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Abstract: Having an important role in CAD and CAM systems the Bezier Badpline curves and surfaces and NURBS modelling
are based on control points belongs to these curves anatesrfao the invariants of these curves and surfaces arevtréints of the
control points of these curves and surfaces. In this studgtugied the equivalence conditions of compared two diffecentrol point
systems under the linear similarity transformatit®2) in R? according to the invariant system of these control poinisalfy the
equivalence conditions of two planar Bezier curves is eranhi
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1 Introduction

The developing process on invariant theory started frontatteeof XIX th century. It tries to examine whether the ring of
G-invariant polynomial function&[x|® has finite generators or not. This problem is given firstly @Q’s for Binary
forms. In 1900 David Hilbert presented 23 amazing problemi2dris International Congress and in 14 th problem of it
he expressed when the generators of the ring of G-invar@ghpmial functionsR[x| is finite.

After him in 1962 M. Nagata demonstrated the ring of G-inamatipolynomial function®R[x|® has finite generators in
case G is linear reductive. In the studies of D. Khadji§wand F. Grosshang], be finite conditions of generators of the
ring of G-invariant polynomial functionR[x|® in case G is not linear reductive is given.

In 1946, Herman Weyl gave the complete invariant system pfrobpoints for n dimensional orthogonal gro@gn) in
[3], after him in 1988, Dj.Khadjiev and R. Aripov generalizdistinvariants to all euclidean motions i |

Developments in the Invariant theory has affected diffeegeas of mathematics. Until F. Klein, only certain geoiestr
was known. In 1872, Klein showed that groups are importaiitimg blocks of geometry in his Erlangen Programme.
Accordingly similarity geometry is the theory of invarianbf similarity transformations’ group and its certain
subgroups.i.e. two elememsandB in this geometry are equivalent if and only if there existraikrity transformation

f such thaB = f(A) is satisfied p] .

In mechanics the concept of similarity is mostly used in dtgwment of dimensional analysis. Dimensional analysis
arose from an attempt to extend to physics some conceptsilitiarity, ratio, and proportionq] , [7] . It was first
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applied by Galileo in 1638 to predict the strength of beangivdn material as a function of linear dimensiofE.[

Other applications were given by Mariotte in 1679 and Newtoh686 [6] , but it was Fourier who first stated that there
are certain "fundamental units”, in terms of which every gibgl quantity has certain "dimensions” , to be written as
exponentsin 182%] , [7] . In 20 th century Bridgmang] , Sedov P], and Langhaar](] are sample contributors in this
area. Sagirogluls], [16], Sagiroglu and Pekseri]], Oren [18], Khadjiev, Oren and Peksenlf] and Deveci and
KaradumanZ2(Q] are some other contributors in this area recently.

Recently the invariants of control points have had an ingmrtole in the CAD and CAM systems. Especially Bezier
and B- spline curves and surfaces and NURBS modelling basmwinol points belongs to these curves and surfaces.
The invariants of these control points mean the invariahtsioves and surfaces determined by these control points.

A similarity transformation is composed of multiplicatiofitwo transformations: a linear homothety or central dliat
and an isometry transformation. So a linear similarity $farmation is composed of multiplication of two
transformations: a linear homothety and a linear isometrgroorthogonal transformation. Accordingly the group of
linear similarity transformations is an important subgyad group of all similarity transformations. The linear dinity
transformations’ group in 2 dimensional Euclidean spadebeideoted by S(2). In this paper the equivalent conditions
of two control points systems in terms of the ratiob&(2)—invariants of control points is studied.

2 The rational LS(2)—invariants of points

Let E be a two dimensional Euclidean space then the transfion¥ : E — E such that|F(x) — F(y)|| = A [x—y] is
called a similarity transformation if there exist a posti/ for everyX,Y € E.

