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Abstract: In this study, complex differential equations are solved using laplace transform. Firstly we seperate real and imaginer parts
of equation. Thus from one unknown equation is obtained two unknown equation system. Later we obtain laplace transformsof real
and imaginer parts of solutions using laplace transform. Inthe latest we obtain real and imaginer parts of solution using inverse laplace
transform.
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1 Introduction

In real, general solutions of some equations, especially type of elliptic, are not found. Real partial differential equation
systems when number of independent variables are even can betransformed to a complex partial differential equations.
The solving a complex equation can more easier with complex methods. For example,

uxx+uyy = 0 (1)

Laplace equation hasn’t got general solution inR2, but it can be written

uzz = 0

with the relation

∆ =
∂ 2

∂z∂z

and the solution of the equation is given as
u= f (z)+g(z)

where f is analytic,g is anti analytic arbitrary functions. A partial differential equation system which has two real
dependant and two real independant variables can be transformed to a complex equation. For example,

ux− vy = 0

uy+ vx = 0.

Cauchy Riemann system transforms to complex equation

wz = 0
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wherew= u+ iv,z= x+ iy. All solutions of this complex equation are analytic functions.

Moreover any order complex differential equation can be transformed to real partial differential equation system which
has two unknowns, two independent variables by seperating the real and imaginer parts. The solution of complex
equation can be put forward helping solutions of this real system.

In this study, we investigate solutions of first order constant coefficients complex equations with laplace transforms.
Laplace transform using several areas of mathematics is a integral transform. We can solve ordinary differential
equations, system of ordinary differential equation, integral equations, integro differential equations, difference
equations, integro difference equations and also calculate some generalized integrals with laplace transform. Moreover
we can use laplace transform in electrical circuits. Therefore we can solve fractional differential equations via laplace
transforms[2,3]. Nonlinear differential equations can besolved laplace decomposition method[4].

2 Basic definitions and theorems

Definition 1. Let F(t) be a function of t> 0. Laplace transform of F(t) is defined as

L(F(t)) = f (s) =

∞
∫

0

e−st. f (t)dt. (2)

Since integral of (2) is a function of s, then we can write L(F(t)) = f (s).

Theorem 1.If F (n) (t) is partial continuous, then

L(F (n)(t)) = sn f (s)− sn−1F (0)− sn−2F ′(0)− sn−2F ′′(0)− ...−F(n−1)(0)

where L(F(t)) = f (s).

Theorem 2.Laplace transforms of partial derivatives of u(x, t) are given as follow.

(i) L
[

∂u
∂ t

]

= s.U(x,s)−u(x,0)

(ii) L
[

∂u
∂x

]

= ∂U(x,s)
∂x

where U(x,s) = L [u(x, t)] .

2.1 Complex derivatives

Let w= w(z,z) be a complex function. Herez= x+ iy, w(z,z) = u(x,y)+ i.v(x,y) . First order derivatives according toz
andzof w(z,z) are defined as

∂w
∂z

=
1
2
(

∂w
∂x

− i
∂w
∂y

). (3)

∂w
∂z

=
1
2
(

∂w
∂x

+ i
∂w
∂y

). (4)

3 Solution of complex differential equations from first order which is constant coeffients

Theorem 3.Let A,B,C are real constants, F(z,z) is a polynomial of z,z and w= u+ iv is a complex function. Then the
solution of

A.
∂w
∂z

+B.
∂w
∂z

+C.w= F (z,z)
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w(x,0) = f (x)

is given as

u= L−1

[

(A+B) ∂
∂x(2F∗

1 +(A−B)v(x,0))+2C(2F∗

1 +(A−B)v(x,0))− s(A−B)(2F∗

2 +(B−A)u(x,0))

[(A+B)D+2C]2+ s2(A−B)2

]

v= L−1

[

(A+B) ∂
∂x(2F∗

2 +(B−A)u(x,0))+2C(2F∗

2 +(B−A)u(x,0))− s(B−A)(2F∗

1 +(A−B)v(x,0))

[(A+B)D+2C]2+ s2(A−B)2

]

.

