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Abstract: Graph coloring is one of the most important concept in graph theory. Many practical problems can be formulated as graph
coloring problems. In this paper, we define a new coloring concept called local connective coloring. A local connectivek-coloring of
a graphG is a proper vertex coloring, which assigns colors from{1,2, ...,k} to the verticesV(G) in a such way that any two non–
adjacent verticesu andv of a colori satisfiesκ(u,v) > i, whereκ(u,v) is the maximum number of internally disjoint paths betweenu
andv. Adjacent vertices are colored with different colors as in the proper coloring. The smallest integerk for which there exists a local
connectivek- coloring ofG is called thelocal connective chromatic numberof G, and it is denoted byχlc(G). We study this coloring on
several classes of graphs and give some general bounds. We also compare local connective chromatic number of a graph withchromatic
number and packing chromatic number of it.
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1 Introduction

Graph coloring is a special case of graph labeling; it is an assignment of labels called ”colors” to vertices or edges of a

graph to certain constraints. Vertex coloring is a way of coloring the vertices of a graph such that no two adjacent

vertices share the same color; this is called a proper coloring. Thechromatic numberχ(G) of G is the minimum number

of colors needed in a proper coloring of a graph. There are several graph coloring applications such as scheduling,

timetabling, frequency allocation, wavelength routing and many more [1,11,12,13].

In this paper, we introduce and study a new graph coloring concept called local connective coloring. For this coloring we

are inspired by the notion of packing chromatic number. In 2008, Goddard et al.[14] establised the notion ofpacking

chromatic numberunder the namebroadcast chromatic number. The term packing chromatic number was introduced by

Brešar et al. [4]. The concept of packing coloring comes from the area of frequency planning in wireless networks.

A packing k-coloringof a graphG is a mappingc : V(G) −→ {1,2, ...,k} such that any two vertices of colori are at a

distance of at leasti +1. Thus, the vertices ofG are partitioned into different color classesX1,X2, ...,Xk, where everyXi

is an i-packing ofG. The i-packing number ofG, denoted byρi(G), is the maximum cardinality of ani-packing that

occurs inG. Thepacking chromatic numberχp(G) of G is the smallest integerk for which G has packingk-coloring [3,

4,10,14].

A set of paths from a vertexu to a vertexv is said to beinternally vertex–disjoint(abbreviated asinternally disjoint) if no

two paths share a common vertex exceptu andv. Internally disjoint paths contribute to transfer information quickly and

safely between any two vertices in an interconnection network and provide alternative routes in the event of vertex or

edge failures. Then the more internally disjoint paths between two vertices are the better for a network [5,6]. Thus we

use the term internally disjoint path in our coloring and color the vertices depending on the number of internally disjoint
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paths between two vertices. A graphG which has alocal connective k- coloringcan be partitioned into disjoint color

classesX1,X2, ...,Xk and can be drawn as ak-partite graph. Thereby, the graph is partitioned into the subsets which have

disjoint paths. Looking for a secure disjoint path between two verticesu andv in any color classXi, we make this search

with the vertices in the other color classes. This indicatesthat we look for disjoint paths starting fromu and ending tov

using the vertices in the other color classes. Thus, this search can be made withV(G)− (|Xi | − 2) vertices. Local

connective coloring provides to facilitate the routing of non–adjacent vertices to communicate with each other.

Throughout this paper, we consider undirected, finite and simple (no loops and multiple edges) graphs. For the notations

and terminology not defined here, see [7]. For a graphG = (V(G),E(G)), V(G) andE(G) are the sets of vertices and

edges ofG, respectively. For two verticesu,v∈V(G), u andv are neighbors ifu andv are adjacent, that is, if there is an

edgee= uv. Theopen neighboorhoodof a vertexv in G, denoted byN(v), is the set of all vertices adjacent tov. The

numbers|V(G)| = n, |E(G)| = m and|N(v)| = degv are called theorder, thesizeof G and thedegreeof v, respectively.

The minimum degreeδ (G) = δ of a graphG is the smallest degree of all vertices inG.

