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Abstract: In this paper, we develop some modifications of the multgtli@ Newton method which are third-order convergence. We
use the multiplicative Newton Theorem and Newton Cotes qtack formulas to present these new modifications of theijplichtive
Newton method. Using the multiplicative Taylor expansiar, give also the convergence analysis of these new methadbeFmore,

we compare the multiplicative Newton methods with the dtadsNewton methods in details.
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1 Introduction

Solving the nonlinear equation and system of equationgislyimportant in science and engineering. Besides, finding
approximately a real root of a function is a substantialagitin in numerical analysis. In this work, since we work in
multiplicative analysis we use equatidfx) + 1 = 1 to search a simple root equatiéfx) = 0. As known, the Newton
method is well known and widely used method for approxingaéineal root of a function. The classical Newton method
is given by

f(%n)
Xn+17Xn*—f/(Xn),n—O,l,....

The Newton method has quadratic convergence at the simptelmothe literature, there are some variants of Newton
method obtained for faster convergence. For having thd-tirider convergence, some of these methods are used in the
second-order derivative of the function. For instance |éyamethod [], Euler method 2], Householder method3],
super-Newton method] and super-Halley method] are used in the second-order derivative of the functionbiaio
cubic convergence. However, calculating the second-aletdvative of complicated functions is difficult and losdiofie.
Therefore, without needing to calculate the second-ordevative of function, some variants of Newton method with
cubic convergence are derived. These iterative methodeldegned using different approaches to definite integral in
Newton theorem. For instance, arithmetic mean Newton naefblp harmonic mean Newton method] [and geometric
mean Newton method] by the help of trapezoidal rule, midpoint Newton meth@fidnd iterative method in9] via
midpoint rule, iterative methods irl{] and [11] using Simpson rule and different quadrature formulae d@ined.
Besides, the method which based on usage of the Newton méthdlde inverse function has cubically convergence
and is developed inlP]. For multiple roots cases, some of these mentioned metai@studied in13,14]. In addition

to these, for multivariate cases some variants of Newtorhatkare investigated irlp, 16]. Here, we give some basic
definitions and properties of the multiplicative derivatitheory which can be found in7,18].
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Definition 1. Let f : R — R™ be a positive function. The multiplicative derivative of the function f is given by:

1
Lo [ft+h\T
a =T (”L'L"o< o) > '

Theorem 1. (Multiplicative Taylor theorem) Let A be an open interval and let f : A— R be n+ 1 times multiplicative
differentiable on A. Then for any x,x+ h € A, there existsa number 6 € (0, 1) such that

p+1

n K L
f(x+h)= <I_L f+(K) (X) 1<T> fx(n+1) (X+ Bh) 707
K=

The multiplicative Newton method is used to find a real rooégéationf (x) = 1. In literature 7], the multiplicative
iterative formula is given as

B Inf () B
Xn+1—Xn7|nf*(Xn), n—O,l,...

Besides, the convergence of multiplicative Newton metkquiéved and perturbed root-finding methods via multipheat
calculi are presented il §]. As noted in the above formula, it is seen that in the inteof@onvergence of the function
must be defined positive.

Theorem 2. (see [17]) Assume that f € C?[a,b] and f is positive function for all x € (a,b). Assume that there exists a
number o € [a,b] suchthat f(a) = 1. If f'(a)?0, then there exists a > 0, such that the following iteration

Inf(Xn)
Inf*(xn)

Xn+1 = Xn—
will convergeto a for any initial approximationxp € [a + &, a — 9.

In Section 2, we present some new approaches of multipleatewton method which are the three-order convergence.
In Section 3, we give the convergence analysis of them. Ini@ed, we present numerical examples which compare
introduced method to classical multiplicative Newton noethNewton method and a modification Newton method

corresponding to the introduced method.

Definition 2. (see [20]) If the sequence {x»} tendsto a limit o in such a way that

. X —-a
lim L

am (Xni a)p :C

for some C?0and p?1, p is called as the order of convergence of the sequence and C is known as the asymptotic error
constant.

