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Abstract: In this paper, we generalize the dualistic structures on warped product manifolds to the dualistic structures on generalized
warped product manifolds. We have developed an expression of curvature for the connection of the generalized warped product in
relation to the corresponding analogues of its base and fiberand warping functions. We show that the dualistic structures on the base
M1 and the fiberM2 induce a dualistic structure on the generalized warped product M1×M2 and that, conversely,(M1 ×M1 ,Gf1 f2

) or

(M1 ×M1, g̃f1 f2
) is a statistical manifold if and only if(M1,g1) and(M1 ,g1) are. Finally, Some other interesting consequences are also

given.
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1 Introduction

The warped product provides a way to construct new pseudo-riemannian manifolds from the given ones, see [8],[4] and

[3]. This construction has useful applications in general relativity, in the study of cosmological models and black holes. It

generalizes the direct product in the class of pseudo-Riemannian manifolds and it is defined as follows. Let(M1,g1) and

(M2,g2) be two pseudo-Riemannian manifolds and letf1 : M1 −→ R
∗ be a positive smooth function onM1, the warped

product of (M1,g1) and (M2,g2) is the product manifold M1 × M2 equipped with the metric tensor

gf1 := π∗
1g1+( f ◦π1)

2π∗
2g2, whereπ1 andπ2 are the projections ofM1×M2 ontoM1 andM2 respectively. The manifold

M1 is called the base of(M1×M2,gf1) andM2 is called the fiber. The functionf1 is called the warping function.

The double warped product is a construction in the class of pseudo-Riemannian manifolds generalizing the warped

product and the direct product. It is obtained by homothetically distorting the geometry of each baseM1 ×{q} and each

fiber {p}×M2 to get a new ”doubly warped” metric tensor on the product manifold and it is defined as follows; for

i ∈ {1,2}, let Mi be a pseudo-Riemannian manifold equipped with metricgi , and fi : Mi → R
∗ be a positive smooth

function on Mi . The well-known notion of doubly warped product manifoldM1 × f1 f2
M2 is defined as the product

manifoldM = M1 ×M2 equipped with pseudo-Riemannian metric which is denoted bygf1 f2
, given by

gf1 f2
= ( f2 ◦π2)

2π∗
1g

1
+( f1 ◦π1)

2π∗
2g

2
.

The generalized warped product is defined as follows. letc be an arbitrary real number and letgi , (i = 1,2) be Riemannian

metric tensor onMi . Given a smooth positive functionfi on Mi , the generalized warped product of(M1,g1) and(M2,g2)
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is the product manifoldM1×M2 equipped with the metric tensorGf1 f2 (see [6]), explicitly, given by

Gf1, f2
(X,Y) = ( f v

2)
2gπ1

1
(dπ1(X),dπ1(Y))+ ( f h

1 )
2gπ2

2
(dπ2(X),dπ2(Y))+ c fh

1 f v
2

(
X( f h

1 )Y( f v
2)+X( f v

2)Y( f h
1 ))

)
.

for all X,Y ∈ Γ (TM1×M2). When the warping functionsf1 = 1 or f2 = 1 orc= 0, we obtain a warped product or direct

product.

Dualistic structures are closely related to statistical mathematics. They consist of pairs of affine connections on statistical

manifolds, compatible with a pseudo-Riemanniann metric [1]. Their importance in statistical physics is underlined by

many authors: [5],[2] etc.

Let M be a pseudo-Riemannian manifold equipped with a pseudo-Riemannian metricg and let∇, ∇∗
be the affine

connections onM. We say that a pair of affine connections∇ and∇∗
are compatible (or conjugate ) with respect tog if

X(g(Y,Z)) = g(∇XY,Z)+g(Y,∇
∗

XZ) for all X,Y,Z ∈ Γ (TM), (1)

whereΓ (TM) is the set of all tangent vector fields onM. Then the triplet(g,∇,∇∗
) is called the dualistic structure onM.