Proof.

A.
∂w
∂z

+B.
∂w
∂z

+C.w= F (z,z) . (5)

We can obtain the following equality using substituting (3),( 4) in ( 5),

A
1
2
(

∂w
∂x

− i
∂w
∂y

)+B
1
2
(

∂w
∂x

+ i
∂w
∂y

)+Cw= F1(x,y)+ iF2(x,y) (6)

If we write w= u+ iv in ( 6), then we have,

A(
∂u
∂x

+ i
∂v
∂x

− i
∂u
∂y

+
∂v
∂y

)+B.(
∂u
∂x

+ i
∂v
∂x

+ i
∂u
∂y

−
∂v
∂y

)+2C.(u+ iv) = 2F1(x,y)+2iF2(x,y) (7)

If we seperate (7) as real and imaginer parts, then following equation systemis obtained

(A+B)
∂u
∂x

+(A−B)
∂v
∂y

+2Cu= 2F1(x,y) (8)

(A+B)
∂v
∂x

+(B−A)
∂u
∂y

+2Cv= 2F2(x,y) (9)

If we apply laplace transform to (8),( 9), then we get the following equalities

(A+B)
∂U
∂x

+(A−B)(sV− v(x,0))+2CU = 2F∗

1 (10)

(A+B)
∂V
∂x

+(B−A)(sU−u(x,0))+2CV= 2F∗

2 , (11)

whereU,V,F∗

1 ,F
∗

2 are laplace transforms ofu,v,F1,F2 respectively. If(10) ,(11) are rerugulated, then(12) ,(13) become

(A+B)
∂U
∂x

+2CU+ s(A−B)V = 2F∗

1 +(A−B)v(x,0)

s(B−A)U +(A+B)
∂V
∂x

+2CV = 2F∗

2 +(B−A)u(x,0).

Using Cramer rule, we obtaine

∣

∣

∣

∣

∣

(A+B)D+2C s(A−B)
s(B−A) (A+B)D+2C

∣

∣

∣

∣

∣

= [(A+B)D+2C]2+ s2(A−B)2
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U =

∣

∣

∣

∣

∣

2F∗

1 +(A−B)v(x,0) s(A−B)
2F∗

2 +(B−A)u(x,0) (A+B)D+2C

∣

∣

∣

∣

∣

[(A+B)D+2C]2+ s2(A−B)2

U =
(A+B) ∂

∂x(2F∗

1 +(A−B)v(x,0))+2C(2F∗

1 +(A−B)v(x,0))− s(A−B)(2F∗

2 +(B−A)u(x,0))

[(A+B)D+2C]2+ s2(A−B)2
(12)

V =

∣

∣

∣

∣

∣

(A+B)D+2C 2F∗

1 +(A−B)v(x,0)
s(B−A) 2F∗

2 +(B−A)u(x,0)

∣

∣

∣

∣

∣

[(A+B)D+2C]2+ s2(A−B)2

V =
(A+B) ∂

∂x(2F∗

2 +(B−A)u(x,0))+2C(2F∗

2 +(B−A)u(x,0))− s(B−A)(2F∗

1 +(A−B)v(x,0))

[(A+B)D+2C]2+ s2(A−B)2
. (13)

Followings are obtained from inverse laplace transform of(12) ,(13) .

u(x,y) = L−1

[

(A+B) ∂
∂x(2F∗

1 +(A−B)v(x,0))+2C(2F∗

1 +(A−B)v(x,0))− s(A−B)(2F∗

2 +(B−A)u(x,0))

[(A+B)D+2C]2+ s2(A−B)2

]

