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Abstract: We investigate a predator-prey model for egg-eating predators in which the prey population is assumed to have an age
structure. By the method of characteristics, this model reduces to a system of integral equations. Then a generalization of the Banach
fixed-point theorem is used to show, under relatively mild conditions, the existence of a unique, global, weak solution to the population
problem. Furthermore, this methodology allows us to generate a sequence of iterates, called the Picard iterates, that converges to
the solution. Also, we strengthen the assumptions of the existence-uniqueness theorem to establish the validity of thecorresponding
conservation law in integral form. Thus we prove a result which shows the coexistence of both predator and prey species over a long
time.
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1 Introduction

Population dynamics has traditionally been the dominant branch of mathematical biology. Population models play a
critical role in helping us to understand the dynamic processes involved, in making practical predictions, and thus in
better understanding the natural world.

The construction and investigation of models for the population dynamics of predator-prey interactions have remainedan
important area in theoretical ecology since the famous Lotka-Volterra equations. The mathematics used to study such
models often takes into account the structure of populations, provided that this structure influences the size of each
species in a major way. The application of physiologically structured models to describe the behavior of biological
systems has attracted the interest of many researchers and has a long standing tradition. The books by Charlesworth [1],
Metz and Diekmann [2], Cushing [3], and Murray [4] give a good survey as well as the wide spectrum of applicability of
such models.

Allowing for an age structure, predator-prey relationships are usually governed by partial differential equations ormixed
PDE-ODE systems, possibly with constant or distributed time delay. Sometimes predator-prey models are considered in
which only the predator population has an age structure thatsignificantly affects its fecundity. In this case the age
structure of the prey population is insignificant in comparison to that of the predators (see Cushing and Saleem [5]).
Other researchers study predator-prey interactions with predation dependent on age of prey. The dynamics of the
predator and prey populations are shown to depend substantially on what ages of prey are eaten by predators. In
particular, two cases are studied: where the predators eat all ages of prey indiscriminately, and where the predators eat
only eggs (or newborns, equivalently). For example, in Gurtin and Levine [6], the limiting dynamics of such
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predator-prey interactions are considered. Indiscriminate eating is found to lead to stable periodic oscillations innumbers
of predator and prey, such as occur in the Lotka-Volterra equations, while egg eating leads to oscillations which increase
rapidly in amplitude and result, ultimately, in the extinction of both predator and prey. Other results for corresponding
predator-prey models also concern the existence and stability properties of nonnegative equilibria solutions (see, e.g., [7,
8,9,10]).

Our research is devoted to a predator-prey model for egg-eating predators in which the prey population is assumed to
have an age structure. The goal is to obtain sufficient conditions for the existence of a unique, global, weak solution to
the relevant mathematical problem; this solution determines how the age structure of the prey population and the total
predator population evolve in time. We study the simple casewhen the prey dynamics is modeled by the
McKendrick-von Foerster equation. Such an equation is hyperbolic, and the fundamental idea associated with hyperbolic
equations is the notion of a characteristic, a curve in space-time along which signals propagate. So, using the method of
characteristics, which is highly effective for investigating hyperbolic continuous-time models (see, e.g., Logan [11],
Brauer and Castillo-Chavez [12]), the solution of the population problem can be expressed as a fixed point of some
appropriately chosen integral operator in a suitable metric space. Then a generalization of the Banach fixed-point
theorem is used to show, under relatively mild conditions, the existence of a unique, global solution to the problem.
Furthermore, this methodology allows us to generate a sequence of iterates, called the Picard iterates, that convergesto
the solution. Also, we strengthen the assumptions of the existence-uniqueness theorem to establish the validity of the
corresponding conservation law in integral form. Note that, under our assumptions, the predator and prey populations
will never vanish as time increases. Thus we prove a result which shows the coexistence of both predator and prey
species over a long time.

2 Population model with age distribution

Let u(x, t) be an unknown density of a population at timet with respect to an age variablex, so that the population at time
t between agesx1 andx2 is

∫ x2
x1

u(x, t)dx. Therefore, the total number of individuals at any timet is
∫ L

0 u(x, t)dx, whereL
is the maximum lifetime.