For a positiveA the homotethy functiofr in two dimensional Euclidean spakeis defined byF (x) = a+ A (x— a) for
everyx € E wherea s called the center of homotetliy

Proposition 1. The homotethy function is linear if and onlyif=1 ora= 0. [1]]

Accordingly the linear homotethy function F, in two dimemnsil Euclidean space E is defined byxdr = Ax for every
x € E. Since a linear similarity transformation is composed oftiplication of two transformations: a linear homothety
and a linear isometry or an orthogonal transformation, amehr similarity transformation F can be stated as

F(x) =Agx 1)

for every xe E where ge O(2) in two dimensional Euclidean space E]]. Let G be a transformation group. Then, the
function f is called G- invariant function, if

f(gx) = f(x) )
for every xe E and every & G.
Definition 1. Let G be a transformation group, H be a subgroup of G and E becedimensional Euclidean space. Then

the function f: E — R is called proportional H-invariant function if (fgx) = A (g) f (x) for all g € H and for all xe E,
where the function (g) is named the “weight” of the function f.
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Proposition 2.Let G be a transformation group and H be a subgroup of G. In¢hie any H- invariant rational function

f can be written as follows
100 = 2% Q) #0 ©)
QM)
where Rx) and Qx) are proportional H- invariant polynomial function such thine weights of them are equa#][
The group of all the orthogonal transformations defined im®rensional Euclidean space E is denoted {2,8). for
shortness this group is denoted by2ZD The group of all the rotations is denoted by @D It is clear that the group

SQ(2) is an important subgroup of Q).

Proposition 3. The weight of the proportional @)—invariant polynomial functiom (g) is equal to 1 or detg for all
g € O(2). The proportional @2)—invariant polynomial function is called even invariant fiion if the weightA (g) is
equal to 1 for all ge O(2). and the proportional @)—invariant polynomial function is called odd invariant furan if
the weightA (g) is equal to detg for all ¢ O(2) [3], [4].

Proposition 4. Let f; and £ be even invariant functions an@d € R be given. Then; f+ f,, f1.f, and w.f; are even
invariant functions 11].

Proposition 5. Let f; and £ be odd invariant functions and h be an even invariant fumctod w € R be given. Then
f1+ 2, f1.h andw. f; are odd invariant functions and, ff, is even invariant functionl[1] .

Let XV, x@ ... x(M be m vector variables inRand X! = (x(li) (2')) € R? be given for i= 1,2,...,m. Then the matrix

)

[xm x<i>} means that

o (1) (1)

[X(')X(J)} = lx%n X%j)] : (4)
AR

Theorem 1.Let XV x(@ ... x(M be m vector variables in 2- dimensional Euclidean spa&eTRen,

(i) Any even invariant polynomial can be expressed by the potial@f the functions

<X<i>,x<i>>;i,j =12,..m

(i) Letg (x(1>,x(2>, ...,x<m>) be an even invariant polynomial with m vector variables.His tase any odd invariant
polynomial can be expressed by the sum of the functions

detlxx1] g (xV.x?,..x)

whereij=1,2,...mandi< j[3].
Let R[X(D,x@), ...,x(m)} be a ring of polynomials for m vector variable®xx@ . ....x(M in 2- dimensional Euclidean
space R over the field R and a transformation group G be given. Thealipebra of G-invariant polynomials for m vector

G
variables XY, x? ..., x(™ in 2- dimensional Euclidean spacé Bver the field R is denoted by[RéD,x(Z), ...,x<m>} .

Theorem 2. Let XV, x@ ... x(M be m vector variables in 2- dimensional Euclidean spaée en, the system of
functions
<X“),X“)>;i,j:1,2,---,m;iSj (5)

o
is the generator system of the algebr%x@,xﬁ), ...,x(m)] ™
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Theorem 3.Let XY x@ ... xi™ be m vector variables in 2- dimensional Euclidean spat¢eTRen,forjj =1,2,....m

san)
the generator system of the algebr%)@,x(z), ...,x<m>} is as follows B.

<X(i),x(i)>;i§j7

det[x(i)x(j)} <. (6)

Theorem 4.Let XV, x(@ ... x(™ be m vector variables in 2- dimensional Euclidean spa&dffn > 2 then, forij=1,2

. ) . . . o(2) .
and p= 3,...,m the generator system of the field of th@Binvariant rational functions F(x(”,x@, ...,x(m)) is as

follows [3]. <X<i),x<i>>;i <
<X<i>,x<p>> ; ’

0(2)
If m < 2 then, the generator system of the fieléx@,x(z), ...,x<m)) is the same the systefs) (
Theorem 5.Let XY, x@ ... x(™ be m vector variables in 2- dimensional Euclidean spa&dffn > 2 then, fori j = 1,2
. sQ?2) |
and p= 3,...,m the generator system of the f|el<€>EQ1),x<2), ...,x(m)) is as follows B.
det[xVx]
(OXD i< i+ <a, (®)

o
If m < 2 then, the generator system of the fieIé)R”,X(z), ---,X<m)) s

det|xUx@ |

Lo 9
<x<'),x<1>>;i§j;i+j<4. ®)

Theorem 6. Let XY x@ ... x(M be m vector variables in 2- dimensional Euclidean spaéefar i, j = 1,2,...,m the

. LS(2)
generator system of the fleId<R<1),x<2), ...,x<m>) is as follows [L1].

