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Abstract: The purpose of this article is to introduce the notion of(C1,C2)-Hölder Krull valuation on right ring of fractions ( with
respect to right denominator setS in a ring R). It is proved that ifR is a ring satisfying in Hölder rigidity condition, andS a right
permutable set of regular elements inR, then the right ring of fractionsR

′
= Qr

ϕ (R) with respect toS satisfies in Hölder rigidity
condition. This results provide an extension of the Garsia theorem (see [2]) for right ring of fractions.
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1 introduction and preliminaries

The theory of valuations may be viewed as a branch of topological algebra. The devolopment of valuation theory has

spanned over more than a hundred years. First the notion of valuations on fields was introduced. Details of valuations on

fields can be found in many monographs, e. g. Endler (see [1]),Ribenboim (see [7]), and Schilling (see [8]). Then Manis

introduced the notion of valuations in the category of commutative rings and it can be found in Manis (see [6]), Huckaba

(see [3]), and Knebusch and Zhang (see [4]). A groupΓ is called anordered multiplicative groupif it has a total ordering

≤ which is compatible with the group structure, i. e.α ≤ β ( α,β ∈ Γ ), impliesγα ≤ γβ , αγ ≤ β γ, for all γ ∈ Γ and

β−1 ≤ α−1. Let Γ be an ordered multiplicative group. AKrull valuation | | on ring R with values inΓ is a mapping

| | : R→ Γ ∪{0} satisfying the conditions.

(i) For a∈ R, |a|= 0 iff a= 0;

(ii) For a,b∈ R, |a+b| ≤ Max{|a|, |b|};

(iii) For a,b∈ R, |ab|= |a||b|.

with the properties 0.0= 0, 0.α = α.0= 0,α ∈ Γ and 0< α for all α ∈ Γ .

Let Γ be an ordered multiplicative group andC1 ≥ 1,C2 ≥ 1.

A (C1,C2)-Hölder Krull valuationon ring R with values inΓ is a mapping‖.‖ : R→ Γ ∪{0} satisfying the conditions.

(i) For a∈ R,‖a‖= 0 iff a= 0;

(ii) For a,b∈ R, ‖a+b‖≤C2Max{‖a‖,‖b‖};

(iii) For a,b∈ R, C−1
1 ‖a‖‖b‖≤ ‖ab‖ ≤C1‖a‖‖b‖.

Remark.Note that(1,1)-Hölder Krull valuation on ring R is a classical Krull valuation on a ring R.

In this paper R is a noncommutative ring with unit element.A ring R
′

is said to be aright ring of fraction if there is a

given ring homomorphismϕ : R→ R
′
such that.
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(a) ϕ is S-inverting (ϕ(S)⊂U(R), where U(R) is set of unit elements of R ).

(b) Every element ofR
′
has the formϕ(a)ϕ(s)−1 for somea∈ Rands∈ S.

(c) Kerϕ = {r ∈ R|rs= 0 for somes∈ S}.

The multiplicative setS⊂ R is right permutableif for any a∈ Rands∈ S, aS∩sR6= /0, also setS⊂ R is right reversible,

for a∈ R, if s
′
a= 0 for somes

′
∈ S, thenas= 0 for somes∈ S.

If the multiplicative setS⊂ R is both right permutable and right reversible, we shall say that S is aright denominator set.

The ring R has aright ring of fractionswith respect to multiplicative set S iff S is aright denominator set(see [5]).Let S

be the multiplicative set of all regular elements. We say that R is aright ore ring iff S is right permutable, iffRS−1 exists.

In this case, we speak ofRS−1 asthe classical right ring of quotientsof R, and denote it byQr
cl(R). Let R be a domain

and S= R− {0}. In this case, the right permutable condition on S may be re-expressed in the equivalent form:

aR∩bR 6= 0 for a,b∈ R−{0}. This is called the (right)ore conditionon R. Thus, the domain R isright(resp. left) oreiff

R satisfies the right (resp. left) ore condition.

