
NTMSCI 5, No. 3, 70-84 (2017) 70

New Trends in Mathematical Sciences
http://dx.doi.org/10.20852/ntmsci.2017.186

LS(2)− Equivalence conditions of control points and
application to planar Bezier curves

Muhsin Incesu1,∗,Osman Gursoy2

1Education Faculty, Mus Alparslan University,49100, Mus, Turkey,
2Educational Faculty, Maltepe University,İstanbul,Turkey
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Abstract: Having an important role in CAD and CAM systems the Bezier andB- spline curves and surfaces and NURBS modelling
are based on control points belongs to these curves and surfaces. So the invariants of these curves and surfaces are the invariants of the
control points of these curves and surfaces. In this study westudied the equivalence conditions of compared two different control point
systems under the linear similarity transformationsLS(2) in R2 according to the invariant system of these control points. Finally the
equivalence conditions of two planar Bezier curves is examined.
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1 Introduction

The developing process on invariant theory started from thelate of XIX th century. It tries to examine whether the ring of

G-invariant polynomial functionsR[x]G has finite generators or not. This problem is given firstly in 1860’s for Binary

forms. In 1900 David Hilbert presented 23 amazing problems in Paris International Congress and in 14 th problem of it

he expressed when the generators of the ring of G-invariant polynomial functionsR[x]G is finite.

After him in 1962 M. Nagata demonstrated the ring of G-invariant polynomial functionsR[x]G has finite generators in

case G is linear reductive. In the studies of D. Khadjiev [1] and F. Grosshans [2], be finite conditions of generators of the

ring of G-invariant polynomial functionsR[x]G in case G is not linear reductive is given.

In 1946, Herman Weyl gave the complete invariant system of control points for n dimensional orthogonal groupO(n) in

[3], after him in 1988, Dj.Khadjiev and R. Aripov generalized this invariants to all euclidean motions in [4].

Developments in the Invariant theory has affected different areas of mathematics. Until F. Klein, only certain geometries

was known. In 1872, Klein showed that groups are important building blocks of geometry in his Erlangen Programme.

Accordingly similarity geometry is the theory of invariants of similarity transformations’ group and its certain

subgroups.i.e. two elementsA andB in this geometry are equivalent if and only if there exist a similarity transformation

f such thatB= f (A) is satisfied [5] .

In mechanics the concept of similarity is mostly used in development of dimensional analysis. Dimensional analysis

arose from an attempt to extend to physics some concepts likesimilarity, ratio, and proportion [6] , [7] . It was first
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applied by Galileo in 1638 to predict the strength of beams ofgiven material as a function of linear dimensions [6] .

Other applications were given by Mariotte in 1679 and Newtonin 1686 [6] , but it was Fourier who first stated that there

are certain ”fundamental units”, in terms of which every physical quantity has certain ”dimensions” , to be written as

exponents in 1822 [6] , [7] . In 20 th century Bridgman [8] , Sedov [9], and Langhaar [10] are sample contributors in this

area. Sağiroğlu [15], [16], Sağiroğlu and Pekşen [17], Ören [18], Khadjiev, Ören and Pekşen [19] and Deveci and

Karaduman [20] are some other contributors in this area recently.

Recently the invariants of control points have had an important role in the CAD and CAM systems. Especially Bezier

and B- spline curves and surfaces and NURBS modelling base oncontrol points belongs to these curves and surfaces.

The invariants of these control points mean the invariants of curves and surfaces determined by these control points.

A similarity transformation is composed of multiplicationof two transformations: a linear homothety or central dilation

and an isometry transformation. So a linear similarity transformation is composed of multiplication of two

transformations: a linear homothety and a linear isometry or an orthogonal transformation. Accordingly the group of

linear similarity transformations is an important subgroup of group of all similarity transformations. The linear similarity

transformations’ group in 2 dimensional Euclidean space will be deoted byLS(2). In this paper the equivalent conditions

of two control points systems in terms of the rationalLS(2)−invariants of control points is studied.

2 The rational LS(2)−invariants of points

Let E be a two dimensional Euclidean space then the transformationF : E 7→ E such that‖F(x)−F(y)‖ = λ ‖x− y‖ is

called a similarity transformation if there exist a positiveλ for everyX,Y ∈ E.

For a positiveλ the homotethy functionF in two dimensional Euclidean spaceE is defined byF(x) = a+λ (x−a) for

everyx∈ E wherea is called the center of homotethyF .

