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Abstract: We present in this paper, Bernstein Piecewise Polynomiathdtl(BPPM), Integral Mean Value Method(IMVM), Taylor
Series Method(TSM),The Least Square Method(LSM) are useblive the integral equations of the second kind numeyicele

aim to compare the efficiency of BPPM, IMVM, TSM and LSM in sioly the integral equations of the second kind. We solve some
examples to illustrate the applicability and simplicitytbé methods. The numerical results show that which methotig efficient
and accurate. As all these 4 methods consider solutionsnrenically it is important to know about their rapidity of a@rgence to
the exact solution.
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1 Introduction

In the survey of solutions of integral equations, a large benof analytical and approximate methods for solving
numerically various classes of integral equations [1, 2 available. Many different powerful methods have been
proposed to obtain exact and approximate solutions of fategquations. This study is an effort to comparison of
methods for solving linear Fredholm integral equations ftd second kind.Since the piecewise polynomials are
differentiable and integrable, the Bernstein polynomjd|s5] are defined on an interval to form a complete basis over
the finite interval. Moreover, these polynomials are pesitand their sum is unity. For these advantages, Bernstein
polynomials have been used to solve second order linear @mithear differential equations, which are available ia th
literature, e.g. Bhatti and Bracken [7]. Very recently, Mahand Bhattacharya [6] have attempted to solve integral
equations numerically using Bernstein polynomials, baytbbtained the results in terms of finite series solutions.
Mandal and Bhattacharya [6] has described a special appat&imethod of solution of Fredholm integral equations by
using Bernstein polynomials which suits the integral eiustassociated with function spaces spanned by polynsemial
only. Available methods for solving such equations areows] such as spectral methods [8,9,10,11,12,13,14,15]16,
Taylor-series expansion method first presented in [18]dbrisg Fredholm integral equations of second kind. we give a
short introduction of Bernstein Piecewise Polynomials iei{BPPM), Integral Mean Value Method(IMVM), Taylor
Series Method(TSM),The Least Square Method(LSM) first. AHe computations are performed using
MATHEMATICA.

In this paper we consider the solutions the integral eqoatid the second kind by using BPPM, IMVM, TSM and LSM.
The paper is organised as follows. In the next section wetithtie briefly the BPPM, IMVM, TSM and LSM. In section
3, we apply these four methods to three examples to solvextbgral equations of the second kind. In section 4, we give
a brief discussion and conclusion.
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2 Thetheory of methods

2.1 The mean value method

Consider the following Fredholm integral equation of setkimd:

(x) = f(x)+)\/abK(x,t)¢(t)dt, Xt € [a,b] (1)

whereA is a real number, alsé andK are given continuous functions, ands unknown function to be determined.
Now, we remind integral mean value theorem and apply it tiréc this method.

If s(x) is continuous on the closed interyalb], then there is a numbewith aa < ¢ < b such that
b
/ s(x)dx = (b—a)s(c) (2)
a
Now, we illustrate the main idea of our method. By applying #fbove theorem to Ed.we have

¢(x) = f(x)+A(b—a)K(x,c)¢(c) (3)

wherec € [a,b] . Now, we must just find and¢ (c) as unknowns. Substitution ofinto Eq.3 gives the following equation
¢(c) = f(c) +A(b—a)K(c,c)d(c). (4)
For constructing another equation concerrgrand¢ (c) we substitute Eq3 into Eqg.1 and obtain
d(X)=F(X)+A /abK(x,t)(f(t) +A(b—a)K(t,c)p(c))dt (5)
and by substituting = c into Eq.5 we obtain
d(c)="f(c)+A /:K(c,t)(f(t) +A(b—a)K(t,c)¢(c))dt. (6)

After consecutive substitutions, we obtain proper and ghaquations. Now, we solve Edsand6 simultaneously. For
solving the above system, we can use various methods.

2.2 The Bernstein method

The general form of the Bernstein polynomials [4-7httf degree over the intervi, b is defined by

() =) (B
Bl,n(X)<i> B-ar ,i=0,1,2,...,n. 7)

Note that each of these+ 1 polynomials having degreesatisfies the following properties.

