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Abstract: He object of the present paper is to studyN(k)-quasi Einstein manifolds satisfying certain curvature conditions. Further we
study gradient Ricci solitons onN(k)-quasi Einstein manifolds.
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1 Introduction

Einstein manifolds play a vital part in Riemannian geometryas well as in the general theory of relativity (GTR). Also,

Einstein manifolds build a natural subclass of various class of Riemannian or semi-Riemannian manifolds by a curvature

condition enforced on their Ricci tensor ([1];p.432-433). A non-flatn- dimensional Riemannian manifold(M,g) (n> 2)

is said to be an Einstein manifold if the condition

S=
r
n

g (1)

holds onM, whereS andr denote the Ricci tensor and the scalar curvature of(M,g) respectively. A Ricci soliton is a

generalization of an Einstein metirc. In a Riemannian manifold (M,g), g is called a Ricci soliton if

Lvg+2S(X,Y)+2λg= 0, (2)

whereL denotes Lie derivative with respect to a complete vector field V, S is the Ricci tensor andλ is a constant.

A Ricci soliton isexpanding, shrinkingor steadyasλ is positive, negative or zero respectively. If the vector field V is the

gradient of a potential function− f , theng is called a gradient Ricci soliton and equation (2) assumes the form

∇∇ f = S+λg. (3)

Theoretical physicist have also been looking into the equation of Ricci soliton in relation with string theory. Quasi Einstein

manifolds arose during the study of exact solutions of the Einstein field equations as well as during considerations of

quasi-umbilical hyper surfaces of semi-Euclidean spaces.Quasi Einstein manifolds have some importance inGTR. For

instance, the Robertson-Walker spacetimes are quasi Einstein manifolds. Further, quasi-Einstein manifolds can be taken

as a model of the perfect fluid spacetime inGTR [8]. If the generatorξ of quasi Einstein manifold belongs to some

k-nullity distributionN(k), then the quasi Einstein manifold is called anN(k)- quasi Einstein manifold [20]. In [20], it

was shown that ann- dimensional conformally flat quasi Einstein manifold is aN(a+b
n−1)- quasi Einstein manifold and in

particular a 3-dimensional quasi Einstein manifold is aN(a+b
n−1)- quasi Einstein manifold. Further, De, Sengupta and Saha

in [5] studied conformally flat and semisymmetric quasi Einsteinmanifolds and some physical examples ofN(k)- quasi
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Einstein Manifolds was cited bÿOzgür in [16]. Then, Taleshian and Hosseinzadeh ([13,18]), Yildiz, De and Centinkaya

[22] and singh et al. studiedN(k)- quasi Einstein manifolds satisfying certain curvatre conditions extensively. AlsoN(k)-

mixed quasi Einstein manifold was studied in [15] by Nagaraja.

2 Preliminaries

An almost contact structure on an-dimensional smooth manifoldM is given by a triple(φ ,ξ ,η), whereφ is a(1,1)-tensor,

ξ a global vector field andη a one-form, such that

φ2 =−Id+η ⊗ ξ , φξ = 0, η ◦φ = 0, η(ξ ) = 0. (4)

A Riemannian metricg on an almost contact manifoldM is said to be compatible with the almost contact structure

(φ ,ξ ,η) if

g(φX,φY) = g(X,Y)−η(X)η(Y), (5)

for any vector fieldsX,Y on M.A non-flat n-dimensional Riemannian manifold(M,g) (n > 2), is said to be a quasi

Einstein [3] if its Ricci tensorSof type(0,2) is not identically zero and satisfies the condition

S(X,Y) = ag(X,Y)+bη(X)η(Y), X,Y ∈ TM, (6)

for some smooth functionsa andb 6= 0, whereη is a non-zero 1 form such that

g(X,ξ ) = η(X), g(ξ ,ξ ) = η(ξ ) = 1, (7)

for the associated vector fieldξ . Thenη is called associated 1- from and the unit vector fieldξ is called the generator

of the manifold. Throughout this paperMn
a,b denotesn- dimensionalN(k)-quasi Einstein manifold. From (6) and (7) it

follows that

QX = aX+bη(X)ξ , S(X,ξ ) = (a+b)η(X). (8)

and

r = na+b, (9)

wherer is the scalar curvature ofM. Let R denote the Riemannian curvature tensor of a Riemannian manifold M. Thek-

nullity distributionN(k)- of a Riemannian manifoldM [19] is defined by

N(k) : p→ Np(k) = {Z ∈ TpM : R(X,Y)Z = k[g(Y,Z)X−g(X,Z)Y], (10)

k being some smooth function. In a quasi Einstein manifoldM, if the generator̂I 3
4 belongs to somek-nullity distribution