Proposition 1.The homotethy function is linear if and only ifλ = 1 or a= 0. [11]

Accordingly the linear homotethy function F, in two dimensional Euclidean space E is defined by F(x) = λx for every

x∈ E. Since a linear similarity transformation is composed of multiplication of two transformations: a linear homothety

and a linear isometry or an orthogonal transformation, any linear similarity transformation F can be stated as

F(x) = λgx (1)

for every x∈ E where g∈ O(2) in two dimensional Euclidean space E [11]. Let G be a transformation group. Then, the

function f is called G- invariant function, if

f (gx) = f (x) (2)

for every x∈ E and every g∈ G.

Definition 1. Let G be a transformation group, H be a subgroup of G and E be a two dimensional Euclidean space. Then

the function f: E → R is called proportional H-invariant function if f(gx) = λ (g) f (x) for all g ∈ H and for all x∈ E,

where the functionλ (g) is named the “weight” of the function f .
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Proposition 2.Let G be a transformation group and H be a subgroup of G. In thiscase any H- invariant rational function

f can be written as follows

f (x) =
P(x)
Q(x)

,Q(x) 6= 0 (3)

where P(x) and Q(x) are proportional H- invariant polynomial function such that the weights of them are equal. [4].

The group of all the orthogonal transformations defined in 2-dimensional Euclidean space E is denoted by O(2,E). for

shortness this group is denoted by O(2). The group of all the rotations is denoted by SO(2). It is clear that the group

SO(2) is an important subgroup of O(2).

Proposition 3. The weight of the proportional O(2)−invariant polynomial functionλ (g) is equal to 1 or detg for all

g ∈ O(2). The proportional O(2)−invariant polynomial function is called even invariant function if the weightλ (g) is

equal to 1 for all g∈ O(2). and the proportional O(2)−invariant polynomial function is called odd invariant function if

the weightλ (g) is equal to detg for all g∈ O(2) [3] , [ 4].

Proposition 4. Let f1 and f2 be even invariant functions andω ∈ R be given. Then f1 + f2, f1. f2 and ω . f1 are even

invariant functions [11].

Proposition 5. Let f1 and f2 be odd invariant functions and h be an even invariant function andω ∈ R be given. Then

f1+ f2, f1.h andω . f1 are odd invariant functions and f1. f2 is even invariant function [11] .

Let x(1),x(2), ...,x(m) be m vector variables in R2 and x(i) =
(

x(i)1 ,x(i)2

)

∈ R2 be given for i= 1,2, ...,m. Then the matrix
[

x(i) x( j)
]

means that

[

x(i)x( j)
]

=

[

x(i)1 x( j)
1

x(i)2 x( j)
2

]

. (4)

Theorem 1.Let x(1),x(2), ...,x(m) be m vector variables in 2- dimensional Euclidean space R2. Then,

(i) Any even invariant polynomial can be expressed by the polynomial of the functions

〈

x(i),x( j)
〉

; i, j = 1,2, ...,m.

(ii) Let ϕ
(

x(1),x(2), ...,x(m)
)

be an even invariant polynomial with m vector variables. In this case any odd invariant

polynomial can be expressed by the sum of the functions

det
[

x(i)x( j)
]

.ϕ
(

x(1),x(2), ...,x(m)
)

where i, j = 1,2, ...,m and i< j [ 3].

Let R
[

x(1),x(2), ...,x(m)
]

be a ring of polynomials for m vector variables x(1),x(2), ...,x(m) in 2- dimensional Euclidean

space R2 over the field R and a transformation group G be given. Then thealgebra of G-invariant polynomials for m vector

variables x(1),x(2), ...,x(m) in 2- dimensional Euclidean space R2 over the field R is denoted by R
[

x(1),x(2), ...,x(m)
]G

.

Theorem 2. Let x(1),x(2), ...,x(m) be m vector variables in 2- dimensional Euclidean space R2. Then, the system of

functions
〈

x(i),x( j)
〉

; i, j = 1,2, ...,m; i ≤ j (5)

is the generator system of the algebra R
[

x(1),x(2), ...,x(m)
]O(n)

[3].
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Theorem 3.Let x(1),x(2), ...,x(m) be m vector variables in 2- dimensional Euclidean space R2. Then,for i, j = 1,2, ...,m

the generator system of the algebra R
[

x(1),x(2), ...,x(m)
]SO(n)

is as follows [3].

〈

x(i),x( j)
〉

; i ≤ j,

det
[

x(i)x( j)
]

; i < j.
(6)

Theorem 4.Let x(1),x(2), ...,x(m) be m vector variables in 2- dimensional Euclidean space R2. If m> 2 then, for i, j = 1,2

and p= 3, ...,m the generator system of the field of the O(2)-invariant rational functions R
(

x(1),x(2), ...,x(m)
)O(2)

is as

follows [3].
〈

x(i),x( j)
〉

; i ≤ j,
〈

x(i),x(p)
〉

;
(7)

If m≤ 2 then, the generator system of the field R
(

x(1),x(2), ...,x(m)
)O(2)

is the same the system (5).

