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Abstract: This article introduces a numerical method based oMén+ 1) set of general, hybrid orthonormal Bernstein functions
coupled with Block-Pulse Functions(HOBB) on the intenv@afl]] for approximating solutions of a Coupled System ofdinand non
linear \olterra integral and Integro-Differential equats. This method reduces a Coupled System of Volterra iat@gd Integro-
Differential equations to a system of algebraic equatidihsee numerical examples are illustrated by this method.
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1 Introduction

Systems of integral equations, linear or nonlinear, appesgientific applications in engineering, physics, chemiand
populations growth models[1-5]. Studies of systems ofgrakequations have attracted much concernin appliedsesen
\olterra studied the hereditary influences when he was exiama population growth model. The research resulted in a
specific topic, where both differential and integral opersiappeared together in the same equation. This first nesv typ
of equation is named as Volterra integro- differential épmg given in the form,

X
Y00 =109+ [kix Dy, &)
0
and the second new type of equation is named as Fredholmantdgfferential equation, given in the form,
YO0 =109+ [kxtyet, @)

wherek(x,t) a function of two variables andt, is called the kernel. In this paper, /we will study systerh¥attera
integro-differential equations given by

X
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and systems of Fredholm integro-differential equationsigiby

dy( [
I +ZPIJ )Yj(x +/Zk|JXtYJ (4)
o =1
where
yiO)=ai,i=1,..,n
The functionsfj(x) are given real valued functions and unknown functigi), y»(X), ......, ¥i(x) will be determined.

Many physical phenomena may be modeled by a system of intiffezential equations. Lots of work has been done on
nonlinear integro-differential equations using pulsections and Legendre polynomials [6-10], as well as a recemkw
using this technigue to solve higher dimensional probleft].[Also different methods were used to approximate its
solutions such as Chebyshev wavelets method, Galerkinaneththe modified decomposition method, see [12-15]. We
suppose that system (3,4) have a unique solution. The reegessd sufficient conditions for existence and uniquengéss o
the solution of system (3,4) could be found in [16].

This paper is organized as follows. In Section 2, we intredd©BB functions and its properties. In Section 3, we apply
these sets of HOBB functions for approximating the solutibaystem of linear volterra integral equations, In Sectipn
we apply these sets of HOBB functions for approximating tbkit®on of system of non linear integro-differential
equations. Numerical results are reported in Section SlljirSection 6 concludes the paper.

2 HOBB functions and some of their properties
Hybrid Orthonormal Bernstein and Block-Pulse Functiond889; (x),i=1, 2, ....M, j =0,1,2,....nwhereiis the order

for Block-Pulse functionsj is the order for Orthonormal Bernstein polynomials aigdthe normalized time, is defined
on the interval [0,1) as follows

Bin(Mx—i+1), =L <x< 4
HOBB: : — J;n M = M
OBB;; (%) {O,othervvise ©)
A set of Block-Pulse functionisi (x),i = 1, 2, ....Mon the interval [0,1) is defined as
b= o =X ©
") 0,elsewhere

The Block-Pulse functions on [0,1) are disjoint, soifgr=1,2,....M,we haveb;(x) bj(x) = & bi(x)also these functions
have the property of orthogonality on [0,1).

HOBB; j(x) is the combination of orthonormal Bernstein polynomialsl @lock-Pulse functions which are both
complete and orthogonal, then the set of orthonormal Beimsind Block-Pulse functions is a complete orthogonal
system inL2[0, 1).

