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Abstract: Graph coloring is one of the most important concept in gréagloty. Many practical problems can be formulated as graph
coloring problems. In this paper, we define a new coloringceph called local connective coloring. A local connectiveoloring of

a graphG is a proper vertex coloring, which assigns colors frém2,...,k} to the verticed/(G) in a such way that any two non—
adjacent verticea andv of a colori satisfies«(u,v) > i, wherek (u, V) is the maximum number of internally disjoint paths betwaen
andv. Adjacent vertices are colored with different colors ashia proper coloring. The smallest intedefor which there exists a local
connectivek- coloring of G is called thdocal connective chromatic numbef G, and it is denoted by (G). We study this coloring on
several classes of graphs and give some general boundssd\&oahpare local connective chromatic number of a graphahitbmatic
number and packing chromatic number of it.
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1 Introduction

Graph coloring is a special case of graph labeling; it is angasnent of labels called "colors” to vertices or edges of a
graph to certain constraints. Vertex coloring is a way ofodolg the vertices of a graph such that no two adjacent
vertices share the same color; this is called a proper egofihechromatic numbef (G) of G is the minimum number

of colors needed in a proper coloring of a graph. There arerabgraph coloring applications such as scheduling,
timetabling, frequency allocation, wavelength routing amany more1,11,12,13].

In this paper, we introduce and study a new graph coloringepincalled local connective coloring. For this coloring we
are inspired by the notion of packing chromatic number. 168050ddard et all4] establised the notion gfacking
chromatic numbeunder the nambroadcast chromatic numbeFhe term packing chromatic number was introduced by
BreSar et al.4]. The concept of packing coloring comes from the area ofdesry planning in wireless networks.

A packing k-coloringof a graphG is a mapping:: V(G) — {1,2,...,k} such that any two vertices of coloare at a
distance of at least+ 1. Thus, the vertices d& are partitioned into different color classksg Xy, ..., Xk, where everyX;
is ani-packing ofG. Thei-packing number of5, denoted byp;(G), is the maximum cardinality of arpacking that
occurs inG. Thepacking chromatic numbey(G) of G is the smallest integeefor which G has packing-coloring [3,
4,10,14).

A set of paths from a vertexto a vertexv is said to benternally vertex—disjoinfabbreviated agternally disjoin) if no

two paths share a common vertex exaepndyv. Internally disjoint paths contribute to transfer infortioa quickly and
safely between any two vertices in an interconnection nétwod provide alternative routes in the event of vertex or
edge failures. Then the more internally disjoint paths leetwtwo vertices are the better for a netwdsg]. Thus we
use the term internally disjoint path in our coloring andozdhe vertices depending on the number of internally digjoi
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paths between two vertices. A graghwhich has docal connective k- coloringan be partitioned into disjoint color
classes(i, Xo, ..., Xk and can be drawn askapartite graph. Thereby, the graph is partitioned into thiesets which have
disjoint paths. Looking for a secure disjoint path between verticesu andv in any color class(, we make this search
with the vertices in the other color classes. This indictttes we look for disjoint paths starting fromand ending tos
using the vertices in the other color classes. Thus, thisckezan be made wit (G) — (|X;| — 2) vertices. Local
connective coloring provides to facilitate the routing ohr-adjacent vertices to communicate with each other.

Throughout this paper, we consider undirected, finite amgbks (no loops and multiple edges) graphs. For the notations
and terminology not defined here, s&@ [For a graphG = (V(G),E(G)), V(G) andE(G) are the sets of vertices and
edges ofG, respectively. For two verticasv € V(G), u andv are neighbors iti andv are adjacent, that is, if there is an
edgee = uv. Theopen neighboorhoodf a vertexv in G, denoted byN(v), is the set of all vertices adjacent¥oThe
numbergV(G)| = n, |E(G)| = mand|N(v)| = deg are called therder, thesizeof G and thedegreeof v, respectively.
The minimum degreé(G) = J of a graphG is the smallest degree of all verticesGn

Theconnectivityk = k(G) of a graphG is the minimum number of vertices whose removal results irsecthnected or
trivial graph. Thelocal connectivitykg(u,v) = K (u,v) between two distinct verticasandv of a graphG is defined as
the smallest number of vertices whose removal sepantatesd v. By Menger's Theorem§], k(u,v) equals the
maximum number of internally disjoint— v paths inG andk (G) = min{k(u,v) : u,v € V(G)}. It is straightforward to
verify thatk (G) < 6(G) andk (u,v) < min{deg,deg/}.