Theorem 5.Let x(1),x(2), ...,x(m) be m vector variables in 2- dimensional Euclidean space R2. If m> 2 then, for i, j = 1,2

and p= 3, ...,m the generator system of the field R
(

x(1),x(2), ...,x(m)
)SO(2)

is as follows [3].

det
[

x(1)x(2)
]

,
〈

x(i),x( j)
〉

; i ≤ j; i + j < 4,
〈

x(i),x(p)
〉

;

(8)

If m≤ 2 then, the generator system of the field R
(

x(1),x(2), ...,x(m)
)O(2)

is

det
[

x(1)x(2)
]

,
〈

x(i),x( j)
〉

; i ≤ j; i + j < 4.
(9)

Theorem 6.Let x(1),x(2), ...,x(m) be m vector variables in 2- dimensional Euclidean space R2. For i, j = 1,2, ...,m the

generator system of the field R
(

x(1),x(2), ...,x(m)
)LS(2)

is as follows [11].

〈

x(i),x( j)
〉

〈

x(1),x(1)
〉 , i ≤ j. (10)

3 LS(2)− equivalence conditions of control points

Let G be a transformation group andE be two dimensional Euclidean space. Then, the pointsx,y ∈ E are called

G-equivalent points if there exist a transformationg ∈ G such thaty = gx. If x andy are G-equivalent points then the

notationx
G
∼= y is used.

Let G be a transformation group andE be two dimensional Euclidean space and two points systems
{

x(1),x(2), ...,x(m)
}

and
{

y(1),y(2), ...,y(m)
}

in E be given. Then, these systems are called G-equivalent if there exist a transformationg∈ G
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such thaty(i) = gx(i) for every i ∈ {1,2, ...,m}. If these points systems
{

x(1),x(2), ...,x(m)
}

and
{

y(1),y(2), ...,y(m)
}

are

G-equivalent systems then the notation
{

x(1),x(2), ...,x(m)
} G
∼=
{

y(1),y(2), ...,y(m)
}

is used.

Theorem 7.Let x= (x1,x2) and y= (y1,y2) be given two vectors in R2. Then,

(i) If x = 0 and y6= 0 or x 6= 0 and y= 0 then x and y are not LS(2)- equivalent. ie. x
LS(2)

≇ y,

(ii) If x = 0 and y= 0 or x 6= 0 and y6= 0 then x
LS(2)
∼= y.

Proof.

(i) Let x 6= 0 andy = 0 be given andx
G
∼= y be supposed. In this case there exist a transformationh ∈ LS(2) such

thaty= hx is satisfied. It means there existg∈ O(2) andλ > 0 such thaty= λgx is satisfied. Since the orthogonal

transformations save the inner product,〈y,y〉 = λ 2〈x,x〉 is obtained. But becausex 6= 0 andλ > 0,〈y,y〉 must be

different zero andy can not be 0 vectors. This is a contradiction. Sox andy are notLS(2)- equivalent vectors. In

casex= 0 andy 6= 0 the statement can be reduced first case since the relationship
G
∼= is an equivalence relation and

has symmetry property.

(ii) Let x= (0,0) andy= (0,0) be given. In casegx= 0 for everyg∈ O(2) andy= λgxcan be stated sinceλgx= 0

Thus from (2) x
G
∼= y is proved. Letx 6= 0 andy 6= 0 be given. Then〈x,x〉 and〈y,y〉 are different from zero. Thus, the

positive real numberλ can be chosen asλ = 〈y,y〉
〈x,x〉 . So‖y‖= ‖λx‖ is obtained. In this case the vectorsy andλx on

the sameO(2)-orbit. It means there exist an orthogonal transformationg∈ O(2) such thaty= g(λx) = λgx. From

thisx
G
∼= y is proved.

Theorem 8.Let two points systems
{

x(1),x(2), ...,x(m)
}

and
{

y(1),y(2), ...,y(m)
}

in E be given. So,

(i) If x(i) = 0 and y(i) 6= 0 or x(i) 6= 0 and y(i) = 0 for any i= 1,2, ...,m, then these systems are not LS(2)- equivalent.

ie.
{

x(1),x(2), ...,x(m)
} LS(2)

≇

{

y(1),y(2), ...,y(m)
}

(ii) If x(i) = 0 and y(i) = 0 for any i= 1,2, ...,m, then the equivalence conditions of the systems with m vector variables

is reduced the equivalence conditions with m−1 vectors.