We assume that members leave the population through death, and that there is an age-dependent death ratem(x). This
means that over the time interval fromt1 to t2 the number

∫ t2
t1

∫ x2
x1

m(x)u(x, t)dx of individuals with ages betweenx1 and
x2 die. Thus we obtain the conservation law in integral form

∫ x2

x1

u(x, t2)dx−
∫ x2

x1

u(x, t1)dx=
∫ t2

t1
u(x1, t)dt−

∫ t2

t1
u(x2, t)dt−

∫ t2

t1

∫ x2

x1

m(x)u(x, t)dxdt (1)

for all (x1, t1),(x2, t2) ∈ Ω = {(x, t) : 0≤ x≤ L, 0≤ t <+∞}.

Assuming smoothness ofu, as well as continuity ofm, equation (1) may be transformed into the single PDE

∂
∂ t

u(x, t)+
∂
∂x

u(x, t) =−m(x)u(x, t) for (x, t) ∈ Ω . (2)

Thus we obtained theMcKendrickequation (1926), which is also known as thevon Foersterequation (1959), because
the same equation arises in cellular biology.

Next, we assume that the birth process is governed by a function b(x, t) called the birth rate. Thus the total number of
births (eggs) between timet1 and timet2 is

∫ t2
t1

∫ L
0 b(x, t)u(x, t)dxdt. Since this quantity must also be

∫ t2
t1

u(0, t)dt, we
obtain the renewal condition

u(0, t) =
∫ L

0
b(x, t)u(x, t)dx, for t ≥ 0. (3)
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In order to complete the model, we must specify an initial agedistribution

u(x,0) = u0(x), for 0≤ x≤ L. (4)

Then the full model consists of the PDE (2) and the two auxiliary conditions (3), (4) (see [4], [11], [12]).

It is easy to see that the characteristic curves for equation(2) are the straight linesx− t = const. Characteristics are the
fundamental concept in the analysis of hyperbolic problemsbecause PDEs simplify to ODEs along these curves. Thus
differentiating the solutionu along the characteristics yields

du(τ + x− t,τ)
dτ

=−m(τ + x− t)u(τ+ x− t,τ). (5)

This equation can be solved by separation of variables to get

u(τ + x− t,τ) = u(τ0+ x− t,τ0)exp

(

−
∫ τ

τ0

m(τ1+ x− t)dτ1

)

.

Make the change of variablesξ = τ1+ x− t to obtain

u(τ + x− t,τ) = u(τ0+ x− t,τ0)exp

(

−
∫ τ+x−t

τ0+x−t
m(ξ )dξ

)

. (6)

Denote π(x) := exp(−
∫ x

0 m(ξ )dξ ), which is the probability of survival from birth to agex. Then

π(x)π(x0)
−1 = exp

(

−
∫ x

x0
m(ξ )dξ

)

, for anyx0 < x, is the probability that an individual of agex0 will survive to agex.

We now assume that
∫ L

0 m(x)dx= +∞, while the functionx 7→ m(x) is locally integrable in[0,L). Thusπ(L) = 0 (the
probability to survive to the maximum possible ageL equals zero), and in the sequel, for simplicity of our investigation,
we put (by definition)π(x) = 0, and thereforeu(x, t) = 0, for all x ≥ L. Moreover, the product ofπ and any other
function is interpreted to be zero wheneverx≥ L (even if the latter function is not defined on this interval).

Takingτ0 = 0, τ = t, (i.e., considering the previous equation (6) on the characteristics that emanate from points(x− t,0)
on thex axis) and, similarly, takingτ0 = t − x, τ = t, (i.e., considering equation (6) on the characteristics that emanate
from points(0, t − x) on thet axis) give

u(x, t) = u(x− t,0)
π(x)

π(x− t)
, for 0≤ t ≤ x,

u(x, t) = u(0, t− x)π(x), for 0≤ x≤ t.

(7)

Definition 1. By a weak solution to the initial-boundary value problem(2), (3), (4) we mean a function(x, t) 7→ u(x, t)
continuous in[0,L]× [0,+∞) and satisfying the functional equations(7), along with conditions(3), (4).

We can easily show that if a weak solution to the initial-boundary value problem (2), (3), (4) is continuously differentiable,
then this solution is classical, that is, it makes sense to calculate its first derivatives and substitute them into equation (2).

