as the gradation exponent in x direction

increases for type A and type B as shown in figs. 15-16. And alsoit is clear that the difference in terms of maximum dimensionless

axial stress value is almost negligible for all beam theories as plotted in figs 15-17. Based on the numerical results obtained for Type

A, the maximum shear stress is obtained for TBT as presented in fig. 18a. The material changings are visible through the thickness as

shown in Fig 18b. The maximum shear stress values are obtained for the maximum gradation exponent in z direction. As it is seen in

fig. 18c, the shear stress value increases with the decreasing of the gradation exponent in z direction.
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Fig. 4: Dimensionless axial stress̄σx(
L
2 ,z) through the thickness of the FG sandwich S-S beams for different beam

theories and pz=1, L/h=5, Type B.

Table 11: Dimensionless maximum transverse deflections of the FG sandwich C-S beams for different beam theories and
gradation exponents, Type B.

Theory Pz
L/h=5 L/h=20

px px

0 0.5 1 2 5 0 0.5 1 2 5

EBT

0 1.1972 1.2509 1.3002 1.3849 1.5421 1.1972 1.2509 1.3002 1.3849 1.5421
0.5 1.3709 1.4235 1.4708 1.5508 1.6948 1.3709 1.4235 1.4708 1.5508 1.6948
1 1.4802 1.5294 1.5733 1.6462 1.7748 1.4802 1.5294 1.5733 1.6462 1.7748
2 1.6179 1.6604 1.6977 1.7584 1.8628 1.6179 1.6604 1.6977 1.7584 1.8628
5 1.8179 1.8475 1.8729 1.9132 1.9799 1.8179 1.8475 1.8729 1.9132 1.9799

TBT

0 1.5275 1.5885 1.6442 1.7397 1.9174 1.2178 1.2720 1.3217 1.4070 1.5655
0.5 1.7859 1.8460 1.9001 1.9911 2.1558 1.3969 1.4499 1.4977 1.5783 1.7236
1 1.9561 2.0127 2.0632 2.1467 2.2953 1.5100 1.5596 1.6039 1.6774 1.8073
2 2.1757 2.2250 2.2682 2.3387 2.4604 1.6528 1.6957 1.7338 1.7947 1.9001
5 2.4917 2.5263 2.5559 2.6030 2.6817 1.8590 1.8898 1.9156 1.9563 2.0237

RBT

0 1.5883 1.6470 1.7009 1.7931 1.9638 1.2217 1.2758 1.3253 1.4105 1.5685
0.5 1.8876 1.9454 1.9974 2.0850 2.2426 1.4034 1.4562 1.5039 1.5843 1.7292
1 2.1013 2.1556 2.2042 2.2847 2.4263 1.5193 1.5687 1.6129 1.6861 1.8158
2 2.3989 2.4462 2.4879 2.5559 2.6725 1.6670 1.7097 1.7474 1.8086 1.9136
5 2.8563 2.8897 2.9187 2.9650 3.0404 1.8833 1.9131 1.9387 1.9794 2.0466
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Fig. 5: Dimensionless axial stress̄σx(
L
2 ,z) through the thickness of the FG sandwich S-S beams for different beam

theories and pz=1, L/h=5, Type C.

Table 12: Dimensionless maximum transverse deflections of the FG sandwich C-S beams for different beam theories and
gradation exponents, Type C.

Theory Pz
L/h=5 L/h=20

px px

0 0.5 1 2 5 0 0.5 1 2 5

EBT

0 4.1833 3.2757 2.8064 2.3134 1.8024 4.1833 3.2757 2.8064 2.3134 1.8024
0.5 2.5806 2.2787 2.0851 1.8504 1.5700 2.5806 2.2787 2.0851 1.8504 1.5700
1 2.1129 1.9407 1.8217 1.6682 1.4725 2.1129 1.9407 1.8217 1.6682 1.4725
2 1.7506 1.6608 1.5944 1.5039 1.3807 1.7506 1.6608 1.5944 1.5039 1.3807
5 1.4540 1.4182 1.3901 1.3495 1.2906 1.4540 1.4182 1.3901 1.3495 1.2906

TBT

0 4.7410 3.7939 3.2975 2.7688 2.2070 4.2181 3.3081 2.8371 2.3419 1.8276
0.5 3.0343 2.7142 2.5072 2.2535 1.9442 2.6090 2.3059 2.1115 1.8756 1.5934
1 2.5279 2.3442 2.2163 2.0499 1.8339 2.1388 1.9660 1.8463 1.6920 1.4950
2 2.1329 2.0365 1.9648 1.8665 1.7305 1.7745 1.6843 1.6175 1.5265 1.4025
5 1.8084 1.7697 1.7392 1.6950 1.6300 1.4762 1.4402 1.4119 1.3711 1.3118