(iii) If x(i) 6= 0 and y(i) 6= 0 for every i= 1,2, ...,m, then

(a) If the rank of the matrix
[

x(1)x(2)...x(m)
]

is equal to 2 then
{

x(1),x(2), ...,x(m)
} LS(2)

∼=
{

y(1),y(2), ...,y(m)
}

if and only if
〈x(i),x( j)〉
〈x(1) ,x(1)〉

=
〈y(i),y( j)〉
〈y(1),y(1)〉

where i, j = 1,2, ...,m and i≤ j.

(b) If the rank of the matrix
[

x(1)x(2)...x(m)
]

is equal to 1 then
{

x(1),x(2), ...,x(m)
} LS(2)

∼=
{

y(1),y(2), ...,y(m)
}

if and only if
〈x(1) ,x( j)〉
〈x(1),x(1)〉

=
〈y(1),y( j)〉
〈y(1),y(1)〉

where j= 2, ...,m

(c) If the rank of the matrix
[

x(1)x(2)...x(m)
]

is different from the rank of the matrix
[

y(1)y(2)...y(m)
]

then these

system can not be LS(2)- equivalent.

Proof. (i) Let x(i) = 0 andy(i) 6= 0 be given for anyi = 1,2, ...,mand
{

x(1),x(2), ...,x(m)
} LS(2)

∼=
{

y(1),y(2), ...,y(m)
}

be

supposed. Then there exist aλ > 0 and an orthogonal transformationg∈ O(2) such thaty( j) = λgx( j) for every j =

1,2, ...,m is satisfied. Soy(i) must be 0 Sincex(i) = 0. This is a contradiction. Thus these systems
{

x(1),x(2), ...,x(m)
}

and
{

y(1),y(2), ...,y(m)
}

are notLS(2)- equivalent. Similarly in casex(i) 6= 0 andy(i) = 0 for anyi = 1,2, ...,m , then

we will prove that these systems
{

x(1),x(2), ...,x(m)
}

and
{

y(1),y(2), ...,y(m)
}

are notLS(2)- equivalent. suppose

that these systems areLS(2)- equivalent. Then, there exist aλ > 0 andg∈ O(2) such thaty( j) = λgx( j) for every
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j = 1,2, ...,m is satisfied. From this equation for the integer i,x(i) = 1
λ gTy(i) can be written. Thenx(i) must be 0

Sincey(i) = 0. This is a contradiction. So these systems
{

x(1),x(2), ...,x(m)
}

and
{

y(1),y(2), ...,y(m)
}

are notLS(2)-

equivalent.

(ii) Let x(i) = 0 andy(i) = 0 for anyi = 1,2, ...,mbe given and

{

x(1),x(2), ...,x(m)
} LS(2)

∼=
{

y(1),y(2), ...,y(m)
}

be supposed. Then,y( j) = λgx( j) for every j = 1,2, ...,m is satisfied. Excluding the i th elements of these systems

y( j) = λgx( j) for every j = 1,2, ..., i −1, i +1, ...,m is satisfied. So

{

x(1), ...,x(i−1)
,x(i+1)

, ...,x(m)
} LS(2)

∼=
{

y(1), ...,y(i−1)
,y(i+1)

, ...,y(m)
}

can be written. Conversely Let

{

x(1),x(2), ...,x(i−1)
,x(i+1)

, ...,x(m)
} LS(2)

∼=
{

y(1),y(2), ...,y(i−1)
,y(i+1)

, ...,y(m)
}

be supposed. Then, there exist aλ > 0 andg∈ O(2) such thaty( j) = λgx( j) for every j = 1,2, ..., i −1, i +1, ...,m

We can add ith elements of these systems sincex(i) = 0 andy(i) = 0 Soy( j) = λgx( j) for every j = 1,2, ...,m is

satisfied then
{

x(1),x(2), ...,x(m)
} LS(2)

∼=
{

y(1),y(2), ...,y(m)
}

is obtained.

(iii) (a) Let x(i) 6= 0 and y(i) 6= 0 for every i = 1,2, ...,m and the rank of the matrices
[

x(1)x(2)...x(m)
]

and
[

y(1)y(2)...y(m)
]

are equal to 2 be given and
{

x(1),x(2), ...,x(m)
} LS(2)

∼=
{

y(1),y(2), ...,y(m)
}

be supposed. In this case there exist aλ > 0 andg ∈ O(2) such

thaty( j) = λgx( j) for every j = 1,2, ...,m. Then

〈

y(i),y( j)
〉

〈

y(1),y(1)
〉 =

〈

λgx(i),λgx( j)
〉

〈

λgx(1),λgx(1)
〉 =

〈

x(i),x( j)
〉

〈

x(1),x(1)
〉

is obtained since the orthogonal transformationg∈ O(2) save inner product.