Theconnectivityκ = κ(G) of a graphG is the minimum number of vertices whose removal results in a disconnected or

trivial graph. Thelocal connectivityκG(u,v) = κ(u,v) between two distinct verticesu andv of a graphG is defined as

the smallest number of vertices whose removal separatesu and v. By Menger’s Theorem [8], κ(u,v) equals the

maximum number of internally disjointu− v paths inG andκ(G) = min{κ(u,v) : u,v∈ V(G)}. It is straightforward to

verify thatκ(G)6 δ (G) andκ(u,v)6 min{degu,degv}.

For a connected graphG, acliqueof G is a complete subgraph ofG. Theclique numberof a graphG, denotedω(G), is

the size of a largest clique. Two vertices that are not adjacent in a graphG are said to beindependent. Theindependence

numberα(G) of a graphG is the maximum cardinality among the independent sets of vertices of G. The diameter

diam(G) of a graphG is the maximum distance between any two vertices ofG.

2 Some bounds on local connective Chromatic number

Definition 1. A local connective k-coloring of a graph G is a mapping c: V(G)−→ {1,2, ...,k} such that

(i) If uv∈ E(G), then c(u) 6= c(v), and

(ii) If uv /∈ E(G) and c(u) = c(v) = i, thenκ(u,v)> i, whereκ(u,v) is the maximum number of internally disjoint paths

between u and v.

The smallest integer k for which there exists a local connective k- coloring of G is called the local connective chromatic

number of G, and it is denoted byχlc(G).

The first condition characterizes proper coloring. Thus, every local connective coloring is a proper coloring. The vertices

of G are partitioned into disjoint color classesX1,X2, ...,Xk, where each color classXi consists of distinct vertices

u,v∈ Xi such thatκ(u,v)> i and
n
⋃

i=1

Xi =V(G). The maximum cardinality ofXi in G is denoted byki .

Since all vertices of complete graphKn are pairwise adjacent, by definition of local connective coloring we easily say

χlc(Kn) = n.

Lemma 1. If G is a connected graph of order n and independence numberα, thenχlc(G) ≤ 1+n−α(G) and equality

holds ifκ(u,v) = 1 for all u,v∈V(G).

Proof. Let S be a maximum independent set ofG and then|S| = α(G). SinceS is independent set, the vertices inScan

be colored with the same color (color 1). Now, consider the remaining graphH with n−α(G) vertices. IfH is complete
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graph, thenχlc(H) = n−α(G). Otherwiseχlc(H)< n−α(G). Then, we have

χlc(G) = 1+ χlc(H)≤ 1+n−α(G).

If κ(u,v) = 1 for all u,v∈V(G), then no two vertices can receive the same colori for i > 2. Furthermore, the maximum

number of vertices which receives color 1 isα(G). Then, the proof is completed.

Lemma 2.Let G be a graph of order n. Thenχlc(G)> ω(G).

Proof. Let H be a subgraph ofG which has maximum clique and|V(H)| = p ≤ n. Since all vertices ofH are pairwise

adjacent, these vertices must be colored withp different colors. Then, the graphG is colored with at leastp colors. Since

n> p, we obtainχlc(G)> χlc(H) = ω(G).

Theorem 1.Let G be a connected graph with n> 2 vertices. Then

2≤ χlc(G)≤ n.

Proof.For any graphG with n> 2 vertices, sinceα(G)> 1 andω(G)> 2, the proof follows from Lemma1 and Lemma

2.

Theorem 2.Let G be a graph of order n with n> 2. Then,χ(G)≤ χlc(G).

Proof. For n > 2, we know thatχ(G) > 2 andχlc(G) > 2. Let p be the total number of vertices colored with color 1

and color 2. Then(n− p) vertices remain uncolored. We consider the following threecases with respect to these(n− p)

vertices.

Case 1.Let n− p= 0. Then,χ(G) = χlc(G) = 2.

Case 2.Let n− p= 1. Then, we color remaining one vertex with color 3. Thus,χ(G) = χlc(G) = 3.

Case 3.Let n− p> 2 andu,v be any two remaining vertices.

Case 3.1.If u andv are adjacent vertices, then by definition of proper coloringand local connective coloring we must

color these vertices with different colors. Then,χ(G) = χlc(G).

Case 3.2.Let u andv be non–adjacent vertices. For proper coloring, we color these vertices with the same color. For local

connective coloring, consider the following cases.

Case 3.2.1.If κ(u,v)> i for i > 3, we color these vertices with the same colori. Then,χ(G) = χlc(G).