3 Predator-prey model for egg-eating predators

We consider a population of prey with age densityu(x, t) at time t with respect to an age variablex. Assume that, in
the absence of predators, the prey population is modeled by the initial-boundary value problem (2), (3), (4). Now let
us introduce a predator population that consumes the eggs ofthe prey population. The total number of predators at any
time t is P(t), and we do not consider age structure in this population. It is interesting that egg-eating predators is one
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of the theories posed for the extinction of the dinosaurs. Since predators eat only eggs, the PDE (2) is unaffected. What
is affected is the number of offspring (eggs) produced. Thuswe no longer have the renewal condition (3), but we must
include a predation term that decreases the number of eggs. The simplest model is the Lotka-Volterra model, which
requires that the number of eggs eaten be proportional to theproduct of the number of eggs and the number of predators.
Therefore, taking into account that the functionu(0, t) must be nonnegative, we have

u(0, t) =

(

(1−κP(t))
∫ L

0
b(x, t)u(x, t)dx

)+

for t ≥ 0, (8)

whereκ is the predation rate, and(x)+ := max{x,0} for any realx.

Finally, we impose the Lotka-Volterra dynamics on the predator population given by

dP(t)
dt

=−µP(t)+βP(t)
∫ L

0
b(x, t)u(x, t)dx for t ≥ 0, (9)

whereµ is the per capita mortality rate. Hence, in the absence of eggs, predators die out. Initially, we take

P(0) = P0. (10)

In summary, the predator-prey model is given by the mixed PDE-ODE system (2), (9), the boundary condition (8), and
the initial conditions (4), (10) (see [11]).

We remark that if the predators consumed prey other than eggs, then a predation term would have to be included on the
right side of the dynamical equation (2). Note also that the ODE (9) is equivalent to the integral equation

P(t) = P(0)exp(−µt)+β
∫ t

0
P(τ)exp(−µ(t − τ))

(

∫ L

0
b(x,τ)u(x,τ)dx

)

dτ for t ≥ 0. (11)

Definition 2. By a weak solution of the predator-prey model we mean a pair offunctions(u,P), where(x, t) 7→ u(x, t) and
t 7→ P(t) are continuous in their respective domains[0,L]× [0,+∞) and[0,+∞), such that equations(7), (11), along with
conditions(4), (8), (10), are satisfied.

4 Reduction of the predator-prey model to a system of integral equations

Substitute conditions (4), (8), (10) into the corresponding equations (7), (11) to obtain

u(x, t) = u0(x− t)
π(x)

π(x− t)
, for 0≤ t ≤ x,

u(x, t) =

(

(1−κP(t− x))
∫ L

0
b(ξ , t − x)u(ξ , t− x)dξ

)+

π(x), for 0≤ x≤ t,

P(t) = P0exp(−µt)+β
∫ t

0
P(τ)exp(−µ(t − τ))

(

∫ L

0
b(x,τ)u(x,τ)dx

)

dτ, for t ≥ 0.

(12)

It is easy to show that a solution of system (12) also satisfies conditions (4), (8), (10). Then we have the following
proposition.

Proposition 1.Finding a solution of the predator-prey model is equivalentto solving the system of integral equations(12)
for the unknown functions u: [0,L]× [0,+∞)→R and P: [0,+∞)→ R.
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Let us denote byB(t) the number of births (eggs) in unit time after subtracting the number of eggs eaten by predators, that
is B(t) := u(0, t). Then, using this notation, rewrite system (12) in the equivalent form

u(x, t) = u0(x− t)
π(x)

π(x− t)
, for 0≤ t ≤ x,

u(x, t) = B(t − x)π(x), for 0≤ x≤ t,

B(t) =

(

(1−κP(t))
∫ L

0
b(x, t)u(x, t)dx

)+

, for t ≥ 0,

P(t) = P0exp(−µt)+β
∫ t

0
P(τ)exp(−µ(t − τ))

(

∫ L

0
b(x,τ)u(x,τ)dx

)

dτ, for t ≥ 0.

(13)

Using the first two relations in (13) and recalling our convention thatπ(x) = 0, and thereforeu(x, t) = 0, for all x≥ L, the
integral

∫ L
0 b(x, t)u(x, t)dx can be transformed as follows:

∫ +∞

0
b(x, t)u(x, t)dx=

∫ t

0
b(x, t)u(x, t)dx+

∫ +∞

t
b(x, t)u(x, t)dx

=

∫ t

0
b(x, t)B(t − x)π(x)dx+

∫ +∞

t
b(x, t)u0(x− t)

π(x)
π(x− t)

dx.