For a connected grapB, aclique of G is a complete subgraph &. Thecligue numbeof a graphG, denotedw(G), is
the size of a largest clique. Two vertices that are not adjacea graphG are said to béndependeniTheindependence
numbera(G) of a graphG is the maximum cardinality among the independent sets dicesrof G. The diameter
diam(G) of a graphG is the maximum distance between any two verticeG.of

2 Some bounds on local connective Chromatic number

Definition 1. A local connective k-coloring of a graph G is a mappingt(G) — {1,2,...,k} such that
(i) Ifuve E(G), then qu) # c(v), and
(i) Ifuvée E(G)and du) =c(v) =i, thenk(u,v) > i, wherek (u,v) is the maximum number of internally disjoint paths
between u and v.

The smallest integer k for which there exists a local corimedt- coloring of G is called the local connective chromatic
number of G, and it is denoted by (G).

The first condition characterizes proper coloring. Thugyglocal connective coloring is a proper coloring. The iced
of G are partitioned into disjoint color classeg, X, ..., Xk, where each color clas¥ consists of distinct vertices
n

u,v e X; such that (u,v) > i andU Xi =V (G). The maximum cardinality ak; in G is denoted by;.

i=1
Since all vertices of complete grapty are pairwise adjacent, by definition of local connectiveodoly we easily say
Xic(Kn) =n.

Lemma 1.If G is a connected graph of order n and independence nurmbéneny.(G) < 1+ n— a(G) and equality
holds ifk (u,v) = 1for all u,v € V(G).

Proof. Let Sbe a maximum independent set®fand thenS = a(G). SinceSis independent set, the verticesSrcan
be colored with the same color (color 1). Now, consider tmeai@ing graptH with n— o (G) vertices. IfH is complete
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graph, therxc(H) = n— a(G). Otherwisexic(H) < n— a(G). Then, we have
Xie(G) =1+ Xic(H) <1+n-a(G).

If k(u,v) =1 forallu,veV(G), then no two vertices can receive the same cofor i > 2. Furthermore, the maximum
number of vertices which receives color 10i§G). Then, the proof is completed.

Lemma 2.Let G be a graph of order n. They.(G) > w(G).

Proof. Let H be a subgraph a& which has maximum clique an (H)| = p < n. Since all vertices oH are pairwise
adjacent, these vertices must be colored witlifferent colors. Then, the graghis colored with at leasp colors. Since
N> p, we obtainyic(G) > xic(H) = w(G).

Theorem 1.Let G be a connected graph withn2 vertices. Then
2<xc(G) <n.

Proof. For any grapl with n > 2 vertices, sincer(G) > 1 andw(G) > 2, the proof follows from Lemmé& and Lemma
2.

Theorem 2.Let G be a graph of order n withr 2. Then,x(G) < xic(G).

Proof. Forn > 2, we know thaty(G) > 2 andxc(G) > 2. Let p be the total number of vertices colored with color 1
and color 2. Therin— p) vertices remain uncolored. We consider the following theages with respect to thege— p)
vertices.

Case 1lletn—p=0.Thenx(G) = xic(G) = 2.

Case 2Letn— p= 1. Then, we color remaining one vertex with color 3. Thyu&) = xic(G) = 3.

Case 3Letn— p> 2 andu,v be any two remaining vertices.

Case 3.1If u andv are adjacent vertices, then by definition of proper coloand local connective coloring we must
color these vertices with different colors. Ther{G) = xic(G).

