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Abstract: In this paper we introduce a new concept of ad-bimorphism on a vector lattice and prove that, for vector latticesA andB,
the Arens triadjointT∗∗∗ : (A′)′n× (A′)′n → (B′)′n of ad-bimorphismT : A×A→ B is ad-bimorphism. This generalizes the concept of
d-algebra and some results on the order bidual ofd-algebras.
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1 Introduction and preliminaries

The Arens multiplications introduced in [2] on the bidual of various lattice ordered (or Riesz) algebras have been well

documented (see, e.g., [3]). The more general question about Arens triadjoints of bilinear maps on products of vector

lattices has recently aroused considerable interest (see,e.g., [7]). In Theorem 2.1 in [7] several properties of the Arens

triadjoint maps are collected. For example, the adjoint of abilinear map of order bounded variation is of order bounded

variation and the triadjoint of such a map is separately order continuous. In this direction, as the extensions of the notions

of classes off -algebras[4] (a lattice ordered algebraA with the property thata∧b= 0 impliesac∧b= ca∧b= 0 for

all c ∈ A+)andalmost f -algebras[5] (a lattice ordered algebraA for which a∧b = 0 in A impliesab= 0), we studied

the Arens triadjoints of some classes of bilinear maps on vector lattices (or Riesz spaces); mainly, bi-orthomorphismsand

orthosymmetric bilinear maps (see [16]):

Definition 1. Let A andB be vector lattices. A bilinear mapT : A×A→ B is said to be

(1) orthosymmetricif x∧y= 0 impliesT(x,y) = 0 for all x,y∈ A (first appeared in a paper by G. Buskes and A. van Rooij

in [10] in 2000).

(2) a bi-orthomorphismif it is a separately order bounded bilinear map such thatx∧y= 0 in A impliesT(z,x)∧y= 0 for

all z∈ A+, whenA= B (first appears a paper by G. Buskes, R. Page Jr and R. Yilmaz in [11] in 2009).

The class of orthosymmetric bilinear maps was introduced in[10] by G. Buskes and A. van Rooij. Subsequent

developments have been made as a result of contributions by the same authors [9], G. Buskes and A. G. Kusraev [8], and

M. A. Toumi [14]. In [14] it is proved that ifA,B are vector lattices,(A′)′n,(B
′)′n are their respective order continuous

biduals andT : A×A→ B is a positive orthosymmetric bilinear map, then the triadjoint T∗∗∗ : (A′)′n× (A′)′n → (B′)′n of T

is a positive orthosymmetric bilinear map by the technique used in [3]. In [16] we extended this result to the whole

A′′×A′′; that is, ifA andB are Archimedean vector lattices,A′′ andB′′ are the order biduals ofA andB respectively, then

T∗∗∗ : A′′×A′′ → B′′ is a positive orthosymmetric bilinear map wheneverT : A×A → B is so. Moreover we obtained

similar results for the class of the Arens triadjoint of bi-orthomorphisms whenA = B. So, we proved that all the results

on the order biduals off -algebras and almostf -algebras in the paper [3] could be reformulated and obtained the

following results:
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Theorem 1.Let A and B Archimedean vector lattices. Then the following are satisfied.

(i) The Arens triadjoint T∗∗∗ : A′′ × A′′ → B′′ of a positive orthosymmetric bilinear map T: A× A → B is positive

orthosymmetric.

(ii) The Arens triadjoint T∗∗∗ : A′′×A′′ → A′′ of a bi-orthomorphism T: A×A→ A is a bi-orthomorphism.

R. Yilmaz and K. Rowlands in [15] in 2006 were the first to study bi-orthomorphisms what they called

quasi-orthomorphisms. The notion of bi-orthomorphism, asgiven here, first appears in a paper by G. Buskes, R. Page Jr

and R. Yilmaz in [11] in 2009, where it is proved that, under the certain conditions, the space of bi-orthomorphisms

forms anf -algebra and we ask the question when exactly it is in generalan f -algebra. Very recently K. Boulabiar and W.

Brahmi in [6] have given a complete answer to this question, proving thatthe non-trivial space of bi-orthomorphisms is

equipped with a structure off -algebra.