Bin(x) =0,if i <0 ori>n,
Zin:O Bi,n(X) =1;
Bin(@ =Bin(b)=0,1<i<n-1
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Using MATHEMATICA code, the first 11 Bernstein polynomialsdegree ten over the intervg, b, are given below

Bo,10(X) = (b— X)lo b—a)*°

B1.10(X) = 10(b—x)°(x—a)/(b—a)*°
B2,10(X) = 45(b — x)8(x— a)2/(b— a)1°
B310(X) = 120(b—x)’(x—a)3/(b— a)1°
Ba.10(X) = 210(b — x)8(x— a)*/(b — a)1°
Bs10(X) = 252(b— x)3(x— @)%/ (b — a)©
Be.10(X) = 210(b — x)*(x— a)®/ (b — a)1°
B7.10(X) = 120(b— x)3 x—a)’/(b—a)l°
Bs.10(X) = 45(b —x)?(x—a)®/(b— a)1°
Bg,10(X) = 10(b—x)(x—a)%/(b—a)*°

B1o10(X) = (b—x)1%/(b—a)*®

Consider a general linear Fredholm integral equation adisg&ind is given byr.

Now we use the technique of Galerkin method [Lewis, 3] to findapproximate solutios (x) of 1. For this, we assume

that |
= .;ai Bin(X) (8)

whereB; n(X) are Bernstein polynomials (basis) of degiedefined in eqn7, anda; are unknown parameters, to be
determined. Substitutinginto 1, we obtain

_iaiBi,n(X) —A ./: lK(XJ)'iaiBi’n(t)] dt = f(x)

zoa*[B'” A/thBln()dt]—f() 9)

Then the Galerkin equations [Lewis, 3] are obtained by mplyithg both sides oB by multiplying both sides o8 by
Bj.n(x) and then integrating with respecttdrom a to b, we have

_iai Ua {B.n /\/thB.n()dt]B,n( dx} /Bm )E(x)dx, j=0,1,.....n

Since in each equation, there are three integrals, the integrand of the left side is a functionwfindt and is integrated
with respect ta from a to b. As a result the outer integrand becomes a functior @fily and integration with respect
to x yields a constant. Thus for ea¢h=0,1,2,....,n we have a linear equation witit- 1 unknownsy;, i = 0,1,.....,n.
Finally 10represents the systemof- 1 linear equations in+ 1 unknowns, are given by

or

_iaiqj —F;, j=0,1,...,n (10)
where, X
qj:/ [B.n )\/ K (%,t)Bin(t )dt] Bj n(X)dx. (11)
b
Fi = / Bj.n(X) f (X)dx. (12)

Now the unknown parameteasare determined by solving the system of equatidi@s1(2), and substituting these values
of parameters i, we get the approximate solutigr(x) of the integral equation of second type.

(© 2017 BISKA Bilisim Technology


www.ntmsci.com

(_/
287 BISKA B. Yilmaz and Y. Cetin: Numerical solutions of the Fredhomtegral equations

2.3 The least square method

We observe that the Bernstein procedure of the determimatfothe coefficientss;,i = 0,1,2,...,n gives rise to
computational difficulties because of the fact that a largmier of integrals need to be evaluated which involve the
Bernstein polynomials, even by selectingo be as small as = 4. We have avoided these difficulties by recasting the
expressior8 as

¢ (X) = a9+ agx+ agx® + - - + anx"” (13)
where, ifa=0,b=1, we get
ap = Cop
a; = —NCy+ NCy
_ Nn(n-1)
a1 =—7%)(Co+Cc2)—n(h—1)cy (14)

an=(—1)"co+ (1" *ncy + (—1)" 220, 4 4 (—1)ncy_1+Cn.

We now make the following observations. If an approximatatsan of the Eq.1(for A = 1) is expressed in the form of
a polynomial, as given by

n .
p(x) = Z)aiX' (15)
i=l
whereg;(i = 0,1,2,...,N) are unknown constants to be determined then it amounts &rdigiing the valueg (x) at
N + 1 points in its domain of definition. This forces us to appmoate the integral term of the integral equation by a

suitable quadrature formula requiring the knowledge o$&tbl + 1) value of¢.

But, if the integral in the above Eq.is replaced by a quadrature formula (see Fox and Goodwin,[d@]get

N
$(x) — > Wk (t)K(x,t) = f(x), a<x<b (16)
k=0
wherewy are the weights anid’s are appropriately chosen interpolation points.

The Eq.16 represents an over-determined system of linear algebrpiat®ns for the determination N + 1)
unknownsp (t,)(k=0,....,N).

So, if from theoretical considerations it is already knoWwattthe given integral Ed. possesses a unique solution, then
varieties of methods can be used to cast the over-determyséein of Eql6into a system ofN + 1) equations and the

method of least-squares provides the most appropriateguoe to handle the situation completely.