Denotingq(t) :=
∫+∞
t b(x, t)u0(x− t) π(x)

π(x−t) dx, rewrite system (13) in the equivalent form

u(x, t) = u0(x− t)
π(x)

π(x− t)
, for 0≤ t ≤ x,

u(x, t) = B(t − x)π(x), for 0≤ x≤ t,

B(t) =

(

(1−κP(t))

(

∫ t

0
b(x, t)B(t − x)π(x)dx+q(t)

))+

, for t ≥ 0,

P(t) = P0exp(−µt)+β
∫ t

0
P(τ)exp(−µ(t − τ))

(

∫ τ

0
b(x,τ)B(τ − x)π(x)dx+q(τ)

)

dτ, for t ≥ 0.

Clearly, the first two relations decouple from the system, and we can consider just the last two integral equations for the
total predator and egg populationsP(t) andB(t)

B(t) =

(

(1−κP(t))

(

∫ t

0
b(x, t)B(t − x)π(x)dx+q(t)

))+

, for t ≥ 0,

P(t) = P0exp(−µt)+β
∫ t

0
P(τ)exp(−µ(t − τ))

(

∫ τ

0
b(x,τ)B(τ − x)π(x)dx+q(τ)

)

dτ, for t ≥ 0.

(14)

Proposition 2.Suppose the compatibility condition

u0(0) =

(

(1−κP0)

∫ L

0
b(x,0)u0(x)dx

)+

(15)

holds; then finding a solution of the predator-prey model canbe reduced to solving the system of integral equations(14)
for the unknown functions B and P. More precisely,

• a weak solution(u,P) of the predator-prey model gives the continuous solution(B,P) of system(14), where the

function B= B(t) is explicitly determined by the formula B(t) =
(

(1−κP(t))
∫ L
0 b(x, t)u(x, t)dx

)+
for t ≥ 0 provided

the continuity of b (this condition on b can be slightly weakened);
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• conversely, a continuous solution(B,P) of system(14) explicitly determines the function u= u(x, t) from the relations

u(x, t) = u0(x− t)
π(x)

π(x− t)
, for 0≤ t ≤ x,

u(x, t) = B(t − x)π(x), for 0≤ x≤ t,

(16)

and thus we have the weak solution(u,P) of the predator-prey model, provided that the functions u0, π are continuous,
and condition(15) is satisfied.

The proof of proposition2 is trivial, so we only remark that the compatibility condition (15) is necessary to avoid a
discontinuity in the functionu= u(x, t) along the linex= t.

5 Existence-uniqueness theorem

We formulate an existence-uniqueness theorem for the predator-prey model.

Theorem 1.Suppose the following conditions hold.

(1) κ, µ , β , and P0 are nonnegative constants;
(2) the function x7→ m(x) is nonnegative, locally Lebesgue integrable in[0,L) such that

∫ L
0 m(x)dx= +∞ (then the

function x7→ π(x), defined byπ(x) = exp(−
∫ x

0 m(ξ )dξ ) for 0≤ x< L andπ(x) = 0 for L ≤ x<+∞, is continuous
in [0,+∞));

(3) the function x7→ u0(x) is nonnegative, continuous in[0,L];
(4) the function(x, t) 7→ b(x, t) is nonnegative, continuous in t for each fixed x and locally essentially bounded,

measurable in x for each fixed t onΩ (meaning that on every compact subset ofΩ there exists an essential upper
bound for b independent of t);

(5) the compatibility condition(15) holds.

Then there exists a unique, nonnegative, global, weak solution (u,P) of the predator-prey model.

Proof.The right sides of equations (14) can be regarded as a mappingM on the set of continuous vector functions(B,P).
That is, with each pair(B,P) of functions continuous in the interval[0,T] (T > 0) there is associated another pair of
functionsM (B,P) = (MB(B,P),MP(B,P)) defined, at each 0≤ t ≤ T, by

MB(B,P)(t) =

(

(1−κP(t))

(

∫ t

0
b(x, t)B(t − x)π(x)dx+q(t)

))+

,

MP(B,P)(t) = P0exp(−µt)+β
∫ t

0
P(τ)exp(−µ(t − τ))

(

∫ τ

0
b(x,τ)B(τ − x)π(x)dx+q(τ)

)

dτ.
(17)

Therefore, system (14) may be written in the form(B,P) = M (B,P). Thus solving the predator-prey model is reduced to
finding a fixed point of the mapping(B,P) 7→ M (B,P).