In this paper, for the sake of completion of our paper [16], we introduce a new concept of ad-bimorphism and prove that

if A,B are vector lattices and a bilinear mapT : A × A → B is a d-bimorphism, then so is the bilinear map

T∗∗∗ : (A′)′n × (A′)′n → (B′)′n. This also extends the notion of ad-algebra [12] (a lattice ordered algebraA such that

a∧b = 0 in A implies ac∧bc= ca∧ cb= 0 for all c ∈ A+) and generalizes results on the continuous order bidual of

d-algebras given in [3].

From here on, letA,B, andC be Archimedean vector lattices andA′,B′,C′ be their respective duals. A bilinear map

T : A×B→ C can be extended in a natural way to the bilinear mapT∗∗∗ : A′′×B′′ → C′′ constructed in the following

stages:
T∗ : C′×A→ B′,

T∗∗ : B′′×C′ → A′,

T∗∗∗ : A′′×B′′ →C′′,

T∗( f ,x)(y) = f (T(x,y))

T∗∗(G, f )(x) = G(T∗( f ,x))

T∗∗∗(F,G)( f ) = F(T∗∗(G, f ))

for all x ∈ A,y∈ B, f ∈ C′,F ∈ A′′,G ∈ B′′ (so-called thefirst Arens adjointof T). Another extension of a bilinear map

T : A×B→C is the map∗∗∗T : A′′×B′′ →C′′ constructed in the following stages:

∗T : B×C′ → A′,
∗∗T : C′×A′′ → B′,
∗∗∗T : A′′×B′′ →C′′,

∗T(y, f )(x) = f (T(x,y))
∗∗T( f ,F)(y) = F(∗T(y, f ))
∗∗∗T(F,G)( f ) = G(∗∗T( f ,F))

for all x∈ A,y∈ B, f ∈C′,F ∈ A′′,G∈ B′′ (so-called thesecond Arens adjointof T) [2].

In this work we shall concentrate on the first Arens adjoint; that is, we prove that the triadjoint

T∗∗∗ : (A′)′n× (A′)′n → (B′)′n is ad-bimorphism wheneverT : A×A→ B is so. Similar results hold for the second. For the

elementary theory of vector lattices and terminology not explained here we refer to [1,13,17].

2 The Arens triadjoint of a d-bimorphism

In this section we define the notion of ad-bimorphism on a vector lattice and prove that the extensionT∗∗∗ of a d-

bimorphismT : A×A→ B is again ad-bimorphism. We first recall some relevant notions. Thecanonical mapping a7→ â

of a vector laticeA into its order bidualA′′ is defined bŷa( f ) = f (a) for all f ∈ A′. For eacha∈ A, â defines an order

continuous algebraic lattice homomorphism onA′ and the canonical imagêA of A is a subalgebra of(A′)′c. Moreover the

band

IÂ = {F ∈ (A′)′c : |F| ≤ x̂ for somex∈ A+}
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generated bŷA is order dense in(A′)′c; that is, for eachF ∈ (A′)′c, there exists an upwards directed net{Gλ : λ ∈ Λ} in IÂ
such that 0< Gλ ↑ F .

A bilinear operatorT : A×B→C is said to beorder boundedif for all (x,y) ∈ A+×B+ we have

{T(a,b) : 0≤ a≤ y,0≤ b≤ y}

is order bounded.T is positiveif for all x∈ A+ andy∈ B+ we haveT(x,y) ∈C+. Clearly every positive bilinear map is

order bounded. Moreover ifT is positive, then so isT∗.

Definition 2. Let A andB be vector lattices. A bilinear mapT : A×A→ B is said to be ad-bimorphismif x∧y= 0 in A

impliesT(z,x)∧T(z,y) = 0 for all z∈ A+.

The following result is obvious from the definitions.

Theorem 2.Every bi-orthomorphism is boht orthosymmetric and a d-bimorphism.

We are in a position to prove the main result of this paper.

Theorem 3.Let A,B be vector lattices and T: A×A→B be a d-bimorphism. Then the bilinear map T∗∗∗ : (A′)′n×(A′)′n →

(B′)′n is a d-bimorphism.

Proof. Let A,B be vector lattices andT : A×A→ B be ad-bimorphism. We have to show thatT∗∗∗ is ad-bimorphism.

The proof of this is in two steps, as follows.