Case 3.2.2.If κ(u,v) < i for i > 3, then we color these vertices with different colors. Then,this case increases local

connective chromatic number. Hence, we haveχ(G)< χlc(G).

The proof is completed from these cases.

Fig. 1: Local connective coloring of two graphs

Fig. 1 (a) shows the graphG with χlc(G)> χp(G) and Fig.1 (b) shows the graphH with χlc(H)< χp(H).
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Theorem 3.Let G be a graph of order n with diam(G)> 2. Then,

χlc(G)6 χp(G)+2−diam(G)+
diam(G)−1

∑
i=2

ρi.

Proof.Let G be a graph of ordern, diameterdiam(G)> 2 and fori > 1 let ci be the number of vertices which is colored

with packing coloring.

Sinceρi is the maximum number of vertices which is colored with packing coloring fori > 1 anddiam(G)> 2, we have

ρi(G) 6 1 for i > diam(G). Thereby, the graph is colored at leastdiam(G)−1 colors with respect to packing coloring.

For the lower bound, we give color 1 to every vertex in a maximum independent set inG. Then we have

c1 = ρ1(G) = α(G) and

χp(G)> diam(G)−1+n−
diam(G)−1

∑
i=1

ci

= diam(G)−1+n−α(G)−
diam(G)−1

∑
i=2

ci . (1)

Sinceci 6 ρi(G) for all i > 1, by inequality (1) we have

χp(G)> diam(G)−1+n−α(G)−
diam(G)−1

∑
i=2

ρi . (2)

By Lemma1 and inequality (2), we get

χlc(G)6 χp(G)+2−diam(G)+
diam(G)−1

∑
i=2

ρi.

Corollary 1. Let G be a graph of order n with diam(G)> 2 and independence numberα. Then,

χlc(G)6 χp(G)+ (2−diam(G))(1−α(G)).

Proof.Sinceρi(G)6 α(G) for i > 2, by Theorem3,

χp(G)>χlc(G)+diam(G)−2−
diam(G)−1

∑
i=2

α(G)

=χlc(G)+ (diam(G)−2)− (diam(G)−2)α(G)

=χlc(G)+ (diam(G)−2)(1−α(G)).

Corollary 2. If G is a graph of diameter two, thenχlc(G)6 χp(G).

Proof. If we substitutediam(G) = 2 into Corollary1, the proof is completed.

Corollary 3. If G is a bipartite graph of diameter 3, thenχlc(G)6 χp(G)+1.

Proof.Sincediam(G) = 3, for packing coloring each color at least 3 appears at most once and since the graph is bipartite

graph of diameter 3, color 2 can be used only twice [14]. Substitutingdiam(G) = 3 andc2 = ρ2(G) = 2 into the inequality

of Theorem3, we getχlc(G)6 χp(G)+1.
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3 Local connective Chromatic number of some graphs

Theorem 4.Let Pn be a path of order n with n> 2. Then,

χlc(Pn) = 1+ ⌊n
2⌋.

Proof.The number of internally disjoint paths between all pairs ofvertices ofPn is 1. Then,

ki(Pn)≤ 1 for i > 2.

Let X1 be a maximum independent set ofPn. Then, every vertex inX1 has color 1 andk1(Pn) = α(Pn) = ⌈n
2⌉. Since

ki(Pn)≤ 1 for i > 2, the other vertices receive different colors. Consequently, we have

χlc(Pn) = 1+n−⌈n
2⌉= 1+ ⌊n

2⌋.

Theorem 5.Let Cn be a cycle of order n with n> 3. Then,

χlc(Cn) =







2, if n is even

3, if n is odd.

Proof.Since cycle graphs are 2–regular graphs,κ(u,v) = 2 for any two verticesu andv in Cn. Thus,ki(Cn)≤ 1 for i > 3.

Let X1 andX2 be subsets ofCn containing the vertices labelled by color 1 and color 2, respectively. Sinceki(Cn) ≤ 1 for

i > 3, the other vertices receive different colors. Therefore,

k1(Cn) = ⌊n
2⌋, k2(Cn) = ⌊n

2⌋.

Then, we have

χlc(Cn) = 1+1+n−⌊
n
2
⌋−⌊

n
2
⌋

= 2+n−2⌊
n
2
⌋. (3)

The proof is completed depending onn being odd and even.