Note that one can obtain exacti}¥ + 1) equations for théN + 1) unknownsgg, ¢1, ..., $n from the over-determined
system of Eql6 by selecting N + 1) interpolating pointx =tx,k=0,1,2,...,N, (0 < x < 1).

Substituting the approximate soluti@b into the integral Eql we obtain the relation
n
%ajLH(X):f(X),a<X<b a7
i=
giving rise to an over-determined system of linear algebegjuations for the determination of the unknown constants

a(i=0,1,2,...,N) where,
. B .
W(x) = x +/ K(xt)tidt,i=0,1,2,...,N. (18)
a
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On using the least-squares method, we obtain the normatiegsia

N
%a{CI,j:bJ; ]:1,2,,N+1 (19)

i=
C,_/ Yo (X)W ()dxi=1,2,.. . N+1,j=12... N+1 (20)

and, b
bj:/ FOW_1()dx, j=1,2,...,N+1. (21)

a

The solution of the system of E§9 along with the relatiorl5, finally determines an approximate solutip(x).

2.4 The Taylor Method

Let us take the equatiah We assume thak(x) a solution as

1
o) =y ¢ () x—0)" (22)
n=0""
If we takent" derivative ofl we obtain that
b g(n
(M (%
¢\ (x) X)+ A / axn ¢ (t)dt. (23)
Substitutingk = cin 23.
b VK (x,t)
(n) (n) 7Y
o™ (c) = M (c)+ A / axn o (t)dt. (24)
Eq22into Eqg.24.
b g(n l 1
M (¢c = m
6 (c) 0)+A / dx” UGS (25)
If the equation is edited,
D ’ 07() (t—c)Mdt (26)
"M m! a  OxX '
We substitute EqR6in to Eq.25
9 (©) =f"(©)+2 T Dim9(c) (27)
m=0
and .
Ay DiRg(0)— 6™ (0)=—f"(c) (28)
m=0
the matrix equation is obtaineBgp = F From hereD = A[Dpm) ,n,m=0,1,2,....... ,N. ,if D # 0 than28can be written

in the form of equation
¢ = D~IF . If we solve this system than the Taylor soluti®dis obtained.
3 Numerical Applications

In this section we consider examples that show the efficieridi¥VM,BPPM,LSM and BPPM for solving fredholm
integral equation of second type. We illustrate the aboweguiures through the following examples.
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Example 1.
1
o(x) = x+/0 (xt — ) (t)clt.
The exact solution of integral equation is obtained as fadlo

96 36
Pexact (X) = S=X— —=X2.

The approximate solutions of the integral equation areinbthusing Integral Mean Value Method(IMVM), Bernstein
Piecewise Polynomials Method(BPPM), The Least Square diKttSM), Taylor Series Method(TSM) respectively.

dimvm (X) = 1.397922046675240— 0.6308106266346836,

derpm (X) = 1.3150684931506849- 0.4931506849315068,
dLav (X) = 0.6575342465753424+ 0.4931506849315068,
drav(X) = 1.39792204667524(— 0.6308106266346826.

The exact and the approximate solutions at various poirttssodlomain are shown in Table 1.

Table 1

X 0 0.1 0.2 0.3 0.4

exact 0.126575 0.243288 0.350137 0.447123 0.534247

meanvalue 0.133484  0.2543524 0.362604 0.458239 0.541258
bernstein 0.126575 0.243288 0.350137 0.447123 0.534247
leastsquare 0.0706849 0.151233 0.241644 0.341918 0.85205

taylor 0.126575 0.243288 0.350137 0.447123 0.534247
X 0.5 0.6 0.7 0.8
exact 0.534247 0.611507 0.678904 0.736438

meanvalue 0.541258 0.611661 0.669448 0.714619
Bernstein 0.534247 0.611507 0.678904 0.736438
leastsquare 0.452055 0.572055 0.701918 0.841644

Taylor 0.534247 0.611507 0.678904 0.736438
X 0.9 1
exact 0.78411  0.821918

meanvalue 0.747173 0.767111
Bernstein 0.78411 0.821918
leastsquare 0.991233 1.15068
Taylor 0.78411 0.821918

Example 2.

(%) :e*XJr/OleX“qb(t)dt.
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The exact solution of integral equation is obtained as ¥adlo

2¢*
A X
Pexact (X) =€ "+ 3
The approximate solutions of the integral equation areinbthusing Integral Mean Value Method(IMVM), Bernstein
Piecewise Polynomials Method(BPPM), The Least Square dKttSM), Taylor Series Method(TSM) respectively.