Step 1.We first show that ifx∈ A+ and 0≤ F,G,H ∈ (A′)′n satisfyF,G,H ≤ x̂ andG∧H = 0, then

T∗∗∗(F,H)∧T∗∗∗(F,G) = 0,

which is the main step of the proof.

Let 0≤ f ∈ B′ andx∈ A+. Then 0≤ T∗( f ,x) ∈ A′, and so, by Corollary 1.2 of [3], there existg,h∈ A′ with g∧h= 0,

andG(g) = 0= H(h) such that

T∗( f ,x) = g+h.

By the Riesz-Kontorovič Theorem ([1, Theorem 1.13]),

inf{g(y)+h(z) : x= y+ z, y,z∈ A+}= (g∧h)(x) = 0,

which implies that, forε > 0, there existy,z∈ A+ such that

x= y+ z, g(y)<
ε
2

and h(z)<
ε
2
.

We now define the linear functionalsG1 andH1 onA′ by

G1 = G∧ ̂(y− y∧z) and H1 = H ∧ ̂(z− y∧z).

c© 2017 BISKA Bilisim Technology

www.ntmsci.com


171 R. Yilmaz: A note on bilinear maps on vector lattices

Clearly, 0≤ G1,H1 ∈ (A′)′c and the following inequalities hold.

0≤ H −H1 = (H − (z− y∧z))+ ≤ (x̂− ̂(z− y∧z))+

= ( ̂y+ z− (z− y∧z))+ = ( ̂y+ y∧z)+ ≤ 2ŷ, (1)

and similarly

0≤ G−G1 ≤ 2̂z. (2)

SinceT∗∗∗ is ad-bimorphism (and so positive) andT∗∗∗(â, b̂) = T̂(a,b) for all a,b∈ A, it follows that

0≤ T∗∗∗(F,G1)∧T∗∗∗(F,H1)

≤ T∗∗∗(x̂, ̂y− y∧z)∧T∗∗∗(x̂, ̂z− y∧z) = 0;

i.e.,T∗∗∗(F,G1)∧T∗∗∗(F,H1) = 0. (3)

We next consider the elements

0≤ T∗∗∗(F,G−G1),T
∗∗∗(F,H −H1)

of (A′)′n. Then, by the positivity ofT∗∗∗ and (1),

T∗∗∗(F,H −H1)( f ) ≤ T∗∗∗(x̂,H −H1)( f ) = x̂(T∗∗(H −H1, f ))

= T∗∗(H −H1, f )(x) = (H −H1)(T
∗( f ,x))

= (H −H1)(g+h) = (H −H1)(g)+ (H−H1)(h)

≤ (H −H1)(g)+ (H)(h)≤ 2ŷ(g)+0= 2g(y). (4)

Similarly, by (2),

T∗∗∗(F,G−G1)( f )≤ 2h(z). (5)

Hence, using the fact that(a+b)∧c≤ a∧c+b∧c in ℓ-spaces and (3), we find

T∗∗∗(F,G)∧T∗∗∗(F,H) = T∗∗∗(F,G−G1+G1)∧T∗∗∗(F,H −H1+H1)

= (T∗∗∗(F,G−G1)+T∗∗∗(F,G1))∧ (T∗∗∗(F,H −H1)+T∗∗∗(F,H1))

≤ (T∗∗∗(F,G−G1)∧ (T∗∗∗(F,H −H1)+T∗∗∗(F,H1)))

+ (T∗∗∗(F,G1)∧ (T∗∗∗(F,H −H1)+T∗∗∗(F,H1)))

≤ T∗∗∗(F,G−G1)+ (T∗∗∗(F,G1)∧ (T∗∗∗(F,H −H1)+T∗∗∗(F,H1)))

≤ T∗∗∗(F,G−G1)+ (T∗∗∗(F,G1)∧T∗∗∗(F,H −H1))+ (T∗∗∗(F,G1)∧T∗∗∗(F,H1))

≤ T∗∗∗(F,G−G1)+T∗∗∗(F,H −H1))+0.