Theorem 6.Let Wn be a wheel graph of order n. Then,

χlc(Wn) =







3, if n is odd

4, if n is even.

Proof. In the wheel graphWn, the center vertex is adjacent to each vertex of the cycleCn−1. Then this vertex must be

colored with a different color than the others. Therefore, we have

χlc(Wn) = 1+ χlc(Cn−1).

By equality (3),

χlc(Wn) = 1+2+n−1−2⌊
n−1

2
⌋

= 2+n−2⌊
n−1

2
⌋.

The proof is completed depending onn being odd and even.

Theorem 7.Let K1,n, where n> 1, be a star. Then,
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χlc(K1,n) = 2.

Proof.Sinceκ(u,v)≤ min{degu,degv}= 1 for any two non–adjacent verticesu andv of graphK1,n, we haveki(K1,n)≤ 1

for i > 2. Thus,n leaves ofK1,n must be colored with color 1 and internal vertex receives a distinct color. Hence, we have

χlc(K1,n) = 1+1= 2.

Theorem 8.Let T be a tree of order n with n> 2. Then

χlc(T) = 1+n−α(T).

Proof. Let S be a maximum independent set inT. We can give color 1 to every vertex inS. Thusk1(T) = α(T). Since

the number of internally disjoint paths between all non–adjacent pairs of vertices ofT is 1, we haveki(T) ≤ 1 for i > 2.

Hence, the remainingn−α(T) vertices receiven−α(T) different colors other than color 1. Then the proof is completed.

Corollary 4. Let T be a tree of order n with n> 2. Then

χlc(T)≤ 1+ ⌊n
2⌋

and equality holds if T is a path.

Proof. If T is a tree withn> 2 vertices,α(T)> ⌈n
2⌉ [2]. By Theorem8, we have

χlc(T) = 1+n−α(T)≤ 1+n−⌈
n
2
⌉= 1+ ⌊

n
2
⌋.

Then the proof is completed.

Thecomplete p–partitegraphKn1,n2,...,np has a vertex setV that can be partitioned intop partsV1,V2, ...,Vp so thatVi has

ni vertices and two vertices are adjacent if and only if they arein distinct parts. Ifn1 = n2 = ...= np, the graph is regular

[7].

Theorem 9.[9] Let p≥ 2 be an integer. If G is a p–partite graph of order n such that

n≤ δ (G)
2p−1
2p−3

thenκ(u,v) = min{degu,degv} for all pairs of distinct vertices u and v in G.

Theorem 10.For any integer p≥ 3, let G be a regular complete p-partite graph of order n. Thenχlc(G) = p.

Proof. Let G = Kn1,n2,...,np be a regular completep-partite graph with the partitionV(G) = V1 ∪V2 ∪ ... ∪Vp to the

independent setsV1,V2, ...,Vp, where |Vi| = ni for each i and n1 = n2 = ... = np = t, t > 2. Thus,

n1+n2+ ...+np = n= t p and degu= (p−1)t = δ (G) for all u∈V(G).
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Since

δ (G)
2p−1
2p−3

= (p−1)t
2p−1
2p−3

= (p−1)t
(

1+
2

2p−3

)

> (p−1)t
(

1+
2

2p

)

= (p−1)t
(

1+
1
p

)

=
p−1

p
t(p+1)

= (1−
1
p
)t(p+1)

> (p+1)t

> pt = n

by Theorem9, κ(u,v) = min{degu,degv}= (p−1)t for all pairs of distinct verticesu andv in G.

For p≥ 3 andt ≥ 2,

κ(u,v) = (p−1)t > p. (4)

Since every vertex inVi is adjacent to each vertex inVj , we haveχlc(G)≥ p, wherei, j ∈ {1,2, ..., p}, i 6= j. Without loss

of generality assume thatχlc(G) ≥ p+1. SinceG is colored with at leastp+1 colors,κ(u,v)< p for a vertexu which

receives colorp+1 and a vertexv which receives colorp. This contradicts (4). Thus, we haveχlc(G) = p.

4 Conclusion

In this paper, we introduce and study a new coloring concept called local connective coloring. Since efficiency and

reliability of routing can be achieved by using internally disjoint paths, we use the term internally disjoint path in our

definition. We give some general bounds and study on several graph classes. Also, we give relation between local

connective coloring and some other colorings.
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