We note that the notion of ”conjugate connection ” has been attributed to A.P. Norden in affine differential geometry

literarture (Simon, 2000) and has been independently introduced by (Nagaoka and Amari, 1982) in information

geometry, where it was called ” dual connection” (Lauritzen, 1987). The triplet(M,∇,g) is called a statistical manifold if

it admits another torsion-free connection∇∗
satisfying the equation (1). We call ∇ and ∇∗

duals of each other with

respect tog.

In the notions of terms on statistical manifolds, for a torsion-free affine connection∇ and a pseudo-Riemannian metricg

on a manifoldM, the triple(M,∇,g) is called a statistical manifold if∇g is symmetric. If the curvature tensorR of ∇
vanishes,(M,∇,g) is said to be flat.

This paper extends the study of dualistic structures on warped product manifolds, [9], to dualistic structures on

generalized warped products in pseudo-Riemannian manifolds. We develop an expression of curvature for the connection

of the generalized warped product in relation to those corresponding analogues of its base and fiber and warping

functions.

The paper is organized as follows. In section 2, we collect the basic material about Levi-Civita connection, the notion of

conjugate, horizontal and vertical lifts and the generalized warped products.

In section 3, we show that the projection of a dualistic structure defined on a generalized warped product space

(M1 × M2,Gf1 f2) induces dualistic structures on the base(M1,g1) and the fiber(M2,g2). Conversely, there exists a

dualistic structure on the generalized warped product space induced by its base and fiber.

In section 4, we show that the projection of a dualistic structure defined on a generalized warped product space

(M1 × M2, g̃f1 f2) induces dualistic structures on the base(M1,g1) and the fiber(M2,g2). Conversely, there exists a

dualistic structure on the generalized warped product space induced by its base and fiber and finally.
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2 Preliminaries

2.1 Statistical manifolds

We recall some standard facts about Levi-Civita connections and the dual statistical manifold. Many fundamental

definitions and results about dualistic structure can be found in Amari’s monograph ([1],[2]).

Let (M,g) be a pseudo-Riemannian manifold. The metricg defines the musical isomorphisms

♯g : T∗M → TM

α 7→ ♯g(α)

such thatg(♯g(α),Y) = α(Y), and its inverse♭g. We can thus define the cometricg̃ of the metricg by :

g̃(α,β ) = g(♯g(α), ♯g(β )). (2)

A fundamental theorem of pseudo-Riemannian geometry states that given a pseudo-Riemannian metricg on the tangent

bundleTM, there is a unique connection (among the class of torsion-free connection) that ”preserves” the metric; as long

as the following condition is satisfied:

X(g(Y,Z)) = g(∇̂XY,Z)+g(Y, ∇̂XZ) f or X,Y,Z ∈ Γ (TM) (3)

Such a connection, denoted as∇̂, is known as the Levi-Civita connection. Its component forms, called Christoffel symbols,

are determined by the components of pseudo-metric tensor as(”Christoffel symbols of the second Kink ”)

Γ̂ k
i j = ∑

l

1
2

gkl(
∂gil

∂x j +
∂g jl

∂xi −
∂gi j

∂xl
)

and (”Christoffel symbols of the first Kink”)

Γ̂i j ,k =
1
2
(

∂gik

∂x j +
∂g jk

∂xi −
∂gi j

∂xk ).

The Levi-Civita connection is compatible with the pseudo metric, in the sense that it treats tangent vectors of the shortest

curves on a manifold as being parallel.

It turns out that one can define a kind of ”Compatibility” relation more generally than expressed by equation (3), by

introducing the notion of ”Conjugate” (denoted by *) between two affine connections.

Let (M,g) be a pseudo-Riemannian manifold and let∇, ∇∗
be an affine connections onM. A connection∇∗

is said to be

”conjugate” to∇ with respect tog if

X(g(Y,Z)) = g(∇XY,Z)+g(Y,∇
∗

XZ) f or X,Y,Z ∈ Γ (TM) (4)

Clearly,

(∇
∗
)
∗
= ∇.