Conversely let this equality
〈x(i),x( j)〉
〈x(1),x(1)〉

=
〈y(i),y( j)〉
〈y(1),y(1)〉

be given for everyi, j = 1, ...,mandi ≤ j. we will prove that

{

x(1),x(2), ...,x(m)
} LS(2)

∼=
{

y(1),y(2), ...,y(m)
}

.

Now from hyphothesis

〈

y(i),y( j)
〉

=

〈

y(1),y(1)
〉

〈

x(1),x(1)
〉

〈

x(i),x( j)
〉

can be written. So if the multiple
〈y(1),y(1)〉
〈x(1) ,x(1)〉

> 0 is denoted byλ 2, then

〈

y(i),y( j)
〉

=
〈

λx(i),λx( j)
〉

(11)
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is obtained for everyi, j = 1, ...,m and i ≤ j. Since the vector systems
{

x(1),x(2), ...,x(m)
}

and
{

y(1),y(2), ...,y(m)
}

in two dimensional Euclidean space are linearly dependent and the rank of the matrix
[

x(1)x(2)...x(m)
]

is equal to 2 , it is necessary to determine which vectors in these systems are linearly

independent. Suppose that∃k, l ∈ {1, ...,m} such that the vectorsx(k) andx(l) are linearly independent. In this

case the vectorsy(k) andy(l) are also linearly independent since the Gram determinant ofthe vectorsλx(k) and

λx(l)

∣

∣

∣
Gr

(

λx(k),λx(l)
)∣

∣

∣
=

∣

∣

∣

∣

∣

∣

〈

λx(k),λx(k)
〉 〈

λx(k),λx(l)
〉

〈

λx(l),λx(k)
〉 〈

λx(l),λx(l)
〉

∣

∣

∣

∣

∣

∣

is different from zero. So
x(i) = αikx(k)+αil x(l),

y(i) = βiky(k)+βil y(l)
(12)

for every integeri = 1,2, ...mare obtained. Since

[

y(k)y(l)
]T [

y(k)y(l)
]

= Gr
(

y(k),y(l)
)

From (11) the equality of the matrices

[

λx(k)λx(l)
]T [

λx(k)λx(l)
]

=
[

y(k)y(l)
]T [

y(k)y(l)
]

(13)

is obtained. Because the vectors
{

x(k),x(l)
}

and
{

y(k),y(l)
}

are linearly independent the matrices
[

λx(k)λx(l)
]

and
[

y(k)y(l)
]

are regular and have inverses. So there exist a regular matrix g such that

[

y(k)y(l)
]

= g
[

λx(k)λx(l)
]

(14)

satisfies. If the equality (14) Substitutes to (13) and multiply both sides of (13) by

(

[

λx(k)λx(l)
]T

)−1

at left

firstly and by
[

λx(k)λx(l)
]−1

at right secondly, then

I = gTg

is obtained. this means thatg is orthogonal i.e.g∈ O(2). From (14),

y(k) = λgx(k)

and

y(l) = λgx(l)

are obtained. From this and (12)

λx(i) = αikλx(k)+αil λx(l)

and

g(λx(i)) = αiky(k)+αil y
(l) (15)
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for everyi = 1,2, ...,mare obtained. From (12) and (15).

y(s) = βsky
(k)+βsly

(l)

λgx(s) = αsky
(k)+αsly

(l)

can be written fors= 1,2, ...,m The equality of these vectorsy(s) and λgx(s) depends on the equalities of

multiplesβsk= αsk andβsl = αsl. let us prove these equalities. From (12)

〈

λx(k),λx(s)
〉

= αsk

〈

λx(k),λx(k)
〉

+αsl

〈

λx(k),λx(l)
〉

〈

λx(l),λx(s)
〉

= αsk

〈

λx(l),λx(k)
〉

+αsl

〈

λx(l),λx(l)
〉

and
〈

y(k),y(s)
〉

= βsk

〈

y(k),x(k)
〉

+βsl

〈

y(k),y(l)
〉

〈

y(l),y(s)
〉

= βsk

〈

y(l),y(k)
〉

+βsl

〈

y(l),y(l)
〉

can be wriiten. Solving these linear equations

αsk=

∣

∣

∣

∣

∣

∣

〈

λx(k),λx(s)
〉 〈

λx(k),λx(l)
〉

〈

λx(l),λx(s)
〉 〈

λx(l),λx(l)
〉

∣

∣

∣

∣

∣

∣

detGr
(

λx(k),λx(l)
)