2.1 Function expansion

Any functionu(x) € L?[0, 1) can be expanded in a hybrid orthonormal Bernstein and BRidke functions

= iiicinOBBij(X), (7)
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where the hybrid orthonormal Bernstein and Block-Pulsdfments are given by

(u(x),HOBB;;(x))
(HOBBij (X),HOBBij(X))
fori=1,2,...,00, j =1,2,...,00, such tha{ ., .) denotes the inner product. Usually, the series expansiofi7/fzgontains
an infinite number of terms for a smoatfx). If u(x) is piecewise constant or may be approximated as piecewnstard,
then the sum in Eqg. (7) may be terminated after nm terms, shat i

Cij =

n

zoc. jHOBB;j(x) = C"THOBB(x) (8)

o~

Mz

W||e|e
C=]c C CM.n
[ 1,0,41,15 -5 ,] ’

HOBB(x) = [HOBBy 9,HOBBy 1, ..., HOBBy ]

We can also approximate the functikfx,t) € L2[0, 1) x [0, 1) as followsk(x,t) ~ HOBB' (x) K HOBB(t), whereK is
anM(n+ 1) x M(n+ 1) matrix that we can obtain as,

(HOBB; (x), (k(x,t),HOBB; (1))

Kij = 9
1 (HOBB(x), HOBB; (x)) (HOBB; (), HOBB; (1)) ®
fori,j=1,2,...,Mn
2.2 Operational matrix of integration
The integration of the vector HOBR)defined in Eq. (5) is given by
X
/HOBB(T/)d(T/) ~ PHOBB(x), (10)
wherePis theM (n+ 1) x M(n+ 1) operational matrix for integration is given in [17-18] as,
HGG..- G
OHG --- G
p=| 00H --- G (11)
000---H
thatH andGareM x Mmatrices that have the following shapes
111...1
111...1
1
— 1111 12
M(n+1) . (12)
000---1
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andH is the operational matrix of integration and can be obtaased

1 263 263 71

35 105 105 35

1 2317 87 o7
e | T8 8% @)

2M(n+1) | % 25 % %

117 536

3 105 105 35

2.3 Theintegration of the cross product

The integration of the cross product of two HOBB functiontegs in Eq. (5) can be obtained as

LO---0
1 OL-0
D:/HOBB(X)HOBBT(x)d(x)z _ (14)
o L
00---L
whereL is anM x (n+ 1)diagonal matrix given by
133 %
11354 a5
TM(nEM) [ 2523
1119
20 5 2
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Fig. 1. Patterns of the matrices D (right) and P (left).

The efficacy of matrix D is used for converting the Fredholnt p&integral equations to an algebraic equation. Because
of its diagonal shape it can increase the calculating speigdl shows the pattern of matrix D and P whén= 4 and
n=23.
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2.4 Multiplication of HOBB functions

It is always necessary to evaluate the product of HOBBNdHOBBE (x), that is called the product matrix of HOBB

functions. Let
M(x) = HOBB(x) HOBB (x) (16)

whereM(x)is (M(n+ 1) x M(n+ 1)matrix. Multiplying the matrixM(x)by vectorC we obtain
M(x)C = C HOBB(x) (17)

whereC is (M(n+ 1) x M(n+ 1)matrix and called the coefficient matrix. To illustrate thaouilation procedure in Eq.
(16), we consider tha!l = 4,n = 3. [19] we have

G000
c_1|0 él~o 0
00C,0
000G,
whereC; ,i =0,1,2,3 are 4x 4 matrices given
[ 17?’Cli + 2_2102i %Cu + %Czi z%cli + 1_3402i 5—11% + %LCZi
*ng,csi*ﬁ)cm +%Csi+ﬁ2504i *%CsiJrl—%g,Cm +ﬁ303i *ﬁ)%
1743 Cyi + g_leZi %Cu + %Czi %Cli + %CZi 5—1101i + 2_1102i
G = Is %503 ; ﬁ)% J£33_6503i +5%504i ;%CSi +3 ﬁcm +721%303i *1ﬁ304i
7 C1i + 57Coi 54C1i + 12C2i 51C1i + 14C2i 51 C1i + 57 C2i
*ﬁ%i*ﬁ% +%C3i+ﬁ2504i *%CsiJrﬁCm +2—i003i *2—}0%
1743 Cyi + g_leZi %Cn + %Czi g%cli + %Czi 5—11 Cyi + 2_1102i
L _%5C3i - ﬁ)% +3—6503i + ﬁcm —%Csi + ﬁ2504i +2—%003i - 2—}004i |