¢IMVM (X) —eX— 0.45567@(,
dsppm (X) = 0.5443631075322628 1.4560665935277939+ 0.27051618695259094 — 0.22946402430534363
dLav (X) = 0.75298— 1.1334%+ 0.10864¢,
() =

¢rav(X) = 0.4813656746174906 1.5186343253825094+ 0.2406828373087454,

The exact and the approximate solutions at various poirttssolomain are shown in Table 2.

Table 2

X 0 0.1 0.2 0.3 0.4

exact 0.544321 0.401234 0.262163 0.125716 -0.0094729
meanvalue 0.544332 0.401235 0.262164 0.125717 -0.0094716
Bernstein 0.544363 0.401232 0.262135 0.125694 -0.0094666
leastsquare 0.75298 0.640719 0.530632 0.422717 0.3169743

Taylor 0.481366 0.331909 0.187266 0.047436 -0.0875788
X 0.5 0.6 0.7 0.8
exact -0.144757 -0.281489 -0.421039 -0.564803

meanvalue -0.144755 -0.281488 -0.421038 -0.564801
Bernstein -0.144724 -0.281455 -0.421037 -0.564845
leastsquare 0.213405 0.112008 0.012784 -0.084266

Taylor -0.217781 -0.343169 -0.463744 -0.579505
X 0.9 1
exact -0.714219 -0.870784

meanvalue -0.714217 -0.870782
Bernstein -0.714258 -0.870651
leastsquare -0.179145 -0.27185
Taylor -0.690452 -0.796586

Example 3.
/s
o(x) = cos<+/ sin(x—t)g(t)dt.
0
The exact solution of integral equation is obtained as ¥adlo

2(2cosx+ msinx)
4417

Oexact (X) =
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The approximate solutions of the integral equation areinbthusing Integral Mean Value Method(IMVM), Bernstein
Piecewise Polynomials Method(BPPM), The Least Square diKttSM), Taylor Series Method(TSM) respectively.

dimvim (X) = cosx— 0.9528905138210743 §ih 87896539+ ),

deppm (X) = 0.2630471333126814 0.6192370186520357- 0.3865370100549868 + 0.041854101394108%7,
dLaw(X) = 0.377171472918149450.82073705756558+ 0.18930504421154654,
drav(X) = 0.2980567356721344 0.3121242837135164- 0.14902836783606704

The exact and the approximate solutions at various poirttssolomain are shown in Table 3.

Table 3

X 0 0.1 0.2 0.3 0.4

exact 0.2884 0.332186 0.372652 0.409396 0.442048
meanvalue 0.0919997 0.120394 0.147586 0.173304 0.197289
Bernstein 0.263047  0.321147 0.371768 0.41516  0.451575
leastsquare 0.377171  0.297037 0.220689 0.148127 0.089350

Taylor 0.298067 0.327779 0.35452 0.378281 0.39062
X 0.5 0.6 0.7 0.8
exact 0.470284  0.493821 0.512906 0.525906

meanvalue 0.219303  0.239127 0.256561 0.271431
Bernstein  0.481263  0.504477 0.521466 0.532482
leastsquare 0.0143609 -0.0468429 -0.104261 -0.157892

Taylor 0.416862 0.431681 0.44352 0.452378
X 0.9 1
exact 0.534134 0.537025

meanvalue 0.283589 0.292914
Bernstein 0.537777 0.537601
leastsquare -0.207738 -0.253797
Taylor 0.458296 0.461153

4 Conclusion

The integral equations are solved numerically. We haveiddathe approximate solution of the unknown function by
Bernstein Piecewise Polynomials Method(BPPM), Integradakl Value Method(IMVM), Taylor Series Method
(TSM)and Least Square Method(LSM). We have verified thevedrformulas with the appropriate numerical examples.
Several illustrative examples are examined in detail.

Least squares method approximates to the exact solutigradal specific point on the defined interval. The more we go
farther the higher the error becomes. Bernstein solutisesyils a good approximation for kernels formed by elementary
functions. Taylor solution is better for elementary anddriometric functions but deviates from the exact solutmn f
exponential and logarithmic kernels. Mean value method@pmates the exact solution for only the exponential
functions.

The success of numerical methods used for solving Fredhdkgiial equation depends on the type of kernel function.
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