RBT

0 4.6935 3.7566 3.2693 2.7544 2.2180 4.2152 3.3058 2.8354 2.3411 1.8284
0.5 3.0378 2.7211 2.5175 2.2690 1.9735 2.6092 2.3064 2.1122 1.8767 1.5953
1 2.5490 2.3674 2.2416 2.0787 1.8713 2.1402 1.9675 1.8480 1.6939 1.4975
2 2.1695 2.0743 2.0035 1.9069 1.7759 1.7768 1.6867 1.6200 1.5291 1.4054
5 1.8590 1.8204 1.7901 1.7466 1.6836 1.4794 1.4434 1.4152 1.3744 1.3152
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Fig. 6: Dimensionless transverse shear stressσ̄xz(0,z) through the thickness of the FG sandwich S-S beams for different
beam theories and px=1, L/h=5;a) Type A,b) Type B,c) Type C.
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Fig. 7: Dimensionless axial stress̄σx(
L
2 ,z) through the thickness of the FG sandwich C-S beams for different beam

theories and pz=1, L/h=5, Type A. 
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Fig. 8: Dimensionless axial stress̄σx(
L
2 ,z) through the thickness of the FG sandwich C-S beams for different beam

theories and pz=1, L/h=5, Type B.
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Fig. 9: Dimensionless axial stress̄σx(
L
2 ,z) through the thickness of the FG sandwich C-S beams for different beam

theories and pz=1, L/h=5, Type C.

Table 13: Dimensionless maximum transverse deflections of the FG sandwich C-C beams for different beam theories and
gradation exponents, Type A.

Theory Pz

L/h=5 L/h=20
px px

0 0.5 1 2 5 0 0.5 1 2 5

EBT

0 0.5757 0.6526 0.7352 0.9111 1.4013 0.5757 0.6526 0.7352 0.9111 1.4013
0.5 0.8259 0.9238 1.0250 1.2279 1.7179 0.8259 0.9238 1.0250 1.2279 1.7179
1 0.9722 1.0791 1.1871 1.3972 1.8722 0.9722 1.0791 1.1871 1.3972 1.8722
2 1.1276 1.2414 1.3541 1.5664 2.0180 1.1276 1.2414 1.3541 1.5664 2.0180
5 1.3795 1.4992 1.6139 1.8199 2.2239 1.3795 1.4992 1.6139 1.8199 2.2239

TBT

0 0.8630 0.9793 1.1054 1.3781 2.1431 0.5936 0.6731 0.7583 0.9403 1.4477
0.5 1.2206 1.2206 1.5203 1.8316 2.5887 0.8506 0.9515 1.0559 1.2656 1.7724
1 1.4576 1.4576 1.7832 2.1056 2.8313 1.0003 1.1128 1.2244 1.4415 1.9322
2 1.7576 1.7576 2.1029 2.4249 3.0947 1.1670 1.2845 1.4009 1.6200 2.0854
5 2.2770 2.2770 2.6228 2.9182 3.4756 1.4356 1.5589 1.6770 1.8886 2.3022

RBT

0 0.9349 1.0616 1.1988 1.4952 2.3135 0.5981 0.6782 0.7642 0.9477 1.4586
0.5 1.3081 1.4666 1.6324 1.9694 2.7793 0.8561 0.9577 1.0629 1.2743 1.7845
1 1.5789 1.5789 1.9332 2.2820 3.0541 1.0101 1.1213 1.2338 1.4526 1.9463
2 1.9786 1.9786 2.3546 2.6978 3.3912 1.1808 1.2993 1.4166 1.6371 2.1040
5 2.7652 2.7652 3.1075 3.3916 3.9198 1.4661 1.5894 1.7072 1.9182 2.3299
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Fig. 10: Dimensionless transverse shear stressσ̄xz(0,z) through the thickness of the FG sandwich C-S beams for different
beam theories and px=1, L/h=5;a) Type A,b) Type B,c) Type C.
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Fig. 11: Dimensionless axial stress̄σx(
L
2 ,z) through the thickness of the FG sandwich C-C beams for different beam

theories and pz=1, L/h=5, Type A. 
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Fig. 12: Dimensionless axial stress̄σx(
L
2 ,z) through the thickness of the FG sandwich C-C beams for different beam

theories and pz=1, L/h=5, Type B.
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Table 14: Dimensionless maximum transverse deflections of the FG sandwich C-C beams for different beam theories and
gradation exponents, Type B.