αsl =

∣

∣

∣

∣

∣

∣

〈

λx(k),λx(k)
〉 〈

λx(k),λx(s)
〉

〈

λx(l),λx(k)
〉 〈

λx(l),λx(s)
〉

∣

∣

∣

∣

∣

∣

detGr
(

λx(k),λx(l)
)

βsk=

∣

∣

∣

∣

∣

∣

〈

y(k),y(s)
〉 〈

y(k),y(l)
〉

〈

y(l),y(s)
〉 〈

y(l),y(l)
〉

∣

∣

∣

∣

∣

∣

detGr
(

y(k),y(l)
)

βsl =

∣

∣

∣

∣

∣

∣

〈

y(k),y(k)
〉 〈

y(k),y(s)
〉

〈

y(l),y(k)
〉 〈

y(l),y(s)
〉

∣

∣

∣

∣

∣

∣

detGr
(

y(k),y(l)
)

is obtained for everys= 1,2, ...m. Using (11) βsk= αsk andβsl = αsl is obtained. So
{

x(1),x(2), ...,x(m)
} LS(2)

∼=
{

y(1),y(2), ...,y(m)
}

is proved.

(b)Let x(i) 6= 0 and y(i) 6= 0 for every i = 1,2, ...,m and the rank of the matrices
[

x(1)x(2)...x(m)
]

and
[

y(1)y(2)...y(m)
]

are equal to 1 be given and
{

x(1),x(2), ...,x(m)
} LS(2)

∼=
{

y(1),y(2), ...,y(m)
}

be supposed. In this case there exist aλ > 0 andg ∈ O(2) such

that y( j) = λgx( j) for every j = 1,2, ...,m. since the rank of aboved matrices is 1, there exist one linear

independent vector in each system
{

x(1),x(2), ...,x(m)
}

and
{

y(1),y(2), ...,y(m)
}

. Let these linear independent

vectors be denotedx(s) andy(s) for anys∈ {1, ...m}. So for everyi = 1, ...,m
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x(i) = l ix
(s) ; y(i) = miy

(s) (16)

can be written. So from (16)

mj

m1
=

〈

y(1),y( j)
〉

〈

y(1),y(1)
〉 =

〈

x(1),x( j)
〉

〈

x(1),x(1)
〉 =

l j

l1

is obtained for everyj = 2, ...,m.

Conversely let this equality
〈x(1),x( j)〉
〈x(1),x(1)〉

=
〈y(1),y( j)〉
〈y(1),y(1)〉

be given for everyj = 2, ...,m. we will prove that

{

x(1),x(2), ...,x(m)
} LS(2)

∼=
{

y(1),y(2), ...,y(m)
}

.

From theorem 3.1x(s)
LS(2)
∼= y(s) and then there exist aλ > 0 andg ∈ O(2) such thaty(s) = λgx(s) then from

hyphothesis and (16)

mj =
m1

l1
l j

is obtained wherem1
l1

=

√

〈y(1),y(1)〉
〈x(1),x(1)〉

> 0. If the real numberm1
l1

λ is denoted byλ , thenλ > 0. So for every

j = 1, ...,m ;

y( j) = mjy
(s) =

m1

l1
l j(λgx(s)) = λgx( j)

can be written. So
{

x(1),x(2), ...,x(m)
} LS(2)

∼=
{

y(1),y(2), ...,y(m)
}

.

is proved.

(c) Let x(i) 6= 0 and y(i) 6= 0 for every i = 1,2, ...,m and the ranks of the matrices
[

x(1)x(2)...x(m)
]

and
[

y(1)y(2)...y(m)
]

be different from each other. firstly each rank of given matrices must be different from zero.

Otherwise it means all of the vectors in these systems are zero. it is mentioned above. Just let

rank
[

x(1)x(2)...x(m)
]

= 1 and rank
[

x(1)x(2)...x(m)
]

= 2 be given. In this case there exist the integers

i, j,s∈ {1,2, ...,m} such that the vectorx(i) is linearly independent in the system
{

x(1),x(2), ...,x(m)
}

and these

vectorsy( j),y(s) are linearly independent in the system
{

y(1),y(2), ...,y(m)
}

. So

x(k) = akx
(i)

y(k) = bk jy
( j)+bksy

(s)

can be written for everyk = 1,2, ...,m. It is clear that ai = b j j = bss = 1 and b js = bs j = 0. Let
{

x(1),x(2), ...,x(m)
} LS(2)

∼=
{

y(1),y(2), ...,y(m)
}

be supposed. In this case there exist aλ > 0 andg ∈ O(2) such

thaty(k) = λgx(k) for everyk= 1, ...m. Then it follows

y(k) = λg
(

akx
(i)
)

= aky
(i)
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for every k = 1, ...m. It means each vectorsy(1),y(2), ...,y(m) can be expressed by the vectorx(i). This is a

contradiction and so
{

x(1),x(2), ...,x(m)
} LS(2)

≇

{

y(1),y(2), ...,y(m)
}

.