Otherwise,∇̂, which satisfies equation (3), is special in the sense that it is self-conjugate

(∇̂)
∗
= ∇̂.
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Because pseudo-metric tensorg provides a one-to-one mapping between vectors in the tangent space and co-vectors in

the cotangent space, the equation (1) can also be seen as characterizing how co-vector fields are to be parallel-transported

in order to preserve their dual pairing< ., . > with vector fields. Writing out the equation1 explicitly,

∂gi j

∂xk = Γki, j +Γ ∗
k j,i, (5)

where

∇
∗

∂i
∂ j = ∑

l

Γ ∗l
i j ∂l

so that

Γ ∗
k j,i = g(∇

∗

∂ j
∂k,∂i) = ∑

l

gil Γ ∗l
k j .

In the following part, a manifoldM with a pseudo-metricg and a pair of conjugate connections∇,∇∗
with respect tog is

called a ” pseudo-Riemannian manifold with dualistic structure ” and denoted by(M,g,∇,∇∗
). Obviously,∇ and∇∗

(or

equivalently,Γ andΓ ∗) satisfy the relation

∇̂ =
1
2
(∇+∇

∗
) (or equivalently,Γ̂ =

1
2
(Γ +Γ ∗)).

Thus an affine connection∇ on (M,g) is metric if and only if∇∗
= ∇ ( that it is self-conjugate). For a torsion-free affine

connection∇ and a pseudo-Riemannian metricg on a manifoldM, the triplet(M,∇,g) is called a statistical manifold if

∇g is symmetric. If the curvature tensorR of ∇ vanishes,(M,∇,g) is said to be flat.

For a statistical manifold(M,∇,g), the conjugate connection∇∗
with respect tog is torsion-free and∇∗

g symmetric.

Then the triplet(M,∇∗
,g) is called the dual statistical manifold of(M,∇,g) and(∇,∇∗

,g) is the dualistic structure onM.

The curvature tensor of∇ vanishes if and only if that of∇∗
does and in such a case,(∇,∇∗

,g) is called the dually flat

structure [2]. More generally, in information geometry, a one-parameter family of affine connections∇(λ ) indexed byλ
(λ ∈ R), calledλ− connections, is introduced by Amari and Nagaoka in ([1],[2]).

∇(λ ) =
1+λ

2
∇+

1−λ
2

∇
∗

(or equivalently,Γ (λ ) =
1+λ

2
Γ +

1−λ
2

Γ ∗). (6)

Obviously,∇(0) = ∇̂.

It can be shown that for a pair of conjugate connections∇,∇∗
, their curvature tensorsR, R

∗
satisfy

g(R(X,Y)Z,W)+g(Z,R
∗
(X,Y)W) = 0, (7)

and more generally

g(R(λ )(X,Y)Z,W)+g(Z,R∗(λ )(X,Y)W) = 0. (8)

If the curvature tensorR of ∇ vanishes,∇ is said to be flat. So,∇ is flat if and only if∇∗ is flat. In this case,(M,g,∇,∇∗
)

is said to be dually falt.

When∇,∇∗
is dually flat, then∇(λ ) is calledλ -transitively flat. In such case,(M,g,∇(λ ),∇∗(λ )) is called an ”λ -Hessian

manifold”, or a manifold withλ -Hessian structure.
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2.2 Horizontal and vertical lifts

Throughout this paperM1 andM2 will be respectivelym1 andm2 dimensional manifolds,M1×M2 the product manifold

with the natural product coordinate system andπ1 : M1×M2 → M1 andπ2 : M1×M2 → M2 the usual projection maps.

We recall briefly how the calculus on the product manifoldM1 ×M2 derives from that ofM1 andM2 separately. For

details see [8].