3 LS(2)— equivalence conditions of control points

Let G be a transformation group artfl be two dimensional Euclidean space. Then, the poiysc E are called
G-equivalent points if there exist a transformatpra G such thaty = gx. If x andy are G-equivalent points then the

. G .
notationx= yis used.

Let G be a transformation group aBdbe two dimensional Euclidean space and two points syst{etﬁﬁ x3, ...,x<m>}

and {ym,y@, ...,y<m>} in E be given. Then, these systems are called G-equivalentrié #ndst a transformatiogp € G

(© 2017 BISKA Bilisim Technology



NTMSCI 5, No. 3, 70-84 (2017) www.ntmsci.com BISKA 74

such thaty) = gx) for everyi € {1,2,...,m}. If these points system%x(l),x(a,...,x<m)} and {y<1),y<2),...,y<m>} are
G
G-equivalent systems then the notati@dl),x(z), ...,x<m>} ~ {y<1),y(2>, ...,y<m>} is used.

Theorem 7.Let x= (X, %2) and y= (y1,Y¥2) be given two vectors inRThen,

LS(2)
(i) Ifx=0andy#0orx+#0andy=0then x andy are not L(@)- equivalent. ie. X2 v,

LS(2)
(i) Ifx=0andy=0orx#0andy#0thenx = v.
Proof.

(i) Letx= 0 andy=0 be given anc 'g y be supposed. In this case there exist a transforméatiehS(2) such
thaty = hxis satisfied. It means there exgst O(2) andA > 0 such thay = Agxis satisfied. Since the orthogonal
transformations save the inner produgty) = A2 (x,x) is obtained. But because# 0 andA > 0,(y,y) must be
different zero ang/ can not be 0 vectors. This is a contradiction.XS&andy are notL.S(2)- equivalent vectors. In

casex = 0 andy # 0 the statement can be reduced first case since the relapcgstb an equivalence relation and
has symmetry property.

(i) Letx=(0,0) andy = (0,0) be given. In casgx= 0 for everyg € O(2) andy = Agxcan be stated sindegx= 0
Thus from @) x ; yis proved. Lei # 0 andy # 0 be given. Therx,x) and(y,y) are different from zero. Thus, the
positive real numbek can be chosen as= 8(’—3)3 So|ly|| = ||Ax|| is obtained. In this case the vectgrandAx on
the sameD(2)-orbit. It means there exist an orthogonal transformagienO(2) such thaly = g(Ax) = Agx From

G
thisx 2y is proved.
Theorem 8.Let two points systen@“),x@, ...,x(m)} and {y(1>,y<2), ...,y(m)} in E be given. So,

() 1fx)=0andy) #0orx) #£0andy) =0foranyi=1,2,...,m, then these systems are nof2)S equivalent.
LS(2)
ie_{Xa),X(z),_,_,X(m)} 2 {y<1>,y<2>7,_,,y<m>}

(i) 1fx()=0andy) =0foranyi=1,2,...,m, then the equivalence conditions of the systems with rorweriables
is reduced the equivalence conditions with-rh vectors.
(i)  1fx0) £0andy!) £ 0foreveryi=1,2,....,m, then
(@) If the rank of the matri>{x<1)x<2)...x(m)} is equal to 2 then
LS(2) . (x0) x(D) Y1) y(D)
{x(l),x(z),...,x(m)} ~ {y(1>,y<2),...,y(m)} if and only if <<x<l>,x<1>>> = <<W>,W>>>
(b) If the rank of the matri>{x<1)x<2)...x(m)} is equal to 1 then
LS(2) , (X () YO D) _
{x(l),x(z),...,x(m)} ~ {y(l),y<2),...,y(m)} if and only if §x<l>,x<l>i = §Y<1)ﬁy<1)i where j=2,....m
(c) If the rank of the matri x<1)x<2)...x(m)} is different from the rank of the matriwl)y(z)...y(m)} then these
system can not be I[(3)- equivalent.

whereij=12 .. mandi<|.