LetRis (M(n+1) x M(n—+ 1) matrix. Multiplying the matrixR by vector HOBBx) and multiplying the matrix HOBBx)
by the resulted matriRHOBB(x) we obtain

HOBBT (x) RHOBB(x) = RHOBB(x) (18)

whereR is (1x M(n+ 1) matrix and called the coefficient matrix With the powerfubperties of Eg. (16) We can achieve
R by a way like€C we can convert the Volterra part of integral and Integrof®intial equations System equations to an
algebraic equation. Fig. 2. patterns of the matrices R (yigid C (left).

3 Numerical solution of system of linear volterraintegral equations using HOBB functions

Let’s consider .
u(x) = f(x) +a(x)v(x) + Az [ (ka(x,t) u(t) + ka(x,t) v(t))dt
0

V() =9g(x) +h(x)u(x) + Az Z (ka(x.t) (u(t)) +ka(x,t) v(t))dt .
whereks (x,t), ka(xt) € La( [0, 1] x [0, 1] )andh(x), g(x) € L2([0, 1)).
The unknown functiona(x), v(x)can be expanded as
u(x) ~ UTHOBB(x),v(x) ~ VTHOBB(x) (20)

(© 2017 BISKA Bilisim Technology
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Fig. 2: Patterns of the matrices R (right) and C (left).

whereU is the unknown M(n+1) vector and HOBB)is given by Eq. (5). Likewise
ki(X,t), ka(x,t), ka(xt), Ka(x.t), £(x), 9(x), a(x), h(x)
are also expanded into the hybrid functions
ki (x,t) ~ HOBBT (x) K HOBBI({t), ka(x,t) ~ HOBBT (x) K,HOBBI(t),
t

(x ( )
ks(x,t) ~ HOBBT (x) K3HOBB(t), ka(x,t) ~ HOBBT (x) K4HOBB(t), (21)
f(x) ~ FTHOBB(x),g(x) ~ GTHOBB(x), q(x) ~ Q"HOBB(x), h(x) ~ HTHOBB(x).

t) =
t) =
After substituting the approximate equations (20) — (219 {19) we get
X
UTHOBB(x) = Q"HOBB(x)HOBB (x)V + A; HOBBT (x) Ky / HOBB(t) HOBB (1) U dt
0
X
+A1HOBBT () KZ/HOBB(t)HOBBT(t)th+FTHOBB(x) (22)
0
X
VTHOBB(x) = HTHOBB(x) HOBB' (x)U + A,HOBBT (x) K3 / HOBB(t)HOBB (t) U dt
0
X
+ A2HOBBT () K4/HOBB(t)HOBBT(t)th+GTHOBB(x),
0

where

/HOBB(t) HOBBT (t) U dt — /U HOBBX(t) dt — U PHOBB(X) 23)
0 0

X X
/ HOBB(t) HOBBT (t) V dit — /\7 HOBB(t) dt — V PHOBB(x),
0 0
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using Egs. (17) and operational matrix P, we get

UTHOBB(x) = FT HOBB(x) + Q" HOBB(x) HOBB' (x)V + A;[HOBB' (x) K1U PHOBB(x)
+HOBB' (x) K,V PHOBB(x)]

VTHOBB(x) = G HOBB(x) + H T HOBB(x) HOBB' (x)U + A,[HOBBT (x) KU PHOBB(x) (24)
+HOBB' (x) K4 VPHOBB(x)].

Therefore

UTHOBB(x) = FT HOBB(x) + Q" V HOBB(X) + A1[HOBB (x) KU PHOBB(x)
+HOBB' (x) KoV PHOBB(x)],

VTHOBB(x) = G" HOBB(x) +H " UHOBB(x) + A;[HOBBT (x) K3U PHOBB(x) (25)
+HOBBT (x) K4V PHOBB(X)].