Let ϕ1 in C∞(M1). The horizontal lift ofϕ1 to M1 ×M2 is ϕh
1 = ϕ1 ◦ π1. One can define the horizontal lifts of tangent

vectors as follows. Letp1 ∈ M1 and letXp1 ∈ Tp1M1. For anyp2 ∈ M2 the horizontal lift ofXp1 to (p1, p2) is the unique

tangent vectorXh
(p1,p2)

in T(p1,p2)(M1×M2) such thatd(p1,p2)π1(Xh
(p1,p2)

) = Xp1 andd(p1,p2)π2(Xh
(p1,p2)

) = 0.

We can also define the horizontal lifts of vector fields as follows. LetX1 ∈ Γ (TM1). The horizontal lift ofX1 to M1×M2

is the vector fieldXh
1 ∈ Γ (T(M1×M2)) whose value at each(p1, p2) is the horizontal lift of the tangent vector(X1)p1 to

(p1, p2). For (p1, p2) ∈ M1×M2, we will denote the set of the horizontal lifts to(p1, p2) of all the tangent vectors ofM1

at p1 by L(p1, p2)(M1). We will denote the set of the horizontal lifts of all vector fields onM1 byL(M1).

The vertical lift ϕv
2 of a functionϕ2 ∈ C∞(M2) to M1 ×M2 and the vertical liftXv

2 of a vector fieldX2 ∈ Γ (TM2) to

M1 ×M2 are defined in the same way using the projectionπ2. Note that the spacesL(M1) of the horizontal lifts and

L(M2) of the vertical lifts are vector subspaces ofΓ (T(M1 × M2)) but neither is invariant under multiplication by

arbitrary functionsϕ ∈C∞(M1×M2).

Observe that if{ ∂
∂x1

, . . . , ∂
∂xm1

} is the local basis of the vector fields (resp.{dx1, . . . ,dxm1} is the local basis of 1-forms )

relative to a chart(U,Φ) of M1 and{ ∂
∂y1

, . . . , ∂
∂ym2

} is the local basis of the vector fields (resp.{dy1, . . . ,dym2} the local

basis of the 1-forms) relative to a chart(V,Ψ) of M2, then{( ∂
∂x1

)h, . . . ,( ∂
∂xm1

)h,( ∂
∂y1

)v, . . . ,( ∂
∂ym2

)v} is the local basis of

the vector fields (resp.{(dx1)
h, . . . ,(dxm1)

h,(dy1)
v, . . . ,(dym2)

v} is the local basis of the 1-forms) relative to the chart

(U ×V,Φ ×Ψ) of M1×M2.

The following lemma will be useful later for our computations.

Lemma 1.

(1) Letϕi ∈C∞(Mi), Xi ,Yi ∈ Γ (TMi) andαi ∈ Γ (T∗Mi), i = 1,2. Letϕ = ϕh
1 +ϕv

2, X = Xh
1 +Xv

2 andα,β ∈ Γ (T∗(M1×

M2)). Then

(i) For all (i, I) ∈ {(1,h),(2,v)}, we have

XI
i (ϕ) = Xi(ϕi)

I , [X,YI
i ] = [Xi ,Yi ]

I and α I
i (X) = αi(Xi)

I .

(ii) If for all (i, I) ∈ {(1,h),(2,v)} we haveα(XI
i ) = β (XI

i ), thenα = β .

(2) Let ωi andηi be r-forms on Mi , i = 1,2. Letω = ωh
1 +ωv

2 andη = ηh
1 +ηv

2. We have

dω = (dω1)
h+(dω2)

v and ω ∧η = (ω1∧η1)
h+(ω2∧η2)

v.

Proof.See [7].

Remark.LetX be a vector field onM1×M2, such thatdπ1(X)=ϕ(X1◦π1) anddπ2(X)= φ(X2◦π2), thenX =ϕXh
1 +φXv

2.
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2.3 The generalized warped product

let ψ : M → N be a smooth map between smooth manifolds and letg be a metric onk-vector bundle(F,PF) overN. The

metricgψ : Γ (ψ−1F)×Γ (ψ−1F)→C∞(M) on the pull-back(ψ−1F,Pψ−1F) overM is defined by

gψ(U,V)(p) = gψ(p)(Up,Vp), ∀ U,V ∈ Γ (ψ−1F), p∈ M.