Definition 3. (see [6]) Let a be a root of the function f(x) and suppose that x,.1, Xn» and xn_1 are three consecutive
iterations closer to the root a. Then, the computational order of convergence (COC) p can be approximated using the
formula

N[ =) /(%0 — 0
Inj(xp—a)/(Xn-1—a)|
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2 Numerical schemes

Let o be a simple root of nonlinear equatié(x) = 1 (or g(x) = f(x) — 1 = 0). From the multiplicative analysid g], it
is clear that the multiplicative Newton theorem is

f(x) = f(xn)/x: £ ()% = f(xn)exp(/x:(lnf(t))’dt) . (1)

In Equation (), if the zeroth degree of Newton Cotes quadrature for defintegral is used, it can be written

/XX (1) = exp(/xx(lnf(t))’dt) ~ exp((X—Xn)(Inf (%n))") = (£*(%n))* .

Sincef(x) = 1, the Explicit Multiplicative Newton (MN) Method is obtaéd as

B Inf(xn)
Xn+1 = Xn— Inf*(xn)' (2)
In equation {), According to the first degree of Newton Cotes quadraturéédinite integral, it follows as
X * dt X / 1 ! !/ * * ;(xfx)
/ f*(t)" =exp / (Inf(t))'dt ) ~exp E(x—xn) ((Inf(x))"+ (Inf(xn))") | = [F* () F* (xq) 27
IXn Xn
that gives Arithmetic Multiplicative Newton (AMN) Methodsa
2Inf (%
- ) ©)

Inf* (%) +Inf*(Zns1)
where

_ Inf(xn)
Zni1 = Xn— m

Now, as in [7], if we consider this approximation as the arithmetic mefmé* (x,) andinf*(z,,1) and take the harmonic
mean instead, we get the harmonic mean Multiplicative Nev#tMN) Method as

Inf (Xa) (INF*(%0) +1nf*(z041))

X = X T N (%) INT* (Zra) @
where
B Inf(xn)
LT T ()
If the multiplicative midpoint approximation is used, ilffavs from
L XnFa)\ 0T
1~ f(xn) (f (“T))
that gives midpoint multiplicative Newton (MpMN) Method as
B Inf(Xn)
Xn+1=Xn— W (5)

(© 2017 BISKA Bilisim Technology


www.ntmsci.com

32 BISKA E. Unal, I. Cumhur and A. Gokdogan: Multiplicative Newtoithods with Cubic Convergence

Finally, we can write the multiplicative Newton theorem i) &s

X

f(x) = f(yn) [ ()™ (6)

Yn

such thaty, = x,+ ||r?ff(( )) If we use the multiplicative midpoint rule for the multiptitive integral in the right-hand side

of Equation 6)

X
/ f*(t)dt"&i f*(x“l‘yn)xfyn
y 2

n

and sincef (a) = 1, we obtain a modification of the multiplicative Newton (mWylidethod as

Inf(yn)

Xn+1=Yn— W

wherez,, 1 = Xy — % Hence, the iterative formula of modification the multipliive Newton method is written as

Inf (% -+ e ) ~ Inf ()
Xn+1=Xn— INF* (%n) . (7)

3 Convergence analysis

Let o be a simple root of equatiof(x) = 1 andx, = a + ey. Here, we only prove that the multiplicative Newton method
given in (3) cubically converges by following the process stepssin $imilarly, for the modified multiplicative Newton
methods defined i) and 6), it can be proved by using the process step§jnHurthermore, the convergence as cubic
of the modification multiplicative Newton method presenite@’7) can be given as irf).

Using the multiplicative Taylor expansions, it can be veritt

f(xn) = f(a+en) = f(a) (F*(a)™ (12)(@)) " (@)(a)) " O"(ef).
Now, taking the natural logarithm in both sides, we have
Inf (X)) = Inf(a) +Inf*(a)en+Inf2) (a )§%+Inf3*( )6'31 O(e?)
. 1 Inf®)(a) 1 Inf<3*
=Inf*(a) <e“+57|nf*(a) eﬁ+3I T ) ®)
=Inf*(ar) (en+Coeh + Cael + O(ef))
whereC; = Jl,% On the other hand, we get
Inf*(xn):Inf*(or)+Inf(2*)(a)a1+lnf<3*)(a)§+O(e§)
X Inf(9)(a) 1 InfG)(a) 3
= Inf*(a) <1+ Inf*(a) eﬁ_ﬂ Inf(a) &+ Olen) ©

=Inf*(a) (1+2Cen+ 3C3e2 + O(e)) .
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If Equation @) are divided by Equatiorgj, the following equation

Inf(x)  (en+Cogf+Caei+0(e))
Inf“(X)) (14 2Cyen+ 3Cze3+ O(ed)) = en — Coef + (2C5 — 2Ca)e) + O(ep)

is obtained. So, we have
Zny1 = 0 +Cp2 4 2(C3 — C3)ed + O(ef).