If we approximate

HOBBT (x) K;U PHOBB(x) ~ Ry HOBB(x),HOBB! (x) K,V PHOBB(x) ~ R, HOBB(x)
HOBB (x) K3U PHOBB(x) ~ RsHOBB(x),HOBB' (x) K4V PHOBB(x) ~ R4 HOBB(x),

We can achiev® by a way likeC and we see that each elemenfois obtained by the sum of column element&eti P

UTHOBB(x) ~ FTHOBB(x) + Q" V HOBB(X) +A1(R HOBB(X) + R;HOBB(X)),
VTHOBB(x) ~ G" HOBB(x) +HTUHOBB(X) + A2(RsHOBB(X) + R4HOBB(x)).

Therefore

U~F+V'Q +A(R[ +Ry)
V ~G+UTH+ (R} +Ry).

After replacings with =, we have a linear system that can be solved with Guass methadldef unknown vectord, V
then by the use af(x) ~ U THOBB(x),v(x) ~ VTHOBB(x) the approximated solution is given.

4 Numerical solution of a system of non linear integro-differential equations using
HOBBfunctions

In [20], a system of integro-differential equations was rappmated using the modified decomposition method, and in
[21], a similar system was approximated using the apprott@nanethod. We now consider a system of Volterra integro-
differential equations of the form

W () = £(X) + W) U(X) +GV(X) + Aq J (ka(61) (U(D))P+ kol ) (D)) el
0 (26)
(ka(x,t) (u(t))' +ka(x,) (v(t)))"dlt

— X

v/ (X) = g(x) +1(x)u(x) +h(x)v(x) + Az

o

wherek; (x,t),ka(x,t),ks(x,t), ka(x,t) € L2([O, 1] x [0, 1]) and

h(x), g(x) € Lo([0, 1]), u(x) ~UTHOBB(X), V(x)~VTHOBB(X),

(© 2017 BISKA Bilisim Technology
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where U,V are the unknown M(n 4+ 1)—vector and HOBBx) is given by Eq. (5). Likewise,
ki(x,1), ki(x,t), ki(x,t), f(x), 9(x), h(x), q(x) are also expanded into the HOBB functions

k(x,t) =~ HOBB (x) Ky HOBB(t), kx(x,t) ~ HOBBT (x) K, HOBB(t),

ka(x,t) ~ HOBB' (x) KsHOBB(t), ka(x,t) ~ HOBB (x) K4 HOBB(t),

w(x) ~ WTHOBB(x), |(x) ~L"HOBB(x), (27)
f(x) ~ FTHOBB(X), g(x)~ G'HOBB(x),

h(x) ~ HTHOBB(x), q(x) ~ Q"HOBB(X),

whereKy, Ko, Ks, K4 areM(n+1) x M(n+ 1) matrices and F is all(n+ 1)—vector. We approximate’ (x) as follows

U/ (x) ~ U/ HOBB(x), V/(x)~V/ HOBB(X) (28)

whichU/, V/ will be evaluated in terms af, V.
X
u(x) = /u/(t)dt+u(0).
0

If we expandu(0),v(0) with HOBB basis i.eu(0) = UgHOBB(x), v(0) = VoHOBB(x) thenUg, \ is obtained as follows.

M M M
Uo = |u(0), u(0),..., u(0), u(0),u(0),..., u(0), u(0), u(0),..., u(0)
L M(n+1)
(29)
i M M M
Vo = V(O),V(O),..., V(O>a V(0)7V(0>5'-'7 V(O>7 V(O),V(O),..., V(O)
L M(n+1)
X
UTHOBB(x g/ T HOBB(t)dt + UsT HOBB()
0
X
~ /)T/HOBB(t)dt+UoTHOBB(x)
=~ (U/)T PHOBB(x) 4 Up" HOBB(X)
~ ((UNTP+Up") HOBB(x),
and we have T
UT > U/ P+UpT"
U = U/P+Up, (30)
V > V/P4+\,.
Therefore,
U/ = PN YU —Up), V/ = (PT) "1V -\). (31)
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Functionsu?(x), VA(x) can be expanded into the HOBB functions as

u?(x) = [UTHOBB(x)]?> = U THOBB(x) HOBB(x) U = HOBB(x)"UU, (32)
V3(x) = VTHOBB(x) [V THOBB(x)]? = VTHOBB(x) HOBB(x) V'V

= HOBB(x)"VVV = HOBB(x)" (V)?V, (33)
ud(x) = HOBB(x)" (U)%1U, vA(x) = HOBB(x)T (V)4 1v. (34)