Given a linear connection∇N onk-vector bundle(F,PF) overN, the pull-back connection∇
ψ

is the unique linear connection

on the pull-back(ψ−1F,Pψ−1F) overM such that

∇
ψ

X
(
W◦ψ

)
= ∇N

dψ(X)
W, ∀W ∈ Γ (F), ∀X ∈ Γ (TM). (9)

Further, letU ∈ ψ−1F and letp∈ M, X ∈ Γ (TM). Then

(∇
ψ

XU)(p) = (∇N
dpψ(Xp)

Ũ)(ψ(p)), (10)

whereŨ ∈ Γ (F) with Ũ ◦ψ =U .

Now, let πi , i=1,2, be the usual projection ofM1×M2 onto Mi , given a linear connection∇
i

on vector bundleTMi , the

pull-back connection∇
πi

is the unique linear connection on the pull-backM1 × M2 → π−1
i (TMi) such that for each

Yi ∈ Γ (TMi), X ∈ Γ (TM1×M2)

∇
πi

X
(
Yi ◦πi

)
= ∇

i

dπi (X)
Yi . (11)

Further, let(p1, p2) ∈ M1×M2, U ∈ π−1
i (TM) andX ∈ Γ (TM1×M2). Then

(∇
πi

XU)(p1, p2) =
(
∇
i

d
(p1,p2)

πi(X(p1,p2)
)Ũ

)
(pi). (12)

Now, letc be an arbitrary real number and letgi , (i = 1,2) be a Riemannian metric tensor onMi . Given a smooth positive

function fi on Mi , the generalized warped product of(M1,g1) and(M2,g2) is the product manifoldM1 ×M2 equipped

with the metric tensor (see [6])

Gf1, f2
= ( f v

2)
2π∗

1g
1
+( f h

1 )
2π∗

2g
2
+ c fh

1 f v
2d fh

1 ⊙d fv
2,

Whereπi , (i = 1,2) is the projection ofM1 ×M2 ontoMi and

d fh
1 ⊙d fv

2 = d fh
1 ⊗d fv

2 +d fv
2 ⊗d fh

1 .

For all X,Y ∈ Γ (TM1×M2), we have

Gf1, f2
(X,Y) = ( f v

2)
2gπ1

1
(dπ1(X),dπ1(Y))+ ( f h

1 )
2gπ2

2
(dπ2(X),dπ2(Y))+ c fh

1 f v
2

(
X( f h

1 )Y( f v
2)+X( f v

2)Y( f h
1 ))

)
.

The latter is the unique tensor fields such that for anyXi ,Yi ∈ Γ (TMi), (i = 1,2)

g̃f1 f2
(XI

i ,Y
K
k ) =





( f J
3−i)

2gi(Xi ,Yi)
I , if (i, I) = (k,K)

c f I
i f K

k Xi( fi)IYk( fk)K , otherwise

(13)
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If either f1 ≡ 1 or f2 ≡ 1 but not both, then we obtain a singly warped product. If bothf1 ≡ 1 and f2 ≡ 1, then we have a

product manifold. If neitherf1 nor f2 is constant andc= 0, then we have a nontrivial doubly warped product. If neither

f1 nor f2 is constant andc 6= 0, then we have a nontrivial generalized warped product.

Now, Let us assume that(Mi ,gi), (i = 1,2) is a smooth connected Riemannian manifold. The following proposition

provides a necessary and sufficient condition for a symmetric tensor fieldGf1, f2 of type(0,2) of two Riemannian metrics

to be a Riemannian metric.