Again expanding *(z,,1) abouta and using the multiplicative Taylor expansion we obtain

2

(i) = () (1)) 7 (109 () e
INf*(Zny1) = Inf*(a)JrInf(Z*)(a)(ZnH—a)+|nf(3*)(a)(zn%i‘)2 +oe
=Inf*(a) + (Co€4 + 2(C3 — C5)&} + O(e)) Inf?) (@) + O(ef) (10)
=Inf*(a) (1+2C€ +4(C,C3 — C3) 2+ O(el)) .
Adding (9) and (L0), we have
Inf* (%) +Inf*(z0:1) = 2Inf*(a) (1+cza1+ (c§+ gcg) eﬁ+0(e;°;)) : (11)

From @) and (L1), we get

2Inf (%) (et GG H0E) (o 1 N gy
I () +INT*(Znr2) (14 Cotn + (C3+ 3Cs) €+ O(&)) <°2+ 2C3>en+°<en>’

as required. This implies that the method defined by the ftar{8y converges as cubic.

It is clear that the number of function evaluation in perat@n for methods in (3), (4), (5) and (7) is three. According
the definition of efficiency index[1] which is ¥/NFE (wherep is order of convergence of method and NFE is number
of function evaluation), the efficiency index of methods defi in this work isy/3 2 1.442. Hence, the efficiency index
of these new methods is better than the efficiency index oftbiemethod and multiplicative Newton method which are
V22 1.414 and are same as the ones of methods define, ifv] and [9].

4 Numerical examples

In this section, we use Newton method , arithmetic Newton ANthod defined ind], harmonic Newton (HN) method
and midpoint Newton (MpN) method presented Th fa modification Newton (mN) method given if][ multiplicative
Newton (MN) method and the new methods obtained in this wogotve some non-linear equatié(x) = 0. Summing

the number of evaluations of function f with the number of leations of its derivative, the number of function
evaluation (NFE) in per iteration is found. The results @i#d via these methods are showed in Teke The used
stopping criterion igxn, 1 — a| + | f(Xn;1)| < 104 We accept an approximate root to 15 decimal places ratharttie
exact root in test functions.

The results show that modification multiplicative methodswerging cubically can compete with Newton method, MN,
AN, HN, MpN methods. Besides, mMMN method is better than othethods in some case where mN only converges,
such as example (b). Further, in certain problems such ammga(c), (d), (e), (f) and (g), modified multiplicative
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Newton methods give better results compared with modifiedtbie methods. Also if we look closely to example (c),

the multiplicative Newton method and its modification theatieveloped in this work reach to the root in one step. This is

not actually an amazing result. This case originates frortipficative calculus.

Test functions

(@)f (x) = Inx— sinx and multiplicative versionf*(x) = Inx — sinx+ 1
(x) = arctanx and multiplicative versionf*(x) = arctanx+ 1

(c)f(x) = e — 1 and multiplicative versionf*(x) = e~

(d)f (x) = & — sin’x and multiplicative versionf*(x) = & — sin®x + 1
(X) = (x+2)e¥— 1 and multiplicative versionf*(x) = (x+ 2)e*

(f) f(x) = (x—1)8 — 1 and multiplicative versionf*(x) = (x— 1)°

(9)f (x) = e°+™-30_ 1 and multiplicative versiori: (x) = e +7x-30

~~
D

~
—
X

~—

(@),x=3 n NFE COC Xn

N 5 10 1.99 2.219107148913746
AN 3 9 2.86 2.219107148913746
HN 3 9 3.07 2.219107148913746
MpN 3 9 2.75 2.219107148913746
mN 4 12 296 2.219107148913746
MN 5 10 199 2.219107148913746
AMN 3 9 3.17 2.219107148913746
HMN 3 9 3.16 2.219107148913746
MpMN 3 9 3.13  2.219107148913746
mMN 4 12 3.01 2.219107148913746
(b),xo=3 n NFE COC Xn