After substituting the approximate equations (27)—(34) {{26) we get

U/THOBB(x) ~ FTHOBB(x) + W"HOBB(x) HOBB' (x)U + Q"HOBB(x) HOBB' (x)V

X
+A1HOBB (x) K4 / HOBB(t)HOBBT (t) (U)" U dt
0

X
+A1HOBBT (x) K, / HOBB(t) HOBBT (t) (V)" 'V dt
0

V/THOBB(x) ~ G" HOBB(x) + L" HOBB(x) HOBB' (x)U +HT HOBB(x) HOBBT (x) V

X
+ A2HOBBT () Kg/HOBB(t)HOBBT ) (U) Ut (35)
0
X
+ A2HOBBT (%) Kg/HOBB(t)HOBBT(t)(\N/)FlV dt,
0

where

/HOBB(t)HOBBT(t) 0> udt = /((U)ﬁflu )HOBB(t) dt = ((
0 0

il

~1U)PHOBB(X)

C

)

/HOBB(t)HOBBT(t) V)P v dt :/((V)f’*lvmoss(t)dt — (V)
0 0

making use of Egs. (17) and operational matrix P, we get

U/THOBB(x) ~ FTHOBB(x) + W' U HOBB(x) + Q" VHOBB(X) + A HOBBT (x) Ky ((J)"

ALHOBBT (x) Kp (V)7

V/THOBB(x) ~ G" HOBB(X) -+ LTU OBH (X) +H "V HOBB(X) + A2 OBHT (x) K3 ((U

+ A2HOBBT () Kq (V)" V) PHOBB(x).

U )P HOBB(x)
V) PHOBB(X) (36)

)""1U) PHOBB()

(© 2017 BISKA Bilisim Technology
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If we approximate

HOBBT (x)Ky((U)P~ 1U) PHOBB(x) ~ R HOBB(X),
HOBBT (x) Ko((V)P~1V) PHOBB(x) ~ R, HOBB(X), 37)
HOBBT (x)K3((U)P~1U) PHOBB(x) ~ R3HOBB(x),
HOBBT (x)K4((V)P~1V)PHOBB(X) ~ Ry HOBB(x).

We can achievéR) by a way likeC, and we see that for element Bf is obtained by the sum of column elements of
Kl((U)F’*l U) P with respect to coefficierR in Eq. (18) at each column. By using this property and onjttiybrid
vector functions in Eq. (36), we will have

U/~ FT4WTU + QY + AL (Ry) + A (Ry)
VT x GTHLTO + HTV 4 A2 (Rs) + Ao(Ra),

another equivalent form is

U/~ F+U0"W4+VTQ + A1 (R)T + M (R)T
v/ G+UTL+ VTH +/\2(|§3)T +/\2(|§4)T, (38)

multiplying matrix P on both sides of Eq. (38) and applying Eq. (30) in Eq. (38) we ge

(U—-Ug)~ PTF+PTUTW+PTVTQ + A1 PT(R)T + A PT(Ry)T
(V =Vo) = PTG+PTUTL+PTVTH +A,PT(Rs)" + A2 PT(Ry)".

After replacing= with =, we have a coupled nonlinear system that can be solved withidwés method for the unknown
vectorsU,V then by the use aif(x) ~ UTHOBB(x),v(x) ~ VTHOBB(x) the approximated solutions are given.