2 Krull valuation and (C1,C2)-Hölder Krull valuation for right ring of fractions

Definition 1. Let |.|1and |.|2 be two valuations on ring R. Then we say that|.|1and |.|2 are (C0,α)-Hölder equivalent

(where C0 ≥ 1,α > 0 ) if for all x ∈ R,

C−1
0 |x|α

′

1 ≤ |x|2 ≤C0|x|
α ′

1

whereα ′
= α or α ′

= α−1.

Lemma 1. Let |.| : R→ Γ ∪{0} be a Krull valuation on ring R with right ring of fractions R
′
= Qr

ϕ(R), whereΓ is an

ordered multiplicative group. Then|.|ϕ : R
′
→ Γ ∪{0} by equation.

|x|ϕ = |ϕ(a)ϕ(b)−1|ϕ = |a||b|−1, for a∈ R,b∈ S is a Krull valuation on ringR
′
= Qr

ϕ(R).

Proof. (i) Let x∈ R
′
and|x|ϕ = |ϕ(a)ϕ(b)−1|ϕ = |a||b|−1 = 0 for somea∈ R, b∈ S. Then|a|= 0 impliesa= 0. Hence

x= ϕ(0)/ϕ(b) = 0. Conversely, forx∈ R
′
= Qr

ϕ (R) if x= 0, then|x|ϕ = |0|ϕ = |ϕ(0)ϕ(1)−1|= |0||1|−1 = 0.

(ii) For eachx,y∈ R
′
, we have|x+y|ϕ = |ϕ(a)/ϕ(b)+ϕ(c)/ϕ(d)|ϕ for somea,c∈ Randb,d ∈ S. FrombS∩dR 6= /0,

there existd1 ∈ Sandb1 ∈ Rsuch thatbd1 = db1. Thus,

|x+ y|ϕ =|(ϕ(a)ϕ(d1)/(ϕ(b)ϕ(d1))+ (ϕ(c)ϕ(b1)/(ϕ(d)ϕ(b1))|ϕ

=|ϕ(ad1+ cb1)/ϕ(bd1)|ϕ

=|ad1+ cb1||bd1|
−1

=|ad1+ cb1||db1|
−1

≤Max{|ad1||bd1|
−1, |cb1||db1|

−1}

=Max{|a||d1||d1|
−1|b|−1, |c||b1||b1|

−1|d|−1}

=Max{|a||b|−1, |c||d|−1}

=Max{|x|ϕ , |y|ϕ}.

Hence|x+ y|ϕ ≤ Max{|x|ϕ , |y|ϕ}.
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(iii) For eachx,y∈ R
′
, we havexy= (ϕ(a)/ϕ(b))(ϕ(c)/ϕ(d)) for somea,c∈ Randb,d∈ S. FrombR∩cS6= /0, we get

elementsr ∈ R, s∈ Ssuch thatbr = cs∈ S, this implies thatc−1br = s. Therefore,ds= dc−1br,b−1c= rs−1. Thus,

xy= ϕ(a)ϕ(b−1)ϕ(c)ϕ(d−1) = ϕ(a)ϕ(r)ϕ(s−1)ϕ(d−1) = ϕ(ar)(ϕ(ds))−1.

Therefore,

|xy|ϕ = |ϕ(ar)/ϕ(ds)|ϕ = |ar||ds|−1 = |ar||dc−1br|−1 = |a||r||r|−1|b|−1|c||d|−1 = |a||b|−1|c||d|−1 = |x|ϕ |y|ϕ .

Consequently,|.|ϕ is Krull valuation onR
′
= Qr

ϕ(R).

Lemma 2.Let |.| : R→ Γ ∪{0} be a(C1,C2)-Hölder Krull valuation on ring R with right ring of fractions R
′
= Qr

ϕ(R),

where C1 ≥ 1, C2 ≥ 1, andΓ is an ordered multiplicative group. Then|.|ϕ : R
′
= Qr

ϕ(R)→ Γ ∪{0} by equation:|x|ϕ =

|ϕ(a)ϕ(b)−1|ϕ = |a||b|−1 for a∈ R, b∈ S, is (C4
1,C

2
1C2)-Hölder Krull valuation on ring R

′
.