N(k), thenM is said to be aN(k)-quasi Einstein manifold [17].In an n-dimensionalN(k)-quasi Einstein manifold [17] it

follows thatk= a+b
n−1. Now, it is immediate to note that in ann-dimensionalN(k)-quasi-Einstein manifold [17]

R(X,Y)ξ =
a+b
n−1

{η(Y)X−η(X)Y}. (11)

The projective curvature tensor is defined by [16]

P(X,Y)Z = R(X,Y)Z−
1

n−1
{S(Y,Z)X−S(X,Z)Y}. (12)
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From (13), it follows that

P(X,Y)ξ = 0. (13)

Definition 1. Mn
a,b(ξ ) is called regular if k6= 0, equivalently a+b 6= 0.

Theorem 1.[4] Fix a Mn
a,b(ξ ) not necessarily regular. Then(g,ξ ,λ ) is a Ricci soliton on Mn

a,b(ξ ) if and only if k=−λ
is a constant and Lξ g= 2b(g−η ×η).

From theorem1 and Eqn.(2), we have

S(X,Y) =−(λ +b)g(X,Y)+bη(X)η(Y). (14)

3 N(k)-quasi Einstein manifold

We consider ann-dimensionalN(k)-quasi Einstein manifoldM satisfying the condition

S((X,ξ ).P)(Y,Z)U = 0. (15)

By definition, we haveS((X,ξ ).P)(Y,Z)U = ((X∧sξ ).P)(Y,Z)U , where the endomorphism(X ∧sY)Z is defined by

(X∧sY)Z = S(Y,Z)X−S(X,Z)Y.

Therefore (15) takes the form,

S(ξ ,P(Y,Z)U)X−S(X,P(Y,Z)U)ξ −S(ξ ,Y)P(X,Z)U +S(X,Y)P(ξ ,Z)U −S(ξ ,Z)P(Y,X)U

−S(X,Z)P(Y,ξ )U −S(ξ ,U)P(ξ ,Z)U −S(ξ ,Z)P(Y,X)U +S(X,Z)P(Y,ξ )U −S(ξ ,U)P(Y,Z)X

+S(X,U)P(Y,Z)ξ = 0.

(16)

Contracting this withξ , we get

S(ξ ,P(Y,Z)U)η(X)−S(X,P(Y,Z)U)−S(ξ ,Y)η(P(X,Z)U)+S(X,Y)η(P(ξ ,Z)U)−S(ξ ,Z)η(P(Y,X)U)

−S(X,Z)η(P(Y,ξ )U)−S(ξ ,U)η(P(ξ ,Z)U)−S(ξ ,Z)η(P(Y,X)U)+S(X,Z)η(P(Y,ξ )U)

−S(ξ ,U)η(P(Y,Z)X)+S(X,U)η(P(Y,Z)ξ ) = 0.

(17)

Using (12) in (17), we have

ab
n−1

{g(X,Y)g(Z,U)−g(X,Z)g(Y,U)+g(X,Y)η(Z)η(U)−g(X,Z)η(Y)η(U)}

+
b2

n−1
{g(X,Y)η(Z)η(U)−g(X,Z)η(Y)η(U)}+

a2

n−1
{g(Z,U)g(X,Y)

−g(Y,U)g(X,Z)}−ag(X,R(Y,Z)U)= 0.

(18)

TakingZ = ξ in (18), we obtain
(a+b)b

n−1
{g(X,Y)−η(X)η(Y)}η(W) = 0. (19)

Since, in a quasi Einstein manifoldb 6= 0, from (19) it follows thata+b= 0. Thus we state that.

Theorem 2.An n- dimensional N(k)- quasi Einstein manifold M satisfies S(X,ξ ) ·P = 0 if and only if the sum of the

associated scalars is zero.
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Definition 2. A Riemannian manifold is said to be projectively pseudosymmetric [21] if at every point of the manifold the

following relation

(R(X,Y) ·P)(U,V)W = LP((X∧Y) ·P)(U,V)W, (20)

holds for any vector fields X,Y,U,V,W ∈ TM, where LP(6= a+b
n−1) is a function on M.

The endomorphismX∧Y is defined by

(X∧Y)Z = g(Y,Z)X−g(X,Z)Y.