5 Numerical examples

In this section we implemented our method on three diffeest@aimples. Our results achieved by a proper value for M
(this feather is experimental) and different values for lne Tesults are tabulated in three tables, in these tablesxtut
solutions are compared with hybrid function solutionssihoticed that our method has quite acceptable results izut it
clear for lower values of n we have less accuracy in some eimtiqoaf the interval that by increasing n, the results become
better.

Example 1. Consider the following system of

u(x) = (—x%— §x4)+xv( ) + /(qu( )+ 2v(t))d
0
2 X
V(X) = (X— XZ + §x3+ %x"’) - %(x+ U O/(U(t) v(t))dt
The exact solution is(x) = X2, V(x) = X

By applying the HOBB method and solving the resulted lingastesm, the following results would be achieved. The
elements of vector functions andV can be obtained as follows

(© 2017 BISKA Bilisim Technology
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U =[1.584893036¢ 10 3, —5.80691360k 10 3 ,0.02083333333.06249999999
0.06249999999.1041666660.166666666.0.25000000000.2500000000
0.3333333333.43750000000.43750000000.5624999999).5624999999
0.687499999;0.8333333333L.000000000

V =[—1.74690680% 10 % 0.08333333333.16666666670.25,0.25,0.3333333333
0.416666666;0.50000000000.50000000000.5833333334.6666666667
0.7499999999).74999999980.833333333(0.91666666641]

Table 1 shows some values of the solutions and absoluteserror

Table 1: The comparison between exact solutions and approximatéaas for HOBB functions avl =4, n=3.

HOBB solution The Exact Solution Absolute error
X UHoBB VHOBB Uexact Vexact €(Unoss) e(VhoBB)
0.1 0.0099999999999 0.1 0.01 0.1 2x 10712 1x10 11
0.2 0.0399999999999 0.2 0.04 0.2 1x1011 0
0.3 0.09 0.3 0.09 0.3 0 0
0.4 0.16 0.4 0.16 0.4 1x10° 11 0
0.5 0.25 0.5 0.25 0.5 0 0
0.6 0.36 0.6 0.36 0.6 1x1011 1x 101
0.7 0.4899999999999| 0.69999999999999| 0.49 0.7 1x10°10 1.1x 1010
0.8 0.6399999999999| 0.79999999999999| 0.64 0.8 2x 10710 1.7x10°10
0.9 0.8099999999999 0.9 0.81 0.9 1x 1010 0

Example 2. [20] Consider the following nonlinear system of two integlifferential equations

u(x) = 2x+ %x3 — %x2+ / (—U2(t) +v(t) )dt,

v/ (x) = 71+/( u(t) — v(t))dt,

with the exact solutions
u(x) =x, v(x) =x—1.

By applying the HOBB method and solving the resulted nomireystem, the following results would be achieved. The
elements of vector functiong andVcan be obtained as follows

(© 2017 BISKA Bilisim Technology


http://www.ntmsci.com/jacm

(_/
6 BISKA M. A. Ramadan and M. R. Ali: Solution of integral and Inteddifferential equations system using..

U =[1.79732646X 10 12,0.0833333333%).16666666670.2500000000
0.25000000000.3333333333.4166666668.50000000000.5000000000
0.5833333333.666666666,3.7500000000.750001075,0.8334015084
0.91670076311.000032639

V =[-1.000000000-0.9166666670-0.8333333329-0.7499999999-0.7500000001
—0.6666666669-0.583333333-0.4999999999-0.500000000,1-0.4166666668
—0.3333333332-0.2500000000-0.2491081394-0.1667350542-0.08337160066
—0.00003916014580

Table 2 shows some values of the solutions and absoluteserror

Table 2: The comparison between exact solutions and approximaidaas for HOBB functions al =4, n=3.