Proof. (i) let x∈ R
′
= Qr

ϕ (R) and|x|ϕ = 0. Then|ϕ(a)ϕ(b)−1|ϕ = |a||b|−1 = 0, for a∈ R,b∈ S. Therefore,|a|= 0, it

implies thata= 0. Consequently,x= ϕ(0)/ϕ(b) = 0. Conversely, letx∈ R
′
= Qr

ϕ(R) andx= 0. Then

|x|ϕ = |0|ϕ = |ϕ(0)ϕ(1)−1|ϕ = |0||1|−1 = 0.

(ii) For eachx,y ∈ R
′
= Qr

ϕ (R), we have|x+ y|ϕ = |ϕ(a)/ϕ(b)+ϕ(c)/ϕ(d)| for somea,c ∈ R andb,d ∈ S. From

bS∩dR 6= /0, there existd1 ∈ Sandb1 ∈ Rsuch thatbd1 = db1 ∈ S. Thus,ϕ(b)ϕ(d1) = ϕ(d)ϕ(b1). Therefore,

|x+ y|ϕ =|(ϕ(a)ϕ(d1)+ϕ(c)ϕ(b1))/(ϕ(b)ϕ(d1))|ϕ

=|ϕ(ad1+ cb1/ϕ(bd1)|ϕ = |ad1+ cb1||bd1|
−1

=|ad1+ cb1||db1|
−1 ≤C2Max{|ad1||bd1|

−1, |cb1||db1|
−1}

≤C2Max{C1|a||d1|C1|d1|
−1|b|−1,C1|c||b1|C1|b1|

−1|d|−1}

=C2C
2
1Max{|a||b|−1, |c||d|−1}=C2

1C2Max{|x|ϕ , |y|ϕ}.

(iii) For eachx,y∈ R
′
, we havexy= (ϕ(a)/ϕ(b))(ϕ(c)/ϕ(d)), for somea,c∈ Randb,d ∈ S. FrombR∩cS6= /0, there

existr ∈ Rands∈ Ssuch thatbr = cs∈ S impliesc−1br = s. Therefore,ds= dc−1br andb−1c= rs−1. Thus,

xy= ϕ(a)ϕ(b−1)ϕ(c)ϕ(d−1) = ϕ(a)ϕ(r)ϕ(s−1)ϕ(d−1) = ϕ(ar)(ϕ(ds))−1.

Therefore,

|xy|ϕ =|ϕ(ar)/ϕ(ds)|ϕ = |ar||ds|−1

=|ar||dc−1br|−1 ≥C−1
1 |a||r|(C−1

1 |br|−1|dc−1|−1)

≥C−2
1 |a||r|C−1

1 |r|−1|b|−1C−1
1 |c||d|−1

≥C−4
1 |a||b|−1|c||d|−1 =C−4

1 |x|ϕ |y|ϕ .

Thus,

|xy|ϕ ≥C−4
1 |x|ϕ |y|ϕ .
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Also, we have

|xy|ϕ =|ar||dc−1br|−1 ≤C1|a||r|(C1|br|−1|dc−1|−1)

≤C2
1|a||r|C1|r|

−1|b|−1C1|c||d|
−1

≤C4
1|a||b|

−1|c||d|−1 =C4
1|x|ϕ |y|ϕ .

Therefore,

C−4
1 |x|ϕ |y|ϕ ≤ |xy|ϕ ≤C4

1|x|ϕ |y|ϕ .

Consequently,|.|ϕ is (C4
1,C

2
1C2)-Hölder Krull valuation on ringR

′
= Qr

ϕ(R).

Definition 2. Let R be a ring. We say that R satisfies in Hölder rigidity condition if for every(C1,C2)-Hölder Krull

valuation| . | on R, there exists a classical Krull valuation‖ . ‖ on R such that‖ . ‖ is (C0,α)-Hölder equivalent (where

C0 ≥ 1,α > 0) to | . |.

Theorem 1.Let R be a ring satisfying in Ḧolder rigidity condition, and S a right permutable set of regular elements in R.