Let rank
[

x(1)x(2)...x(m)
]

= 2 and rank
[

x(1)x(2)...x(m)
]

= 1 be given. In this case there exist the integers

i, j,s∈ {1,2, ...,m} such that these vectorsx(i),x( j) are linearly independent in the system
{

x(1),x(2), ...,x(m)
}

and the vectory(s) is linearly independent in the system
{

y(1),y(2), ...,y(m)
}

be given. So,

y(k) = aky
(s)

can be written for everyk = 1, ...m. Let
{

x(1),x(2), ...,x(m)
} LS(2)

∼=
{

y(1),y(2), ...,y(m)
}

be supposed. In this case

there exist aλ > 0 andg∈ O(2) such thaty(k) = λgx(k) for everyk = 1, ...m. This statement can be written as

matrix form as
[

y(1)y(2)...y(m)
]

= g
[

λx(1)λx(2)...λx(m)
]

It follows
[

λx(1)λx(2)...λx(m)
]

= gT
[

y(1)y(2)...y(m)
]

It means for everyk= 1, ...,m

λx(k) = gT
(

aky
(s)
)

= akλx(s)

can be written. And every vectors
{

λx(1),λx(2), ...,λx(m)
}

can be stated by the vectorλx(s) and it is a

contradiction. So the assumption is wrong. As a result of this

{

x(1),x(2), ...,x(m)
} LS(2)

≇

{

y(1),y(2), ...,y(m)
}

4 Application to planar Bezier curves

Bezier Curves are polynomial curves stated by control points. Recently the invariants of control points have had an

important role in the systems CAD and CAM. Especially Bezierand B- spline curves and surfaces and NURBS modelling

based on control points belongs to these curves and surfaces. It is extremely important to determine whether or not the

surface modellings have durable, precision, and applicable outputs in the geometries in view of the reliability of the

imagings of the mechanism. Therefore it is necessary that the invariant properties of modelling of mechanism is able

to be known, so that the realized modellings introduce durable and precision, and reliable results under transformation

groups. In this sense, knowing of complete of invariants of Bezier and B-spline curves and surfaces which gives most

stable solutions within CAD systems [14] is important.

4.1 Linear bezier curves

A linear Bezier curveX(t) with control pointsb0,b1 is defined by

X(t) = (1− t)b0+ tb1

wheret ∈ [0,1] [12] .
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Fig. 1: LS(2)− equivalent linear Bezier curvesX(t) andY(t).

Theorem 9.Let X,Y be given two linear Bezier curves with control points b0,b1 and p0, p1 in R2 respectively. So,

(i) If any bi = (0,0) and any pj = (0,0) for i, j = 0,1 then these curves are always LS(2)−equivalent.

(ii) If any bi = (0,0) and each pj 6= (0,0) or each bi 6= (0,0) and any pj = (0,0) for i, j = 0,1 then these curves are

not LS(2)−equivalent.

(iii) If every bi 6= (0,0) and pj 6= (0,0) for i, j = 0,1 then these Bezier curves are LS(2)−equivalent if and only if
〈b0,b1〉
〈b0,b0〉

= 〈p0,p1〉
〈p0,p0〉

and 〈b1,b1〉
〈b0,b0〉

= 〈p1,p1〉
〈p0,p0〉

.

Proof.This theorem is a conclusion of Theorem 2. In first case the ranks of matrice of control points of each Bezier curves

X andY are equal to 1. In second case the ranks of matrice of control points of each Bezier curvesX andY are different

from each other. In third case the ranks of matrice of controlpoints of each Bezier curvesX andY are equal to 2.

4.2 Quadratic Bezier curves

A quadratic Bezier curveX(t) with control pointsb0,b1,b2 is defined by

X(t) = (1− t)2b0+2(1− t)tb1+ t2b2

wheret ∈ [0,1] [12] .
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Fig. 2: LS(2)− equivalent quadratic Bezier curvesX(t) andY(t).