. . LS(2)
Proof. (i) Letx(®) =o0andy®) +0 be given forany=1,2, ...,mand{x(l),x(z), ...,x(m)} &~ {y(l),y<2), ...,y(m)} be

supposed. Then there exisha> 0 and an orthogonal transformatigre O(2) such thay()) = Agxl) for everyj =
1,2, ..., mis satisfied. Sg') must be 0 Since() = 0. This is a contradiction. Thus these syste[m%[) X2 xm }

and{y“),y@, ...,y<m>} are notLS(2)- equivalent. Similarly in casel) # 0 andy’) = 0 foranyi =1,2,...,m, then
we will prove that these systen'{s<(l>,x<2), ...,x(m)} and {y(l),y(z), ...,y(m)} are notLS(2)- equivalent. suppose
that these systems ak&(2)- equivalent. Then, there existla> 0 andg € O(2) such thaty}) = Agx(l) for every
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can be written. Thex(® must be 0

j=1,2,...,mis satisfied. From this equation for the integex(i) = /\1 g'y®
x(m }and{ ey Y )} are notLS(2)-

Sinceyl) = 0. This is a contradiction. So these syste{mé”,x(z)
equivalent.
(i) Letx) =0andy") =0 foranyi =1,2,...,mbe given and

[0 @)V g gy

be supposed. Theg(l) = Agx) for everyj = 1,2, ..., mis satisfied. Excluding the i th elements of these systems
y) = Agxd) foreveryj=1,2,....i — 1,i + 1, ...,mis satisfied. So

[0 ), xm) 2 (Y0, yfi0 )y}

can be written. Conversely Let

be supposed. Then, there exist & 0 andg € O(2) such that/)) = Agx}) foreveryj =1,2,....i —1i+1,....m
We can add ith elements of these systems sifite= 0 andy) = 0 Soy(l) = Agx'}) for everyj =1,2,...mis
satisfied ther{xm x@, ...,x(m)} EX {ymvy(Z),...,y(m)} is obtained.
(i) (@) Let xi) £ 0 andy® £ 0 for everyi = 1,2,....m and the rank of the matrice%mx@)...x(m)} and
{y“)y(z)...y( )} are equal to 2 be given and

LS(2)
{x<1) x@, ...,x(m)} o~ {y<1),y<2),...,y<m>} be supposed. In this case there exist & 0 andg € O(2) such

)

thaty(l) = Agx}) for everyj = 1,2,...,m. Then

<y<i>7y<1>> <;\gx<i>,,\gx<j>> <X(i)7x(1)>

(YD yDY ~ (Agx Agx@)  (xW xD)

is obtained since the orthogonal transformatianO(2) save inner product.

(x), <>> (y yi)) ) . . .
Conversely let this equallt)< 3 = (W’W)) be given for every, j = 1,...,mandi < j. we will prove that

Now from hyphothesis
(1) (@)
<y<i> y<j>> — M <x<i> X<j>>
’ (xD,xD) ’
b y1) )
can be written. So if the multiples, T > 0 is denoted by <, then

<y<i>7y<1>> — <,\x<i>,,\x<i>> (11)
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is obtained for everyi,j = 1,...,.m and i < j. Since the vector system{x“),x(z),...,x<m)} and
{y(l>,y<2),...,y(m)} in two dimensional Euclidean space are linearly dependedtthe rank of the matrix

[x(”x(a...x(m)} is equal to 2 , it is necessary to determine which vectors @sdhsystems are linearly
independent. Suppose thak,| € {1,...,m} such that the vectorg¥ andx(") are linearly independent. In this
case the vectorng¥ andy() are also linearly independent since the Gram determinathieofectorsA x¥) and
)\X(l)

(A9 A% ) (Ax19,Ax1))

’Gr()\x(k)/\x('))’: <Ax<'>,)\x<k>> <Ax('),)\x<')>

is different from zero. So _
x() = aikx(k) + aj X(l),

_ 12)
y = Biy® + iy

for every integer = 1,2,...mare obtained. Since

T

[y<k>y<l>} [y<k>y<l>] —Gr <y<k>7y<l>)
From (11) the equality of the matrices
T T
[;\Xao,\X(I)} [;\Xao,\X(I)} _ [yaoy(l)} [y@ym} (13)

is obtained. Because the vectt{rx,(k),xm} and{y(k),y“)} are linearly independent the matricE?sx@/\x(')}

and [y“()y(')} are regular and have inverses. So there exist a regulanngatich that
[y<k>y<l>} —g [A (K ,\Xm} (14)