N - - - divergence

AN - - - divergence

HN - - - divergence

MpN - - - divergence

mN 5 15 2.99 0.000000000000000
MN - - - divergence

AMN - - - divergence

HMN - - - divergence
MpMN - - - divergence

mMN 4 12 3.00 0.000000000000000
(c),xo=10 n NFE COC Xn

N - - - divergence

AN NC - - -

HN - - - divergence

MpN NC - - -

mN 12 36 3.00 1.000000000000000
MN 1 2 ND 1

AMN 1 3 ND 1

HMN 1 3 ND 1

MpMN 1 3 ND 1
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mMN 1 3 ND 1

(d),xo=3 n NFE COC Xn

N 9 18 2.00 -0.755265684142554
AN 7 21  3.00 -0.755265684142554
HN 5 15 3.01 -0.755265684142554
MpN 5 15 3.06 -0.755265684142554
mN 6 18 2.98 -0.755265684142554
MN 7 14 1.99 -0.755265684142554
AMN 4 12 2.98 -0.755265684142554
HMN 4 12 2.95 -0.755265684142554
MpMN 5 15 3.00 -0.755265684142554
mMN 4 12 2.99 -0.755265684142551
(€),%=35 n NFE COC Xn

N 10 20 1.91 -0.442854401002389
AN 7 21 2.98 -0.442854401002389
HN 6 18 3.01 -0.442854401002389
MpN 6 18 2.91 -0.442854401002389
mN 6 18 2.94 -0.442854401002389
MN 5 10 2.00 -0.442854401002389
AMN 4 12 2.92 -0.442854401002389
HMN 4 12 2.96 -0.442854401002389
MpMN 3 9 2.73 -0.442854401002389
mMN 4 12 3.10 -0.442854401002389
(M, x% =15 n NFE COC Xn

N 15 30 1.99 2.000000000000000
AN 467 1401 3.07 2.000000000000000
HN 7 21 3.01 2.000000000000000
MpN 58 174 3.11 2.000000000000000
mN - - - -

MN 5 10 2.00 2.000000000000000
AMN 4 12 3.00 2.000000000000000
HMN 3 9 3.16 2.000000000000000
MpMN 3 9 3.16 2.000000000000000
mMN 4 12 2.97  2.000000000000000
(@),%=35 n NFE COC Xn

N 43 86 1.99 2.374101653848877
AN 29 87 2.93 2.374101653848877
HN 23 69  3.02 2.374101653848877
MpN 26 78 296 2.374101653848877
mN 25 75 2.98 2.374101653848877
MN 5 10 1.99 2.374101653848877
AMN 4 12 299 2.374101653848877
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HMN 3 9 3.01 2.374101653848877
MpMN 4 12 296 2.374101653848877
mMN 4 12 2.99 2.374101653848877

Table 1: Comparison of methods

where,

N: Newton method mN: Modification Newton method irf]

n: Number of iterations NC: Not convergence

AN: Arithmetic Newton method MN: Multiplicative Newton method

NFE: Number of functional evaluations Xn- the approximation root in n. iteration

HN: Harmonic Newton method MpMN: Midpoint multiplicative Newton method
COC: Computational order of convergence AMN: Arithmetic multiplicative Newton method
MpN: Midpoint Newton method mMN: Method which presented in this work
ND: Not defined HMN: Harmonic multiplicative Newton method

5 Conclusion

In this study, we present some modifications of the multgtiie Newton method using multiplicative Newton theorem
and Newton Cotes quadrature formulas. Also, we prove thzaltonverge of modified multiplicative Newton methods
obtained in this text. Like methods i6][ [ 7] and [9], computing second or higher derivatives of function doetsraquire

in modification multiplicative Newton methods, either. Téféciency indexes of the presented methods are better ligan t
classical Newton and the multiplicative Newton methodss Tlase implies that modified multiplicative Newton methods
are preferable to classical Newton and the multiplicatiegiddn methods. Especially example (c) shows that the Hatfira
the fundamental calculus plays an essential role in soharggjuationf (x) = 0 (f (x) + 1 = 1 for multiplicative calculus).
The corresponding example for the classical Newton methdHe functionf(x) = 1 — x. So indeed, the root of this
function is obtained in exactly one step by the classical fdaunethod and its modifications. Moreover, methods in this
work give results better than the methods presentef]jf 7] and [9] in certain problems such as examples (c), (d), (e),

(f) and (9).
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