Case 3.2Letu andv be non—adjacent vertices. For proper coloring, we colmsdhertices with the same color. For local
connective coloring, consider the following cases.

Case 3.2.1Uf k(u,v) > i fori > 3, we color these vertices with the same caldrthen,x (G) = xic(G).

Case 3.2.2If k(u,v) <i for i > 3, then we color these vertices with different colors. TtHéis case increases local
connective chromatic number. Hence, we hgv€) < xic(G).

The proof is completed from these cases.

Fig. 1: Local connective coloring of two graphs

Fig. 1 (a) shows the grapB with xic(G) > xp(G) and Fig.1 (b) shows the grapH with xic(H) < xp(H).
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Theorem 3.Let G be a graph of order n with diaf@) > 2. Then,

diam(G)—1
Xe(©) < X6(G) +2-diam(@)+ 5 p
i=

Proof. Let G be a graph of ordem, diametediam(G) > 2 and fori > 1 letc; be the number of vertices which is colored
with packing coloring.

Sincep; is the maximum number of vertices which is colored with pagkioloring fori > 1 anddiam(G) > 2, we have
pi(G) < 1 fori > diam(G). Thereby, the graph is colored at ledsam(G) — 1 colors with respect to packing coloring.
For the lower bound, we give color 1 to every vertex in a maximindependent set irG. Then we have
c1 = p1(G)=0a(G) and

diam(G)—1
Xp(G) > diam(G) —1+n— Z Ci
i=
diam(G)—1
=diamG)-14+n—a(G)— % Gi. (1)
i=
Sincec; < pi(G) foralli > 1, by inequality 1) we have
diam(G)—1
X6(G) > diam@) - 1+n-a(@)~ 3 p. )
i=
By Lemmal and inequality 2), we get
diam(G)—1

Xe(®) < xo(@)+2-diam@)+ 5 p
i=
Corollary 1. Let G be a graph of order n with diaf®) > 2 and independence number Then,
Xic(G) < Xp(G) + (2—diam(G))(1— a(G)).

Proof. Sincepi(G) < a(G) fori > 2, by Theorens,

diam(G) -1
Xp(G) ZXic(G) +diam(G) —2— ; a(G)

~Xic(G) + (diam(G) - 2) - (diam(G) — 2)a(G)
~Xic(G) + (diam(G) - 2)(1— a(G)).

Corollary 2. If G is a graph of diameter two, thexc(G) < xp(G).
Proof. If we substitutediam(G) = 2 into Corollaryl, the proof is completed.
Corollary 3. If G is a bipartite graph of diameter 3, theqic(G) < xp(G) + 1.

ProofSincediam(G) = 3, for packing coloring each color at least 3 appears at mu= and since the graph is bipartite
graph of diameter 3, color 2 can be used only twitd.[Substitutingdiam(G) = 3 andc, = p»(G) = 2 into the inequality
of TheorenB, we getyic(G) < xp(G) +1.
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3 Local connective Chromatic number of some graphs

Theorem 4.Let R, be a path of order n with = 2. Then,
Xic(Pa) = 14+ [5].

Proof. The number of internally disjoint paths between all pairsertices ofP, is 1. Then,
ki(Ph) <1fori>2.

Let X; be a maximum independent set®f Then, every vertex ifX; has color 1 and(P,) = a(R,) = [g}. Since
ki(Py) <1fori > 2, the other vertices receive different colors. Consedyemé have

Xic(Pn) =14+n— (%1 =1+ LgJ

Theorem 5.Let G, be a cycle of order n with & 3. Then,

(Co) = 2, ifniseven
XTI =3 3. itnis odd.

Proof. Since cycle graphs are 2—regular graph(si, v) = 2 for any two verticesl andv in C,. Thus ki (Cn) < 1 fori > 3.
Let X; andX, be subsets dE, containing the vertices labelled by color 1 and color 2, eetigely. Sincek; (Cy,) < 1 for
i > 3, the other vertices receive different colors. Therefore,

ka(Cn) = [3), ka(Cn) = | 3]

Then, we have

n n
Xie(Cn) =1+1+n—[5] 5]
n
:2+n—2L§J. (3)
The proof is completed depending nieing odd and even.
Theorem 6.Let W, be a wheel graph of order n. Then,
3, ifnisodd
Xic(Wh) = .
4, ifniseven.