Theory Pz
L/h=5 L/h=20

px px

0 0.5 1 2 5 0 0.5 1 2 5

EBT

0 0.5757 0.6063 0.6335 0.6779 0.7527 0.5757 0.6063 0.6335 0.6779 0.7527
0.5 0.6592 0.6891 0.7152 0.7568 0.8251 0.6592 0.6891 0.7152 0.7568 0.8251
1 0.7117 0.7397 0.7638 0.8016 0.8624 0.7117 0.7397 0.7638 0.8016 0.8624
2 0.7780 0.8021 0.8225 0.8539 0.9029 0.7780 0.8021 0.8225 0.8539 0.9029
5 0.8741 0.8909 0.9046 0.9253 0.9565 0.8741 0.8909 0.9046 0.9253 0.9565

TBT

0 0.8630 0.9022 0.9366 0.9919 1.0834 0.5936 0.6248 0.6525 0.6976 0.7734
0.5 1.0202 1.0590 1.0925 1.1453 1.2303 0.6818 0.7122 0.7388 0.7811 0.8504
1 1.1258 1.1625 1.1938 1.2424 1.3191 0.7376 0.7661 0.7907 0.8292 0.8909
2 1.2633 1.2953 1.3223 1.3633 1.4263 0.8083 0.8329 0.8537 0.8857 0.9356
5 1.4604 1.4829 1.5013 1.5288 1.5696 0.9107 0.9279 0.9419 0.9631 0.9948

RBT

0 0.9349 0.9703 1.0016 1.0519 1.1357 0.5981 0.6291 0.6565 0.7013 0.7767
0.5 1.1355 1.1698 1.1997 1.2469 1.3236 0.6890 0.7191 0.7455 0.7875 0.8563
1 1.2853 1.3174 1.3449 1.3880 1.4565 0.7476 0.7758 0.8001 0.8383 0.8995
2 1.5005 1.5282 1.5515 1.5874 1.6432 0.8231 0.8474 0.8680 0.8997 0.9492
5 1.8365 1.8558 1.8716 1.8954 1.9312 0.9342 0.9512 0.9651 0.9860 1.0174

Table 15: Dimensionless maximum transverse deflections of the FG sandwich C-C beams for different beam theories and
gradation exponents, Type C.

Theory Pz

L/h=5 L/h=20
px px

0 0.5 1 2 5 0 0.5 1 2 5

EBT

0 2.0115 1.5188 1.2873 1.0592 0.8371 2.0115 1.5188 1.2873 1.0592 0.8371
0.5 1.2409 1.0739 0.9749 0.8625 0.7380 1.2409 1.0739 0.9749 0.8625 0.7380
1 1.0160 0.9201 0.8583 0.7837 0.6960 1.0160 0.9201 0.8583 0.7837 0.6960
2 0.8418 0.7914 0.7565 0.7119 0.6561 0.8418 0.7914 0.7565 0.7119 0.6561
5 0.6992 0.6789 0.6640 0.6437 0.6167 0.6992 0.6789 0.6640 0.6437 0.6167

TBT

0 2.4968 1.9625 1.7038 1.4429 1.1821 2.0418 1.5466 1.3134 1.0832 0.8587
0.5 1.6356 1.4492 1.3366 1.2066 1.0600 1.2656 1.0973 0.9975 0.8840 0.7581
1 1.3770 1.2687 1.1979 1.1113 1.0081 1.0385 0.9419 0.8796 0.8042 0.7155
2 1.1743 1.1169 1.0767 1.0248 0.9593 0.8625 0.8118 0.7765 0.7315 0.6751
5 1.0075 0.9841 0.9668 0.9432 0.9117 0.7184 0.6980 0.6829 0.6624 0.6352

RBT

0 2.4726 1.9585 1.7141 1.4699 1.2288 2.0403 1.5463 1.3140 1.0849 0.8616
0.5 1.6546 1.4771 1.3714 1.2505 1.1154 1.2667 1.0991 0.9997 0.8867 0.7616
1 1.4116 1.3092 1.2429 1.1625 1.0675 1.0407 0.9444 0.8824 0.8074 0.7192
2 1.2229 1.1688 1.1312 1.0831 1.0229 0.8656 0.8150 0.7800 0.7351 0.6791
5 1.0688 1.0469 1.0307 1.0088 0.9797 0.7222 0.7019 0.6869 0.6665 0.6394
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Fig. 13: Dimensionless axial stress̄σx(
L
2 ,z) through the thickness of the FG sandwich C-C beams for different beam

theories and pz=1, L/h=5, Type C.