(14)

v(x,y) = L−1

[

(A+B) ∂
∂x(2F∗

2 +(B−A)u(x,0))+2C(2F∗

2 +(B−A)u(x,0))− s(B−A)(2F∗

1 +(A−B)v(x,0))

[(A+B)D+2C]2+ s2(A−B)2

]

(15)

Example 1.Solve the problem
∂w
∂z

+2
∂w
∂z

= 3z2+2 (16)

with the condition
w(x,0) = x3+ x (17)

Coefficients of equation areA= 1,B= 2,C = 0 andF(z,z) = 3z2+2. Real and imaginar parts ofF(z,z) areF1(x,y) =
3x2

−3y2+2 andF1(x,y) = 6xy. Laplace transforms ofF1(x,y) andF2(x,y) are following.

F∗

1 (x,s) = L[F1(x,y)] = (3x2+2)/s−6/s3

F∗

2 (x,s) = L[F2(x,y)] = 6x/s2.

From the above theorem

u(x,y) = L−1[(3
∂
∂x

((6x2+4)/s−12/s3)+ s(12x/s2+ x3+ x))/(9D2+ s2)]

= L−1[(48x/s+ s(x3+ x))/(9D2+ s2)]

= L−1[
1

s2(1+ 9D2

s2 )
(
48x
s

+ s(x3+ x))]

= L−1[
1
s2 (

48x
s

+ s(x3+ x)−
54x
s

)]

= L−1[
−6x
s3 +

x3+ x
s

] = x3+ x−3xy2.
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Similarly,

v(x,y) = L−1[
3 ∂

∂x(
12x
s2 + x3+ x)− s((6x2+4)

s −
12
s3 ))

9D2+ s2 ]

= L−1[
(48

s2 +3x2
−1)

9D2+ s2 ]

= L−1[
1

s2(1+ 9D2

s2 )
(
48
s2 +3x2

−1)]

= L−1[
1
s2 (−

6
s2 +3x2

−1)]

= L−1[
−6
s4 +

3x2
−1

s2 ] =−y3+3x2y− y.

Hence

w= u+ iv= x3+ x−3xy2+ i
(

−y3+3x2y− y
)

= z3+ z.

Example 2.Solve the following problem

2
∂w
∂z

−
∂w
∂z

= 4z+1

with the condition
w(x,0) = x2+5x.

Solution 1.Coefficients of equation areA= 2,B=−1,C= 0 andF(z,z) = 4z+1. Thefore

F∗

1 (x,s) = L[F1(x,y)] = (4x+1)/s

F∗

2 (x,s) = L[F2(x,y)] = 4/s2

u(x,y) = L−1[
∂
∂x((8x+2)/s)−3s(8/s2

−3
(

x2+5x
)

)

D2+ s2 ]

= L−1[
8
s −

24
s +9s

(

x2+5x
)

D2+9s2 ]

= L−1[
1

9s2(1+ D2

9s2 )
(
−16

s
+9sx2+45sx)]

= L−1[
1

9s2

(

1−
D2

9s2 +
D4

81s4 −
D6

729s6 + ...

)

(
−16

s
+9sx2+45sx)]

= L−1[
1

9s2

(

−16
s

+9sx2+45sx−
18
9s

)

]

= L−1
[

−
2
s3 +

x2+5x
s

]

= x2+5x− y2.
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Similarly

v(x,y) = L−1[
∂
∂x(

8
s2 −3

(

x2+5x
)

)+3s(8x+2)/s)

D2+9s2 ]

= L−1

[

1

9s2(1+ D2

9s2 )
(−6x−15+24x+6)

]

= L−1[
1

9s2

(

1−
D2

9s2 +
D4

81s4 −
D6

729s6 + ...

)

(18x−9)

= L−1
[

1
9s2 (18x−9)

]

= 2xy− y.

Consequently

w= u+ iv

= x2+5x− y2+ i (2xy− y)

= x2+2ixy− y2+3(x− iy)+2(x+ iy)

= z2+3z+2z.
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