Consider the Banach spaceC([0,T];R2) consisting of all continuous two-dimensional vector functions on [0,T],
equipped with the uniform norm. LetB(T) be the closed subset of the spaceC([0,T];R2) that consists of all vector
functions(B,P) such that

• the functionB satisfies the inequality 0≤B(t)≤ k2exp(k1t) for all 0≤ t ≤T, wherek1 := supt∈[0,T ]esssupx∈[0,L] b(x, t)

(recall that, by assumption, there exists an essential upper bound forb independent oft) andk2 := k1
∫ L

0 u0(x)dx;

• the functionP satisfies the inequality 0≤ P(t)≤ P0exp
(

βk2k−1
1 (exp(k1t)−1)

)

for all 0≤ t ≤ T.
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We will treat the subsetB(T) as a metric space using the metric induced by the uniform norm, that is, defining the
distance between any vector functions(B1,P1) and(B2,P2) by

‖(B1
,P1)− (B2

,P2)‖∞,T := max
t∈[0,T]

|B1(t)−B2(t)|+ max
t∈[0,T]

|P1(t)−P2(t)|.

Note that every closed subset of a complete metric space is complete.

Thus, to prove the existence-uniqueness result for the predator-prey model, let us show that the mappingM has
precisely one fixed point in the metric spaceB(T). To this end, by a generalization of the Banach fixed-point theorem,
we must show that this space is invariant under the mappingM , and some its iterateM n is a contraction on the space
B(T) with respect to the corresponding norm.

It is easily seen that the functionsMB(B,P) andMP(B,P) are nonnegative, continuous in[0,T] if so are the functionsB
andP; that is,M (B,P) ∈C([0,T];R2

+) whenever(B,P) ∈C([0,T];R2
+). Further, for any pair(B,P) in B(T), we obtain

the estimates

MB(B,P)(t)≤
∫ t

0
b(x, t)B(t − x)π(x)dx+q(t)≤ k1

∫ t

0
B(t − x)dx+ k2

≤ k1k2

∫ t

0
exp(k1(t − x))dx+ k2 = k2(exp(k1t)−1)+ k2 = k2exp(k1t) for 0≤ t ≤ T,

MP(B,P)(t)≤ P0+β
∫ t

0
P(τ)

(

k1

∫ τ

0
B(τ − x)dx+ k2

)

dτ

≤ P0+βP0

∫ t

0
exp

(

βk2k−1
1 (exp(k1τ)−1)

)

(

k1k2

∫ τ

0
exp(k1(τ − x))dx+ k2

)

dτ

= P0+βP0

∫ t

0
exp

(

βk2k−1
1 (exp(k1τ)−1)

)

k2exp(k1τ)dτ = P0+P0

∫ β k2k−1
1 (exp(k1t)−1)

0
expτ1dτ1

= P0+P0

(

exp
(

βk2k−1
1 (exp(k1t)−1)

)

−1
)

= P0exp
(

βk2k−1
1 (exp(k1t)−1)

)

for 0≤ t ≤ T.

Thus, we have proved that the spaceB(T) is invariant under the mappingM , that is,M (B,P) ∈ B(T) whenever
(B,P) ∈ B(T). Now let us show that there is a positive integern such thatM n (n-th iterate ofM ) is a contraction
mapping. Taking(B1,P1), (B2,P2) to be in the spaceB(T), we obtain the following estimates:

|MB(B
1
,P1)(t)−MB(B

2
,P2)(t)| ≤ (1+κP1(t))

∫ t

0
b(x, t)|B1(t − x)−B2(t − x)|π(x)dx

+κ|P1(t)−P2(t)|

(

∫ t

0
b(x, t)B2(t − x)π(x)dx+q(t)

)

≤ (1+κP1(t))k1

∫ t

0
|B1(t − x)−B2(t − x)|dx+κ|P1(t)−P2(t)|

(

k1

∫ t

0
B2(t − x)dx+ k2

)

≤
(

1+κP0exp
(

βk2k−1
1 (exp(k1t)−1)

))

k1

∫ t

0
|B1(t − x)−B2(t − x)|dx+κk2exp(k1t)|P

1(t)−P2(t)|

≤C1

∫ t

0
|B1(τ)−B2(τ)|dτ +C2|P

1(t)−P2(t)| for 0≤ t ≤ T,
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whereC1 :=
(

1+κP0exp
(

βk2k−1
1 (exp(k1T)−1)

))

k1, C2 := κk2exp(k1T); and also

|MP(B
1
,P1)(t)−MP(B

2
,P2)(t)| ≤ β

∫ t

0
P1(τ)exp(−µ(t − τ))

(

∫ τ

0
b(x,τ)|B1(τ − x)−B2(τ − x)|π(x)dx

)

dτ

+β
∫ t

0
|P1(τ)−P2(τ)|exp(−µ(t − τ))