PuttingY =W = ξ in (20), we have

(R(X,ξ ) ·P)(U,V)ξ = LP((X∧ξ ) ·P)(U,V)ξ . (21)

Now

LP((X∧ξ ) ·P)(U,V)ξ =LP{(X∧ξ )P(U,V)ξ −P((X∧ξ )U,V)ξ −P(U,(X∧ξ )V)ξ −P(U,V)(X∧ξ )ξ} (22)

In view of (11) and (12), (21) takes the form

a+b
n−1

P(U,V)X = LPP(U,V)X. (23)

The above equation yields
(

LP−
a+b
n−1

)

P(U,V)X = 0. (24)

By definition2 LP 6= a+b
n−1, hence we get

P(U,V)X = 0,

for any vector fieldsU,V andX. Conversely,P= 0, then the (21) holds trivially. Thus we can state the following.

Theorem 3. An n- dimensional N(k)- quasi Einstein manifold is projectively pseudosymmetricif and only if it is

projectively flat.

4 Ricci solitons and Gradient Ricci solitons onN(k)-quasi Einstein manifold

Let (M,g) be ann- dimensionalN(k)- quasi Einstein manifold andg be a gradient Ricci soliton. Then (3) can be written

as

∇YD f = QY+λY, (25)

for all vector fieldsX in M, whereD denotes gradient operator ofg. From (25) it follows that

R(X,Y)D f = (∇XQ)Y− (∇YQ)X, X,Y ∈ TM. (26)

By substitutingX = ξ in (26) and taking inner product withξ , we get

g(R(ξ ,Y)D f ,ξ ) = g

(

a+b
n−1

(D f − (ξ f )ξ ),Y
)

, Y ∈ TM. (27)

Then we have

g(
[

(∇ξ Q)Y− (∇YQ)ξ
]

,ξ ) = 0. (28)
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From (27) and (28), we get
a+b
n−1

(D f − (ξ f )ξ ) = 0,

That is, eithera+b= 0 or

D f = (ξ f )ξ . (29)

If a+b 6= 0 and using (29) in (25), we get

S(X,Y)+λg(X,Y) =Y(ξ f )η(X). (30)

Symmetrizing with respect toX andY, we arrive at

2S(X,Y)+2λg(X,Y) =Y(ξ f )η(X)+X(ξ f )η(Y). (31)

Substitutingξ for Y in (31), we get

X(ξ f ) = 2((a+b)+λ )η(X). (32)

From (31) and (32), we have

S(X,Y) = 2[(a+b)+λ ]η(X)η(Y)−λg(X,Y). (33)

Using (33) in (25), we get

∇YD f = 2[(a+b)+λ )η(X)ξ . (34)

Using (34) we computeR(X,Y)D f and obtain

g(R(X,Y)(ξ f )ξ ,ξ ) = 2[(a+b)+λ ]dη(X,Y). (35)

Then we get

λ =−(a+b). (36)

Therefore from (32) we have

X(ξ f ) = 0,X ∈ TM.

i.e.ξ f = c , wherec is a constant.Thus (29) gives

d f = cη .

Taking exterior derivative on both sides of the above equation, we get that

cdη = 0.

Hencec= 0. Thus f is a constant. Consequently, the equation (25) reduces toS(X,Y) = −λg(X,Y), i.e.,g is Einstein.

Hence we state the following

Theorem 4.A regular N(k)-quasi Einstein manifold Mna,b with generatorξ does not admit a gradient Ricci soliton.

Consider ann - dimensionalN(k)- quasi Einstein manifoldM satisfying the condition

P(ξ ,X) ·S= 0. (37)

This implies

S(P(ξ ,X)Y,Z)+S(Y,P(ξ ,X)Z) = 0. (38)
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Which in view of (7) gives

0=
b

n−1
{g(X,Y)S(ξ ,Z)−η(X)η(Y)S(ξ ,Z)+g(X,Z)S(Y,ξ )−η(X)η(Z)S(Y,ξ )}. (39)

Sinceb 6= 0, in view of (2), it follows that

0= λ{−g(X,Y)η(Z)g(X,Z)η(Y)+2η(X)η(Y)η(Z)}. (40)

TakingZ = ξ in (40), we get

0= λ{g(X,Y)−η(X)η(Y)}. (41)

Thereforeλ = 0. Hence we can state the following

Theorem 5.A Ricci soliton in an n-dimensional N(k)- quasi Einstein manifold which satisfies the condition P(ξ ,X) ·S= 0

is steady.
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