Then the right ring of fractions R
′
= Qr

ϕ(R) with respect to S satisfies in Hölder rigidity condition.

Proof. Let ‖.‖ϕ : R′ → Γ ∪{0} be(C1,C2)-Hölder Krull valuation on right ring of fractionsR
′
= Qr

ϕ(R), whereΓ is an

ordered abelian multiplicative group,C1 ≥ 1 andC2 ≥ 1. We define‖.‖ : R→ Γ ∪{0} by equation:‖a‖ = ‖ϕ(a)‖ϕ , for

all a∈ R. Thus, we have.

(i) let a ∈ R anda = 0. Then‖0‖ = ‖ϕ(0)‖ϕ = ‖0‖ϕ = 0. Conversely, leta ∈ R and‖a‖ = 0. Then‖ϕ(a)‖ϕ = 0

impliesϕ(a) = 0. Hence there existss∈ Ssuch thatas= 0. Therefore,a= 0 (s is regular element).

(ii) For eacha,b∈ R, we have

‖a+b‖= ‖ϕ(a+b)‖ϕ = ‖ϕ(a)+ϕ(b)‖ϕ ≤C2Max{‖ϕ(a)‖ϕ ,‖ϕ(b)‖ϕ}=C2Max{‖a‖,‖b‖}.

(iii) For eacha,b∈ R, we have

C−1
1 ‖a‖‖b‖=C−1

1 ‖ϕ(a)‖ϕ‖ϕ(b)‖ϕ ≤ ‖ϕ(a)ϕ(b)‖ϕ(= ‖ϕ(ab)‖ϕ = ‖ab‖)≤C1‖ϕ(a)‖ϕ‖ϕ(b)‖ϕ =C1‖a‖‖b‖.

Therefore,‖.‖ is (C1,C2)-Hölder Krull valuation on R. Since R satisfies in Hölder rigidity condition, hence there exists

a classical Krull valuation|.| on R such that(C0,α)-Hölder equivalent (whereC0 ≥ 1, α > 0) to (C1,C2)-Hölder Krull

valuation‖.‖ on ring R. Now by Lemma 2, the mapping

|.|ϕ : R
′
= Qr

ϕ(R)→ Γ ∪{0} by |x|ϕ = |ϕ(a)ϕ(b)−1|ϕ = |a||b|−1

( for a∈ R, b∈ S) is a Krull valuation on ringR
′
= Qr

ϕ(R). On the other hand, for eacha∈ R, we have

C−1
0 |a|α

′

≤ ‖a‖ ≤C0|a|
α ′

c© 2017 BISKA Bilisim Technology
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whereα ′
= α or α ′

= α−1. Therefore, for eachx= ϕ(a)/ϕ(b), for somea∈ R,b∈ S, we have

‖x‖ϕ =‖ϕ(a)ϕ(b)−1‖ϕ ≤C1‖ϕ(a)‖ϕ‖ϕ(b)‖−1
ϕ (=C1‖a‖‖b‖−1)

≤C1C0|a|
α ′

C0|b|
−α ′

(=C1C
2
0(|a||b|

−1)α ′

=C1C
2
0|x|

α ′

ϕ ).

on the other hand,

‖x‖ϕ =‖ϕ(a)ϕ(b)−1‖ϕ ≥C−1
1 ‖ϕ(a)‖ϕ‖ϕ(b)‖−1

ϕ (=C−1
1 ‖a‖‖b‖−1)

≥C−1
1 C−1

0 |a|α
′

C−1
0 (|b|−1)α ′

=C−1
1 C−2

0 (|a||b|−1)α ′

=C−1
1 C−2

0 |x|α
′

ϕ .

Therefore,

(C1C
2
0)

−1|x|α
′

ϕ ≤ ‖x‖ϕ ≤C1C
2
0|x|

α
′

ϕ .

Hence|.|ϕ : R
′
→ Γ ∪{0} is (C1C2

0,α)-Hölder equivalent to(C1,C2)-Hölder Krull valuation‖.‖ϕ on ringR
′
. Therefore,

R
′
satisfies in Hölder rigidity condition.
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