(

∫ τ

0
b(x,τ)B2(τ − x)π(x)dx+q(τ)

)

dτ

≤ β
∫ t

0
P1(τ)

(

k1

∫ τ

0
|B1(τ − x)−B2(τ − x)|dx

)

dτ +β
∫ t

0
|P1(τ)−P2(τ)|

(

k1

∫ τ

0
B2(τ − x)dx+ k2

)

dτ

≤ βk1

∫ t

0
P0exp

(

βk2k−1
1 (exp(k1τ)−1)

)

(

∫ τ

0
|B1(τ − x)−B2(τ − x)|dx

)

dτ +βk2

∫ t

0
exp(k1τ)|P1(τ)−P2(τ)|dτ

≤C3

∫ t

0
|B1(τ)−B2(τ)|dτ +C4

∫ t

0
|P1(τ)−P2(τ)|dτ for 0≤ t ≤ T,

whereC3 := βk1P0
∫ T

0 exp
(

βk2k−1
1 (exp(k1τ)−1)

)

dτ, C4 := βk2exp(k1T).

From the last estimates it follows that

|M 2
B(B

1
,P1)(t)−M

2
B(B

2
,P2)(t)| ≤C1

∫ t

0
|MB(B

1
,P1)(τ)−MB(B

2
,P2)(τ)|dτ

+C2|MP(B
1
,P1)(t)−MP(B

2
,P2)(t)| ≤C1

∫ t

0

(

C1

∫ τ

0
|B1(τ1)−B2(τ1)|dτ1+C2|P

1(τ)−P2(τ)|
)

dτ

+C2

(

C3

∫ t

0
|B1(τ)−B2(τ)|dτ +C4

∫ t

0
|P1(τ)−P2(τ)|dτ

)

≤C5

(

∫ t

0
|B1(τ)−B2(τ)|dτ +

∫ t

0
|P1(τ)−P2(τ)|dτ

)

for 0≤ t ≤ T,

and, in the same way,

|M 2
P(B

1
,P1)(t)−M

2
P(B

2
,P2)(t)| ≤C5

(

∫ t

0
|B1(τ)−B2(τ)|dτ +

∫ t

0
|P1(τ)−P2(τ)|dτ

)

for 0≤ t ≤ T,

where the constantC5 are easily determined. From the last two inequalities we derive the following one:

‖M 2(B1
,P1)−M

2(B2
,P2)‖∞,t ≤C5

∫ t

0
‖(B1

,P1)− (B2
,P2)‖∞,τ dτ for all 0≤ t ≤ T,

and the constantC5 does not depend on the choice of(B1,P1) and(B2,P2) in the spaceB(T).

Using this estimate, we obtain

‖M 4(B1
,P1)−M

4(B2
,P2)‖∞,t ≤C5

∫ t

0
‖M 2(B1

,P1)−M
2(B2

,P2)‖∞,τ dτ

≤C2
5

∫ t

0

∫ τ

0
‖(B1

,P1)− (B2
,P2)‖∞,τ1 dτ1dτ ≤C2

5
t2

2
‖(B1

,P1)− (B2
,P2)‖∞,t ;

and therefore,

‖M 6(B1
,P1)−M

6(B2
,P2)‖∞,t ≤C5

∫ t

0
‖M 4(B1

,P1)−M
4(B2

,P2)‖∞,τ dτ

≤C3
5

∫ t

0

τ2

2
‖(B1

,P1)− (B2
,P2)‖∞,τ dτ ≤C3

5
t3

6
‖(B1

,P1)− (B2
,P2)‖∞,t ;
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and so on.

Mathematical induction can be used to prove that the following estimate holds for all positive integersn and allt ∈ [0,T]:

‖M 2n(B1
,P1)−M

2n(B2
,P2)‖∞,t ≤Cn

5
tn

n!
‖(B1

,P1)− (B2
,P2)‖∞,t .

Thus, in general, the mappingM itself is not a contraction on the spaceB(T), but some its iterateM 2n is a contraction,
provided thatn is chosen sufficiently large to satisfy the inequality(C5T)n

n! < 1.