-1
satisfies. If the equalityld) Substitutes toX3) and multiply both sides ofi(3) by <[)\ x“%\xm} ) at left
1
firstly and by {)\ xK A x(')} at right secondly, then

T

=99

is obtained. this means thgis orthogonali.eg € O(2). From (4),
y(k) — /\gx(k)

and
y(l) =A gx(l)

are obtained. From this anil2)

A = ey Ax® 4 gy AxD

and
g(AxV) = aey™ + ayy (15)

(© 2017 BISKA Bilisim Technology


www.ntmsci.com

7

(_/
BISK A M incesuandO. Gursoy:S(2)— Equivalence conditions of control points and applicatoptanar...

for everyi =1,2,...,mare obtained. Fronil@) and (5).

¥ = Bay™ + Bsiy"”
Agx® = gy + gy

can be written fors = 1,2,...,m The equality of these vectoss® and Agx® depends on the equalities of
multiplesBsk = ask and B = ag. let us prove these equalities. Frof®)

<A x(k),/\x<5)> = ask<)\ x(k),)\x<k)> + ag <A x(k),/\x<')>

<Ax('),/\x<s>> = ask<)\x('),)\x<k>> +ag <Ax('),)\x(')>

and

<y<k>,y<s>> - Bsk<y(k),x(k) > + By <y<k>7y<l>>
(Y0.¥®) = Bs(y Y1) + B (Y.

can be wriiten. Solving these linear equations

Ax<k>,,\x<5>> )\x<k>,/\x(')>
AXDAXE ) (X ax0)
detGr (Ax®, AxM)

,\X<k>7,\x<k>> Ax<k>,,\x<5>>
AXD XM ) (AXDAX9) )

detGr (A, AxD)

Ask =

as| =

is obtained for everg=1,2,...m. Using (L1) Bsx = ask andBs = ag is obtained. So
2
{x<1),x<2), ...,x(m)} LS’:U {y<1),y(2),...,y<m)} is proved.

(b)Let x) £ 0 and yi) £ 0 for everyi = 1,2,...m and the rank of the matrice%x(l)x@...x(m)} and
{y“)y(z)...y(m)} are equal to 1 be given and
LS(2)
{x<1),x<2), ...,x(m)} o~ {y<1),y<2),...,y<m>} be supposed. In this case there exigt 2 0 andg € O(2) such
that yi) = Agxl) for every j = 1,2,...,m. since the rank of aboved matrices is 1, there exist onerlinea
independent vector in each syste{m“),x@),...,x(m)} and {y(l>,y(2>, ...,y(m)}. Let these linear independent
vectors be denoted® andy'® for anys e {1,...m}. So for everyi = 1,...,m
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X(i) — |ix(5) : y(') — my(s) (16)

can be written. So froml)

is obtained for every = 2,....m.

. (XD XD 1) y(i) , , .
Conversely let this equallt‘g(l) 'z(l)i = E))i” ;K“)i be given for every = 2,...,m. we will prove that

(3O xm )y ey

LS(2)
From theorem 3.% =~ y(9 and then there exist & > 0 andg € O(2) such thaty® = Agx'® then from
hyphothesis andl)
m
mj = Elj
(D) y(@) — —
is obtained wheré% = gﬂ)’iﬂ)i > 0. If the real number‘ln—ll}\ is denoted by, thenA > 0. So for every
j=1..m;

Yy = myyt® = ’I“_llh- (AgX®) =gy

{Xm’
is proved.
(c) Letx®) £ 0 andy() # 0 for everyi = 1,2,....m and the ranks of the matrice%“)x(z)...x(m)] and

can be written. So

X
n
>
3
—

o

12 &
—
<A
=
<
n
<
3
—

[y(l>y<2)...y(m)} be different from each other. firstly each rank of given neassimust be different from zero.
Otherwise it means all of the vectors in these systems are. Zéris mentioned above. Just let
rank{x“)x(z)...x(m)} =1 and rank[x(l>x(2>...x<m>} = 2 be given. In this case there exist the integers

i,j,se{1,2,...,m} such that the vectod’) is linearly independent in the syste{u“),x(Z), ...,x(m)} and these
vectorsy')), y(9 are linearly independent in the syste{ryl(l),y<2),...,y<m>}. So