Table 16: Dimensionless maximum transverse deflections of the FG sandwich C-F beams for different beam theories and
gradation exponents, Type A.

Theory Pz

L/h=5 L/h=20
px px

0 0.5 1 2 5 0 0.5 1 2 5

EBT

0 27.6273 28.9038 30.2569 33.1880 43.3766 27.6273 28.9038 30.2569 33.1880 43.3766
0.5 39.6379 41.2762 42.9831 46.5752 58.0486 39.6379 41.2762 42.9831 46.5752 58.0486
1 46.6594 48.4568 50.3111 54.1524 65.9209 46.6594 48.4568 50.3111 54.1524 65.9209
2 54.1153 56.0399 58.0053 62.0126 73.8130 54.1153 56.0399 58.0053 62.0126 73.8130
5 66.2059 68.2473 70.2987 74.3812 85.7469 66.2059 68.2473 70.2987 74.3812 85.7469

TBT

0 28.7805 30.1515 31.6081 34.7717 45.7603 27.6955 28.9786 30.3386 33.2847 43.5233
0.5 41.2220 42.9778 44.8103 48.6727 60.9776 39.7309 41.3774 43.0928 46.7025 58.2278
1 48.6071 50.5364 52.5290 56.6586 69.2488 46.7747 48.5811 50.4447 54.3406 66.1242
2 56.6428 58.7133 60.8273 65.1302 77.6946 54.2674 56.2016 58.1767 62.2026 74.0499
5 69.8053 71.9908 74.1814 78.5218 90.4714 66.4261 68.4763 70.5362 74.6344 86.0349

RBT

0 29.3533 30.7283 32.1888 35.3567 46.3403 27.7318 29.0150 30.3752 33.3216 43.5599
0.5 41.9453 43.7064 45.5442 49.4118 61.7203 39.7768 41.4235 43.1390 46.7490 58.2745
1 49.5762 51.5096 53.5077 57.6395 70.2252 46.8360 48.6426 50.5063 54.3665 66.1857
2 58.2352 60.3076 62.4221 66.7138 79.2146 54.3683 56.3022 58.2772 62.3022 74.1455
5 72.9795 75.1213 77.2663 81.5052 93.1884 66.6268 68.6738 70.7304 74.8218 86.2054
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Fig. 14: Dimensionless transverse shear stressσ̄xz(0,z) through the thickness of the FG sandwich C-C beams for different
beam theories and px=1, L/h=5;a) Type A,b) Type B,c) Type C.
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Fig. 15: Dimensionless axial stress̄σx(
L
2 ,z) through the thickness of the FG sandwich C-F beams for different beam

theories and pz=1, L/h=5, Type A. 
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Fig. 16: Dimensionless axial stress̄σx(
L
2 ,z) through the thickness of the FG sandwich C-F beams for different beam

theories and pz=1, L/h=5, Type B.
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Table 17: Dimensionless maximum transverse deflections of the FG sandwich C-F beams for different beam theories and
gradation exponents, Type B.

Theory Pz
L/h=5 L/h=20

px px

0 0.5 1 2 5 0 0.5 1 2 5

EBT

0 27.6273 28.1611 28.6775 29.6519 32.0809 27.6273 28.1611 28.6775 29.6519 32.0809
0.5 31.6369 32.1602 32.6618 33.5972 35.8767 31.6369 32.1602 32.6618 33.5972 35.8767
1 34.1584 34.6497 35.1175 35.9819 38.0538 34.1584 34.6497 35.1175 35.9819 38.0538
2 37.3358 37.7618 38.1636 38.8971 40.6171 37.3358 37.7618 38.1636 38.8971 40.6171
5 41.9504 42.2487 42.5263 43.0245 44.1588 41.9504 42.2487 42.5263 43.0245 44.1588

TBT

0 28.7805 29.3357 29.8715 30.8793 33.3758 27.6955 28.2306 28.7481 29.7243 32.1567
0.5 33.0852 33.6308 34.1527 35.1224 37.4701 31.7238 32.2484 32.7511 33.6883 35.9715
1 35.8192 36.3326 36.8201 37.7178 39.8553 34.2588 34.7514 35.2203 36.0865 38.1620
2 39.2824 39.7284 40.1480 40.9114 42.6894 37.4544 37.8815 38.2843 39.0195 40.7427
5 44.3015 44.6144 44.6047 45.4242 46.5988 42.0946 42.3937 42.6719 43.1714 44.3080