Consequently, using a generalization of the Banach fixed-point theorem, the mappingM has precisely one fixed point in
the metric spaceB(T) for all positiveT. This fixed point is a solution of system (14) in the interval[0,T]. Taking into
account that the valueT may be chosen arbitrarily large, we may extend this solutionto any finite timeT1, whereT1 > T,
and therefore we obtain a global existence result, guaranteeing the existence of a unique solution(B,P) of system (14)
for all t in [0,+∞), whereB and P are nonnegative and continuous. Then applying proposition2 gives the unique,
nonnegative, global, weak solution(u,P) of the predator-prey model. Thus the theorem is proved.

6 Validity of the conservation law in integral form

We remark that the PDE (2) arises from the conservation law in integral form (1), and the integral form of this law holds
true even though the functionsu = u(x, t) andm= m(x) may not meet the requirements of smoothness and continuity,
respectively, imposed by the PDE. Now we strengthen the assumptions of the previous theorem to establish the validity
of the conservation law (1) for a weak solution of the predator-prey model.

Theorem 2.In addition to the assumptions of theorem1, suppose the following conditions hold:

(1) the function x7→ π(x) is Lipschitz in[0,L], or equivalently, x7→ π ′(x) is essentially bounded in(0,L) (recall that
π ′(x) =−exp(−

∫ x
0 m(ξ )dξ )m(x) for 0≤ x< L);

(2) the function x7→ u0(x) is Lipschitz in[0,L];
(3) the function(x, t) 7→ b(x, t) is locally Lipschitz in both variables onΩ .

Then the weak solution, whose existence is guaranteed by theorem1, also satisfies the integral form of the conservation
law (1).

We remark that any function with continuous first derivatives is locally Lipschitz. Thus the property of being locally
Lipschitz is stronger than continuity, yet weaker than continuous differentiability.

Proof. First show that, under the conditions stated in theorem2, a weak solution of the predator-prey model is locally
Lipschitz inΩ . Indeed, making the change of variables, we rewrite relations (17) for the mappingM in the form

MB(B,P)(t) =

(

(1−κP(t))

(

∫ t

0
b(t− ξ , t)B(ξ )π(t− ξ )dξ +q(t)

))+

,

MP(B,P)(t) = P0exp(−µt)+β
∫ t

0
P(τ)exp(−µ(t − τ))

(

∫ τ

0
b(τ − ξ ,τ)B(ξ )π(τ − ξ )dξ +q(τ)

)

dτ.

From these representations it is easily seen that the function MB(B,P) is Lipschitz in[0,T] if B is continuous andP is
Lipschitz, but a sufficient condition forMP(B,P) to be Lipschitz in[0,T] is that the functionsB and P be both
continuous, provided thatπ , u0, andb satisfy Lipschitz conditions of theorem2. Therefore, ifB andP are required to be
both continuous, then the functionsMB(M (B,P)) andMP(M (B,P)) are both Lipschitz in the interval[0,T]. It follows
immediately that a fixed point of the mapping(B,P) 7→ M (B,P) in C([0,T];R2) satisfies a Lipschitz condition in[0,T]
for all T > 0, and therefore the solution of system (14) defined for allt in [0,+∞) is locally Lipschitz in this interval.
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Then, applying proposition2, we deduce that a weak solution(u,P) of the predator-prey model is locally Lipschitz inΩ .

Further, prove the validity of the conservation law (1) for a weak solution of our model. LetΩ(T) := [0,L]× [0,T]. To
prove this fact, it suffices to show that if Lipschitz functionsu : Ω(T)→R andP : [0,T]→R satisfy equations (12), and
thereforeu satisfies equations (7), then the integral equation (1) holds for all(x1, t1),(x2, t2) ∈ Ω(T). But equations (7)
are equivalent to the single equation (6). Therefore it must be shown that a Lipschitz functionu : Ω(T) → R satisfying
(6) also satisfies the integral equation (1).

We remark that the subsequent reasoning is based on the fact that a function belongs to the Sobolev spaceW1,∞(Ω(T)) if
and only if it admits a Lipschitz continuous representative. In particular, this representative is differentiable a.e. in Ω(T)
and its derivatives are essentially bounded as elements ofL∞(Ω(T)) (see, e.g., [13]).