HOBB solution The Exact Solution Absolute error

X UHOBB VHOBB Uexact Vexact €(UnosB) €(VHoBB)
0.1 0.1 -0.89999999999 0.1 -0.9 1x 10711 1x10 11
0.2 0.2 -0.79999999999 0.2 -0.8 0 1x 1011
0.3 0.3 -0.7 0.3 -0.7 0 1x 1011
0.4 0.4 -0.6 0.4 -0.6 0 1x10° 11
0.5 0.5 -0.5 0.5 -0.5 0 1x 1011
0.6 0.59999999999 -0.4 0.6 -0.4 1x10°10 1x 1011
0.7 0.69999999999| -0.29999999999 0.7 -0.3 1x 1010 1x10°10
0.8 | 0.80000030261| -0.19995736152 0.8 -0.2 3.02x106 | 426x10°°
0.9 0.90000414828 -0.0999987606 .9 -0.1 414%x10° | 1.23x10°°

Example 3. [22] Consider the following system of integro-differetguations with the exact solutionéx) = cosh(x)
andv(x) = sinh(x)

X

ds(xx) — X1+ UX) + (7T— 2X)V(X) +/ (X+t) u(t) + (t —x)3v(t))dt, x1(0) = 1.
0
d;’(;‘) = 3+ X— 6+ (7—2X) U(X) 4 V(X) + / (x—1)3 u(t) + (x+t)v(t)) dt, x2(0) =0.

0

By applying the HOBB method and solving the resulted nomlireystem, the following results would be achieved. The
elements of vector function$ andV can be obtained as follows

U =[0.99999759561.0000133071.0103754501.0314106791.0314105271.052478184
1.0842155871.1276232841.1276229721.1710661201.2261726441.294679694
1.2946792051.3632269361.4451643061.543073606

V =[—3.038043356¢ 10 7,0.0833347544%.166663119.252611995.2526113784
0.3385682089.42713176110.52109425900.52109358510.6150724739
0.714435244(0.82231441510.822313644(0.93021864921.0466228171.17519515p

Table 3 shows some values of the solutions and absoluteserror

(© 2017 BISKA Bilisim Technology
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Table 3: The comparison between exact solutions and approximatéaas for HOBB functions avl = 4, n=3.

X HOBB solution The Exact Solution Absolute error
UHOBB VHOBB u v e(UyoBB) €(VHogB)
0.1| 1.005003642 0.1001666943 | 1.0050041| 0.10016675| 5.25x 10~/ 5.56x 108
0.2| 1.020067699| 0.2013361133 | 1.0200667 | 0.20133600| 9.42x 10 ° | 1.10x 10/
0.3| 1.045339495 0.3045206211 | 1.0453385| 0.30452029| 9.81x 10/ 3.27x 10/
0.4| 1.081071754 0.4107520531 | 1.0810723| 0.41075232| 6.18x 10/ 272x 1077
0.5 1.127622972 0.5210935851 | 1.1276259| 0.52109530| 2.91x10°° 1.72x 10°°
0.6| 1.185464347| 0.6366529960 | 1.1854652| 0.63665358| 8.70x 10~/ | 5.87x 10~/
0.7| 1.255169630 0.7585838204 | 1.2551690| 0.75858370| 6.24x 10/ 1.18x 10~/
0.8| 1.337435258| 0.8881058986 | 1.3374349| 0.88810598| 3.12x 10 /| 8.35x 108
0.9| 1.433083706 1.026514255 1.4330863| 1.0265167 | 2.67x10°° | 247x10°°
6 Conclusion

In this research, we have presented the Hybrid Orthonorerad$3ein and Block-Pulse Functions operational matri€es o
integrationD, operational matrixPproduct matrixGand coefficient matribxCwhich are sparse matrices, are used to

converting integral and Integro-Differential equationgst®m to system of equations that can be solved by known
iterative methods. By making use of these operational oesrithe problem has been reduced to solve a set of algebraic
equations that can simply appeared in matrix form. The smiutbtained using the suggested method shows that this
approach can solve integral and Integro-Differential ¢éigna System effectively. Although we do not claim this nteth
shows superiority over other methods from the viewpointagfusacy, it seems that this method is more practical, quite
good accurate and has lower calculation.

lllustrative examples have been discussed to demonstratealidity and applicability of the technique and the résul
have been compared with the exact solution.
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