RBT

0 29.3533 29.8945 30.4153 31.3990 33.8458 27.7318 28.2658 28.7823 29.7569 32.1860
0.5 33.9443 34.4706 34.9761 35.9174 38.2037 31.7782 32.3015 32.8030 33.7383 36.0176
1 36.9471 37.4387 37.9092 38.7737 40.8473 34.3301 34.8213 35.2890 36.1532 38.2244
2 40.8557 41.2812 41.6811 42.4116 44.1180 37.5540 37.9796 38.3811 39.1142 40.8331
5 46.6402 46.9342 47.2066 47.6940 48.8081 42.2425 42.5403 42.8174 43.3150 44.4477

Table 18: Dimensionless maximum transverse deflections of the FG sandwich C-F beams for different beam theories and
gradation exponents, Type C.

Theory Pz
L/h=5 L/h=20

px px

0 0.5 1 2 5 0 0.5 1 2 5

EBT

0 96.5367 86.1276 79.1067 69.7789 55.7930 96.5367 86.1276 79.1067 69.7789 55.7930
0.5 59.5532 56.2782 53.7373 49.9578 43.4508 59.5532 56.2782 53.7373 49.9578 43.4508
1 48.7588 46.9283 45.4372 43.1173 38.8766 48.7588 46.9283 45.4372 43.1173 38.8766
2 40.3978 39.4581 38.6605 37.3681 34.8659 40.3978 39.4581 38.6605 37.3681 34.8659
5 33.5540 33.1840 32.8584 32.3102 31.1863 33.5540 33.1840 32.8584 32.3102 31.1863

TBT

0 98.4894 87.9761 80.8756 71.4327 57.2638 96.6162 86.2093 79.1887 69.8599 55.8705
0.5 61.1394 57.8160 55.2361 51.3974 44.7906 59.6345 56.3587 53.8169 50.0357 43.5256
1 50.2090 48.3475 46.8309 44.4716 40.1622 48.8371 47.0058 45.5140 43.1929 38.9497
2 41.7334 40.7759 39.9633 38.6473 36.1030 40.4726 39.5324 38.7343 37.4411 34.4373
5 34.7918 34.4141 34.0818 33.5229 32.3795 33.6255 33.2552 32.9294 32.3808 31.2561

RBT

0 98.6595 88.2651 81.2522 71.9409 58.0143 96.6210 86.2251 79.2221 69.8932 55.9192
0.5 61.4646 58.2059 55.6724 51.9058 45.4388 59.6543 56.3840 53.8447 50.0685 43.5672
1 50.5982 48.7794 47.2949 44.9893 40.7800 48.8615 47.0332 45.5437 43.2261 38.9893
2 42.1829 41.2488 40.4599 39.1786 36.7034 40.5011 39.5627 38.7661 37.4751 34.9756
5 35.3006 34.9383 34.6163 34.0754 32.9679 33.6579 33.2885 32.9634 32.4159 31.2935
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Fig. 17: Dimensionless axial stress̄σx(
L
2 ,z) through the thickness of the FG sandwich C-F beams for different beam

theories and pz=1, L/h=5, Type C.
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Fig. 18: Dimensionless transverse shear stressσ̄xz(0,z) through the thickness of the FG sandwich C-F beams for different
beam theories and px=1, L/h=5;a) Type A,b) Type B,c) Type C.
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6 Conclusion

The static behaviour of the two directional functionally graded sandwich beams subjected to different sets of boundaryconditions and

uniformly distubuted load are investigated by employing the SSPH basis functions and using strong formulation of the problem. The

EBT, TBT and RBT formulations are developed regarding to different types of two directional FG sandwich beams to evaluate the

transverse deflections, axial and shear stresses. The verification of the developed code is established by solving a conventional FG

beam problem and comparing numerical solutions with the results form previous studies and the analytical solutions. The numerical

calculations are performed by using 161 nodes uniformly distributed in the problem domain and by employing 7 terms in theTSEs.

Various types of sandwich beams are considered. It is clear the results obtained based on the TBT formulation can be more close to

ones obtained based on the RBT formulation by choosing the more accurate shear correction factor which depends on the geometry,

material properties, loading and boundary conditions.

It is found that the SSPH method provides satisfactory and expected results at least for the problems studied here. Basedon the results

obtained within the scope of the study, it is recommended that the SSPH method can be applied for solving linear two directional

functionally graded sandwich beam problems by employing different shear deformation theories and strong form formulation.
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