Define the setΘ(t,T) := {(x,τ) : x∈ [0,L], (τ + x− t,τ) ∈ Ω(T)}, which depends on the valueT > 0 and the choice of
t ∈ [0,T]. For each fixedT > 0 and t ∈ [0,T], supposeΨ(t,T) : Θ(t,T) → Ω(T) is a map such that
(x,τ) 7→ (τ + x− t,τ). Sinceu belongs to the Sobolev spaceW1,∞(Ω(T)) and the mapΨ is invertible, withΨ andΨ−1

Lipschitz functions, we conclude thatu◦Ψ ∈W1,∞(Θ(t,T)), and, by the chain rule, we have

du(τ + x− t,τ)
dτ

=
∂
∂ t

u(τ + x− t,τ)+
∂
∂x

u(τ + x− t,τ) for a.e. (x,τ) ∈Θ(t,T) (18)

(see [13]). Therefore we may differentiate (6) with respect toτ to obtain (5), and then, using (18), we derive

∂
∂ t

u(τ + x− t,τ)+
∂
∂x

u(τ + x− t,τ) =−m(τ + x− t)u(τ+ x− t,τ) for a.e. (x,τ) ∈Θ(t,T),

with any fixedT > 0 andt ∈ [0,T]; or equivalently, we have

∂
∂ t

u(x, t)+
∂
∂x

u(x, t) =−m(x)u(x, t) for a.e. (x, t) ∈ Ω . (19)

Further, becauseu(·, t) ∈W1,∞(0,L) for all t ∈ [0,T], it follows that the fundamental theorem of calculus is valid; that is,
for all (x1, t),(x2, t) ∈ Ω(T),

u(x2, t)−u(x1, t) =
∫ x2

x1

∂
∂x

u(x, t)dx. (20)

Similarly, we have

u(x, t2)−u(x, t1) =
∫ t2

t1

∂
∂ t

u(x, t)dt (21)

for all (x, t1),(x, t2) ∈ Ω(T).

We now integrate equation (19) overx1 ≤ x≤ x2, t1 ≤ t ≤ t2 to obtain

∫ x2

x1

∫ t2

t1

∂
∂ t

u(x, t)dt dx+
∫ t2

t1

∫ x2

x1

∂
∂x

u(x, t)dxdt=−

∫ t2

t1

∫ x2

x1

m(x)u(x, t)dxdt.

Using relations (20), (21), we can easily rewrite the previous equation as the conservation law (1).

7 Approximation of the solution

The Banach fixed-point theorem, as well as its generalization used above, provide an approximation method for solving
the system of integral equations (14) and therefore finding a solution of the predator-prey model.
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Precisely, for any nonnegative, continuous functionsB0 andP0 that meet the requirements of the spaceB(T) (the pair
(B0,P0) is taken to be an initial approximation), the sequence of iterates (B0,P0),M (B0,P0),M (M (B0,P0)), . . .

converges in the uniform norm topology to the fixed point of the mappingM . Thus we may define the iteration scheme
for all t ≥ 0 and nonnegative integersn:

Bn+1(t) =

(

(1−κPn(t))

(

∫ t

0
b(x, t)Bn(t − x)π(x)dx+q(t)

))+

,

Pn+1(t) = P0exp(−µt)+β
∫ t

0
Pn(τ)exp(−µ(t− τ))

(

∫ τ

0
b(x,τ)Bn(τ − x)π(x)dx+q(τ)

)

dτ.

Proceeding in this manner, we generate the sequence(B1,P1),(B2,P2),(B3,P3), . . . of iterates, called the Picard iterates,
that, under conditions of theorem1, converges to the solution of system (14) in the‖ · ‖∞,T norm for allT > 0. Denoting
this solution by(B∗,P∗), we have‖(Bn,Pn)− (B∗,P∗)‖∞,T approaches zero asn → +∞, and thereforeBn andPn both
converge uniformly to the limiting functionsB∗ andP∗, respectively, on each interval[0,T] for all T > 0.

The sequence(Bn,Pn) constructed above gives the sequence of approximate solutions (un,Pn) of the predator-prey
model, where the functionsun is determined explicitly by relations (16), whereu andB must be replaced byun andBn,
respectively; that is

un(x, t) = u0(x− t)
π(x)

π(x− t)
, for 0≤ t ≤ x,

un(x, t) = Bn(t − x)π(x), for 0≤ x≤ t.

Let (u∗,P∗) denote the exact weak solution of the predator-prey model. By the convergence of iterates, we conclude that
un converges uniformly to the limiting functionu∗ on each setΩ(T) for all T > 0.

To summarize, we have constructed the sequence of approximate solutions(un,Pn) of the predator-prey model, and this
sequence tends to the exact weak solution(u∗,P∗) in the local uniform norm topology.
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