) = g

Y = by + by

can be written for evernyk = 1,2,...,m. It is clear thata; = bj; = bss= 1 and bjs = bsj = 0. Let
LS(2)

{x(l>,x(2>, ...,x(m)} &~ {y(l>,y(2>, ...,y(m)} be supposed. In this case there exigt & 0 andg € O(2) such

thaty® = Agx® for everyk = 1,...m. Then it follows

v =g (akxm) — ay®
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for everyk = 1,..m. It means each vectorg?,y(? ... y(™ can be expressed by the vectd¥. This is a
LS(2)
contradiction and s<{x<1>,x<2>, ...,x<m>} # {y<1>,y<2>, ...,y<m>}.

Let rank[x(l)x(z)...xm} =2 and rank[x“)x(z)...x(m)} = 1 be given. In this case there exist the integers

i,j,s€{1,2,...,m} such that these vectox§),x\}) are linearly independent in the syste{m(1>,x(2>,...,x<m>}

and the vectoy'® is linearly independent in the syste{ly(”,y(a, ...,y(m)} be given. So,

Y — oy
- 1) (2 L2 1) e ;

can be written for everi = 1,...m. Let {x< ) x( ),...,x<m)} o {y< )y ),...,y<m)} be supposed. In this case

there exist & > 0 andg € O(2) such thay® = Agx for everyk = 1,...m. This statement can be written as

matrix form as

[y“)y(z) ...y(m)} =g [A XDAx@ A x(m)}

It follows
{/\X(D)\x(Z)...)\x(m)} =g’ [y<1)y(2>...y<m>}

It means for everk=1,....m
Ax(k) — gT (aky(s)) — ak)\ X(s)

can be written. And every vector /\x(l),)\x<2),...,/\x(m)} can be stated by the vectax® and it is a
contradiction. So the assumption is wrong. As a result af thi

{X<1>,X<2>, ...,x<m>} Lsé_f) {y<1>7y<2>7_,_,y<m>}

4 Application to planar Bezier curves

Bezier Curves are polynomial curves stated by control goiRecently the invariants of control points have had an
important role in the systems CAD and CAM. Especially Beaied B- spline curves and surfaces and NURBS modelling
based on control points belongs to these curves and surfaée&xtremely important to determine whether or not the
surface modellings have durable, precision, and appkcahtputs in the geometries in view of the reliability of the
imagings of the mechanism. Therefore it is necessary thaintvariant properties of modelling of mechanism is able
to be known, so that the realized modellings introduce derabd precision, and reliable results under transformatio
groups. In this sense, knowing of complete of invariants e£iBr and B-spline curves and surfaces which gives most
stable solutions within CAD system$4] is important.

4.1 Linear bezier curves
A linear Bezier curveX(t) with control pointshg, b; is defined by

X(t) = (1—t)bo -+ thy

wheret € [0,1][12] .

(© 2017 BISKA Bilisim Technology
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Fig. 1: LS(2)— equivalent linear Bezier curve§t) andY (t).

Theorem 9.Let X,Y be given two linear Bezier curves with control poirgsth and p, p1 in R? respectively. So,

(i) Ifanyh =(0,0) and any p = (0,0) fori, j = 0,1 then these curves are always(25—equivalent.
(i) Ifanyh = (0,0) and each p# (0,0) or each h# (0,0) and any p = (0,0) for i, j = 0,1 then these curves are
not L§2)—equivalent.

(i)  Ifevery b+ (0,0) and g # (0,0) for i, j = 0,1 then these Bezier curves are(2$—equivalent if and only if
) |
)

(bo,by) __ {(Po,P1) (by,by P1,p1)
Bobo) — Tho.po) 219 Tobo) = Tpospo)”

Proof. This theorem is a conclusion of Theorem 2. In first case thiesrafimatrice of control points of each Bezier curves
X andY are equal to 1. In second case the ranks of matrice of contintpof each Bezier curves andY are different
from each other. In third case the ranks of matrice of conoahts of each Bezier curve§andY are equal to 2.