Proof. In the wheel graphW\,, the center vertex is adjacent to each vertex of the d@glg. Then this vertex must be
colored with a different color than the others. Therefore have

Xic(Wh) = 1+ Xic(Cn-1).

By equality @),
n-1
Xic(Wh) =1+24+n— 172LTJ
n-1
= 2+n—2LTJ.

The proof is completed depending ntbeing odd and even.

Theorem 7.Let Ky, where n> 1, be a star. Then,
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ch(Kl,n) =2

Proof. Sincek (u,v) < min{deg),deg/} = 1 for any two non—adjacent verticasindv of graphK ,, we haveki (K n) <1
fori > 2. Thusn leaves oKy, must be colored with color 1 and internal vertex receivesstirdit color. Hence, we have
XIC(Kl,n) =14+1=2.

Theorem 8.Let T be a tree of order n with B 2. Then
Xc(T)=14+n—a(T).

Proof. Let Sbe a maximum independent setTin We can give color 1 to every vertex 8 Thusk;(T) = a(T). Since
the number of internally disjoint paths between all nonaeét pairs of vertices df is 1, we havek(T) <1 fori > 2.
Hence, the remaining— o (T) vertices receiva— a(T) different colors other than color 1. Then the proof is cortgale

Corollary 4. Let T be a tree of order n with & 2. Then

Xie(T) <1+ 3]

and equality holds if T is a path.

Proof. If T is a tree witn > 2 verticesa(T) > [3] [2]. By Theorem, we have

Xio(T) = 1+n—a(T) < 1+n—[J] =1+|3].

Then the proof is completed.

Thecomplete p—partitgraphKn, n,..... Np has a vertex sét that can be partitioned intp partsVy, Vs, ...,Vp so thatv; has
n; vertices and two vertices are adjacent if and only if theyimudistinct parts. Iiny = np = ... = np, the graph is regular

(71

Theorem 9[9] Let p> 2 be an integer. If G is a p—partite graph of order n such that

n< 6(6)22—:;

thenk (u,v) = min{degudeg\} for all pairs of distinct vertices u and v in G.
Theorem 10.For any integer p> 3, let G be a regular complete p-partite graph of order n. ThaG) = p.

..... n, b€ a regular complete-partite graph with the partitioW (G) = V1 UV, U ... UV, to the
independent setsVq,Vy,...,Vp, where |Vi| = nj for eachi and np = np = ... =ny =1t, t > 2. Thus,
Mm+mn+..+np=n=tpanddeg= (p—1)t=95(G) forallue V(G).
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Since

2p—-1 2p—-1
5(6) 553 = (P~ Dtgr—

:(p—l)t(l—i—%)
> (p— 1)t(1+ %)
:(p—l)t(l—i—%)

~ ey

=<1—%)>t<p+1>

> (p+ 1t
>pt=n

by Theoren®, k (u,v) = min{dequ,deg/} = (p— 1)t for all pairs of distinct vertices andv in G.
Forp>3andt > 2,

K(u,v)=(p—DLt> p. (4)

Since every vertex il is adjacent to each vertexf), we havexc(G) > p, wherei, j € {1,2,..., p}, i # j. Without loss
of generality assume that.(G) > p+ 1. SinceG is colored with at leasp+ 1 colors,k (u,v) < p for a vertexu which
receives colop+ 1 and a vertex which receives colop. This contradicts4). Thus, we havegc(G) = p.

4 Conclusion

In this paper, we introduce and study a new coloring concefid local connective coloring. Since efficiency and
reliability of routing can be achieved by using internaligjdint paths, we use the term internally disjoint path im ou
definition. We give some general bounds and study on seveaphgclasses. Also, we give relation between local
connective coloring and some other colorings.
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