Theorem 10.Let X,Y be given two quadratic Bezier curves with control points b0,b1,b2 and p0, p1, p2 in R2 respectively.

So,

(i) If any bi = (0,0) and pi = (0,0) for i = 0,1,2 then these curves are LS(2)−equivalent if and only if the condition

of third case of theorem 4.1 is satisfied excluding bi and pi .

(ii) If any bi = (0,0) and each pj 6= (0,0) or each bi 6= (0,0) and any pj = (0,0) for i, j = 0,1,2 then these curves

are not LS(2)−equivalent.

(iii) If every bi 6= (0,0) and pj 6= (0,0) for i, j = 0,1,2 then these Bezier curves are LS(2)−equivalent if and only if
〈b0,b1〉
〈b0,b0〉

= 〈p0,p1〉
〈p0,p0〉

, 〈b1,b1〉
〈b0,b0〉

= 〈p1,p1〉
〈p0,p0〉

, 〈b0,b2〉
〈b0,b0〉

= 〈p0,p2〉
〈p0,p0〉

,
〈b1,b2〉
〈b0,b0〉

= 〈p1,p2〉
〈p0,p0〉

, 〈b2,b2〉
〈b0,b0〉

= 〈p2,p2〉
〈p0,p0〉

.

Proof.This theorem is also a conclusion of Theorem 3.2. Since the Bezier Curves are quadratic in this theorem, the ranks

of matrice of control points of each Bezier curvesX andY are equal to 2.

4.3 Cubic Bezier curves

A Cubic Bezier CurveX(t) with control pointsb0,b1,b2,b3 is defined by

X(t) = (1− t)3b0+3(1− t)2tb1+3(1− t)t2b2+ t3b3

wheret ∈ [0,1] [12] .
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Fig. 3: LS(2)− equivalent cubic Bezier curvesX(t) andY(t).

Theorem 11. Let X,Y be given two cubic Bezier curves with control points b0,b1,b2,b3 and p0, p1, p2, p3 in R2

respectively. So,

(i) If any bi = (0,0) and pi = (0,0) for i, j = 0,1,2,3 then these curves are LS(2)−equivalent if and only if the

condition of third case of theorem 11 is satisfied excluding bi and pi .

(ii) If any bi = (0,0) and each pj 6= (0,0) or each bi 6= (0,0) and any pj = (0,0) for i, j = 0,1,2,3 then these curves

are not LS(2)−equivalent.

(iii) If every bi 6= (0,0) and pj 6= (0,0) for i, j = 0,1,2,3 then these Bezier curves are LS(2)−equivalent if and only

if

〈

bi,b j
〉

〈b0,b0〉
=

〈

pi , p j
〉

〈p0, p0〉

is satisfied. where i, j = 0,1,2,3 and i≤ j.

Proof. This theorem is also a conclusion of Theorem 8. Since the Bezier Curves are cubic in this theorem, the ranks of

matrice of control points of each Bezier curvesX andY are also equal to 2.

4.4 General Bezier curves

A general Bezier curveX(t) of degreen with control pointsb0,b1,b2, ...,bn is defined by

X(t) =
n

∑
i=0

Bn
i (t)bi

wheret ∈ [0,1] andBn
i (t) are Bernstein basis polynomials of degree n defined by

Bn
i (t) =

(n
i
)

(1− t)n−it i

[13]

Theorem 12. Let X,Y be given two general Bezier curves of degree n with control points b0,b1,b2, ...,bn and

p0, p1, p2, ..., pn in R2 respectively. So,
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(i) If any bi = (0,0) and any pi = (0,0) for i = 0,1,2, ...,n then these curves are LS(2)−equivalent if and only if the

condition of third case of theorem 11 is satisfied excluding bi and pi .

(ii) If any bi = (0,0) and each pj 6= (0,0) or each bi 6= (0,0) and any pj = (0,0) for i, j = 0,1,2, ...,n then these

curves are not LS(2)−equivalent.

(iii) If every bi 6= (0,0) and pj 6= (0,0) for i, j = 0,1,2, ...,n then these Bezier curves are LS(2)−equivalent if and

only if

〈

bi,b j
〉

〈b0,b0〉
=

〈

pi , p j
〉

〈p0, p0〉

is satisfied. where i, j = 0,1,2, ...,n and i≤ j.

Proof.This theorem is also a conclusion of Theorem 3.2. The ranks ofmatrice of control points of each Bezier curvesX

andY are also equal to 2.
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[15] Sağiroğlu Y., ”The Equivalence Problem For Parametric Curves In One-Dimensional Affine Space”, International Mathematical

Forum, 6(2011), 177-184.
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