4.2 Quadratic Bezier curves

A quadratic Bezier curv¥ (t) with control pointshg, by, b, is defined by
X(t) = (1—t)%bg+2(1 —t)tby +t?by

wheret € [0,1] [12] .
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- iesar
= 22

(0,0)

Fig. 2: LS(2)— equivalent quadratic Bezier curvist) andY (t).

Theorem 10.Let X,Y be given two quadratic Bezier curves with control pointdb b, and p, p1, p2 in R? respectively.
So,

(i) Ifanyh =(0,0)and p = (0,0) fori =0,1,2then these curves are [ —equivalentif and only if the condition
of third case of theorem 4.1 is satisfied excludingid p.
(i)  Ifanyh = (0,0) and each p# (0,0) or each b # (0,0) and any g = (0,0) for i, j = 0,1, 2 then these curves
are not L$2)—equivalent.
(i)  Ifevery b # (0,0) and p # (0,0) for i, j = 0,1,2 then these Bezier curves are(Rp—equivalent if and only if

(bo,by) _ (Po.p1)  (baby) _ (p1.p1)  (bob) _ (Po.P2)
(bo,bo) ™ (po.Po) * (bo,bo) ~ (Po,po)* (bo.bo) — (Po.po) *
(bbp) _ (p1.p2)  (P2.bo) _ (P2.p2)

(bo,bo) ~ (Po.Po)’ (bo,bo) " (po,Po) *

Proof. This theorem is also a conclusion of Theorem 3.2. Since tk@&B€urves are quadratic in this theorem, the ranks
of matrice of control points of each Bezier curvésandY are equal to 2.

4.3 Cubic Bezier curves

A Cubic Bezier CurveX(t) with control pointshg, by, by, bs is defined by
X(t) = (1—1)%bp+3(1—t)%tby + 3(1— t)t?, + t3bs

wheret € [0,1] [12] .

(© 2017 BISKA Bilisim Technology



NTMSCI 5, No. 3, 70-84 (2017) www.ntmsci.com BISKA 82

Fig. 3: LS(2)— equivalent cubic Bezier curve§t) andY (t).

Theorem 11. Let X,Y be given two cubic Bezier curves with control poingsbl, by, bz and mp, p1, p2, ps in R?
respectively. So,

(i) Ifany b =(0,0) and p = (0,0) for i, j = 0,1,2,3 then these curves are [J—equivalent if and only if the
condition of third case of theorem 11 is satisfied excludinaria p.
(i)  Ifanyh = (0,0) and each p+ (0,0) or each h# (0,0) and any p = (0,0) fori, j = 0,1,2,3 then these curves
are not L§2)—equivalent.
(i)  Ifevery b # (0,0) and p # (0,0) for i, j = 0,1, 2,3 then these Bezier curves are(R$—equivalent if and only
if
(bibj) _ (pi.pj)

(bo,bo)  {Po, Po)
is satisfied. where j =0,1,2,3and i< j.

Proof. This theorem is also a conclusion of Theorem 8. Since theeB&airves are cubic in this theorem, the ranks of
matrice of control points of each Bezier curvésindY are also equal to 2.

4.4 General Bezier curves

A general Bezier curv¥(t) of degreen with control pointsg, by, by, ..., by is defined by
n
X(t)=Y Bl'(t)b
2°
wheret € [0, 1] andB'(t) are Bernstein basis polynomials of degree n defined by
BM(t) = (T) (1—t)" 't

[13]

Theorem 12. Let X,Y be given two general Bezier curves of degree n with contedtp ky,by,by,...,bn and
Po, P1, P2, .-, Pn iN R? respectively. So,
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(i) Ifanyh =(0,0) and any p= (0,0) fori =0,1,2,...,n then these curves are (B—equivalent if and only if the
condition of third case of theorem 11 is satisfied excludinaria p.
(i) Ifany b = (0,0) and each p# (0,0) or each b # (0,0) and any p = (0,0) fori,j =0,1,2,...,n then these
curves are not L&)—equivalent.
(i)  Ifevery b # (0,0) and p # (0,0) fori,j =0,1,2,...,n then these Bezier curves are(Rp-equivalent if and
only if
(bibj) _ (pi.pj)

{bo,bo)  {po, Po)
is satisfied. where | =0,1,2,....nand i< |.

Proof. This theorem is also a conclusion of Theorem 3.2. The ranksatfice of control points of each Bezier curés
andY are also equal to 2.
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