Therefore, by (4) and (5),

0≤ (T∗∗∗(F,G)∧T∗∗∗(F,H))( f ) ≤ (T∗∗∗(F,G−G1)+T∗∗∗(F,H −H1))( f )

≤ 2g(y)+2h(z)

< 2
ε
2
= ε.
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Since this holds for an arbitraryε > 0, we have

(T∗∗∗(F,G)∧T∗∗∗(F,H))( f ) = 0

for all 0≤ f ∈ B′. It now follows that for all f ∈ B′

(T∗∗∗(F,G)∧T∗∗∗(F,H))( f ) = (T∗∗∗(F,G)∧T∗∗∗(F,H))( f+)− (T∗∗∗(F,G)∧T∗∗∗(F,H))( f−)

= 0−0= 0,

and soT∗∗∗(F,G)∧T∗∗∗(F,H) = 0.

Step 2.So far, we have proved that the restriction mapT∗∗∗|IÂ×IÂ
is ad-bimorphism wheneverT : A×A→ B is so. We

now extend the result to the whole(A′)′n × (A′)′n. To do this, let 0≤ F,G,H ∈ (A′)′n such thatG∧H = 0. We have to

show that(T∗∗∗(F,G)∧T∗∗∗(F,H))( f ) = 0 for all 0≤ f ∈ B′.

Since the bandIÂ is order dense in(A′)′n, there existGα ,Hβ ∈ IÂ such that 0≤ Gα ↑ G and 0≤ Hβ ↑ H with

0 ≤ Gα ≤ x̂α and 0≤ Hβ ≤ ŷβ for somexα ,yβ ∈ A+. It follows from G∧ H = 0 that Gα ∧ Hβ = 0 for all α,β .

Furthermore, 0≤ Gα ,Hβ ≤ x̂α + yβ . Hence, by above, we see that

T∗∗∗(F,Gα)∧T∗∗∗(F,Hβ ) = 0 (6)

for all α andβ . Now let 0≤ f ∈ B′. Since 0≤ Gα ↑ G, we have

0≤ Gα(T
∗∗( f ,x)) ↑ G(T∗∗( f ,x));

i.e., 0≤ T∗∗∗(Gα , f )(x) ↑ T∗∗∗(G, f )(x),

for all 0≤ x∈ A. Hence

0≤ T∗∗(Gα , f ) ↑ T∗∗(G, f ),

and so, by the order continuity ofF ,

0≤ F(T∗∗(Gα , f )) ↑ F(T∗∗(G, f ));

i.e., 0≤ T∗∗∗(F,Gα)( f ) ↑ T∗∗∗(F,G)( f )

for all 0≤ f ∈ B′. Thus

0≤ T∗∗∗(F,Gα) ↑ T∗∗∗(F,G). (7)

Similarly, it follows from 0≤ Hβ ↑ H that

0≤ Hβ (T
∗∗( f ,x)) ↑ H(T∗∗( f ,x));

i.e., 0≤ T∗∗(Hβ , f )(x) ↑ T∗∗(H, f )(x)

for all 0≤ x∈ A. This shows that

0≤ T∗∗(Hβ , f ) ↑ T∗∗(H, f ).
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Hence, by the order continuity ofF again,

0≤ F(T∗∗(Hβ , f )) ↑ F(T∗∗(H, f ));

i.e., 0≤ T∗∗∗(F,Hβ )( f ) ↑ T∗∗∗(F,H)( f )

for all 0≤ f ∈ B′. Therefore

0≤ T∗∗∗(F,Hβ ) ↑ T∗∗∗(F,H). (8)

Now it follows from (7) and (8) that

0≤ T∗∗∗(F,Gα)∧T∗∗∗(F,Hβ ) ↑ T∗∗∗(F,G)∧T∗∗∗(F,H),

for all α andβ . This leads that, by (6),

T∗∗∗(F,G)∧T∗∗∗(F,H) = 0,

as required.

As every Arens multiplication on the bidual of lattice ordered algebras defines the Arens triadjoint map and every

commutatived-algebra is an almostf -algebra, we immediately obtain the following corollary [3, Theorems 4.1 and 4.2].

Corollary 1. (i) The order continuous bidual of a d-algebra is a Dedekind complete (and hence Archimedean) d-algebra.

(ii) The order bidual of a commutative d-algebra is a Dedekind complete d-algebra.

Finally we point out that the triadjoints on the whole biduals is still an open problem. One has to obtain a way to handle

the singular parts of biduals, as the cases of orthosymmetric bilinear maps and bi-orthomorphisms [16], in order to prove

that the triadjointT∗∗∗ : A′′×A′′ → B′′ of ad-bimorphismT : A×A→ B is ad-bimorphism.
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