Proposition 1. [6] Let (Mi ,gi), (i = 1,2) be a Riemannian manifold and let fi be a positive smooth function on Mi and c

be an arbitrary real number. Then the symmetric tensor field Gf1 f2is a Riemannian metric on M1×M2 if and only if

0≤ c2g1(grad f1,grad f1)
hg2(grad f2,grad f2)

v < 1. (14)

Corollary 1. [6] If the symmetric tensor field Gf1, f2 of type(0,2) on M1 ×M2 is degenerate, then for any i∈ {1,2},

gi(grad fi ,grad fi) is positive constant ki in which

ki =
1

c2k(3−i)
.

In all what follows, we suppose thatf1 and f2 satisfie the inequality (14).

Lemma 2.[6] Let X be an arbitrary vector field of M1×M2, if there existϕi ,ψi ∈C∞(Mi) and Xi ,Yi ∈ Γ (TMi), (i = 1,2)

such that 



Gf1 f2(X,Zh
1) = Gf1 f2(ϕ

v
2Xh

1 +ϕh
1Xv

2,Z
h
1),

∀ Zi ∈ Γ (TMi),

Gf1 f2(X,Zv
2) = hhGf1 f2(ψ

v
2Yh

1 +ψh
1Yv

2 ,Z
v
2).

Then we have,

X = ϕv
2Xh

1 +ψh
1Yv

2 + c fh
1 f v

2

{
ψv

2Y1( f1)
h−ϕv

2X1( f1)
h
}

grad( f v
2)− c fh

1 f v
2

{
ψh

1Y2( f2)
v−ϕh

1X2( f2)
v
}

grad( f h
1 ). (15)

3 Dualistic structure with respect to Gf1 f2

Proposition 2. Let (Gf1 f2
,∇,∇∗

) be a dualistic structure on M1 ×M2. Then there exists an affine connection∇
i

, ∇∗i

on Mi ,

such that(g
i
,∇

i

,∇∗i

) is a dualistic structure on Mi (i = 1,2).

Proof.Taking the affine connections onMi , (i = 1,2).





(∇
1

X1Y1)◦π1 = dπ1(∇Xh
1
Yh

1 )+ c
f h
1

f v
2
(∇Xh

1
Yh

1 )( f v
2)(grad f1)◦π1, ∀ X1,Y1 ∈ Γ (TM1)

(∇∗1

X1Y1)◦π1 = dπ1(∇∗
Xh

1
Yh

1 )+ c
f h
1

f v
2
(∇∗

Xh
1
Yh

1 )( f v
2)(grad f1)◦π1,

(∇
2

X2Y2)◦π2 = dπ2(∇Xv
2
Yv

2 )+ c
f v
2

f h
1
(∇Xv

2
Yv

2 )( f h
1 )(grad f2)◦π2, ∀ X2,Y2 ∈ Γ (TM2)

(∇∗2

X2Y2)◦π2 = dπ2(∇∗
Xv

2
Yv

2 )+ c
f v
2

f h
1
(∇∗

Xv
2
Yv

2 )( f h
1 )(grad f2)◦π2.

Therfore, we have for allXi ,Yi ,Zi ∈ Γ (TMi ) (i = 1,2).

XI
i (Gf1 f2

(YI
i ,Z

I
i )) = Gf1 f2

(∇XI
i
YI

i ,Z
I
i )+Gf1 f2

(YI
i ,∇

∗

XI
i
ZI

i ). (16)
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Since,dπ
3−i
(ZI

i ) = 0, XI
i ( f J

3−i) = 0 and for anyX ∈ Γ (TM1×M2),

gf1 f2(X,ZI
i ) = ( f J

3−i)
2gπi

i (dπi(X),Zi ◦πi)+ c fh
1 f v

2X( f J
3−i)Zi( fi)

I ,

then the equation (16) is aquivalent to

( f J
3−i)

2(Xi(gi(Yi ,Zi)))
I = ( f J

3−i)
2{gi(∇

i

XiYi ,Zi)+gi(Yi ,∇∗
i

Xi Zi)}
I

where(i, I),(3− i,J) ∈ {(1,h),(2,v)}.

Hence, the pair of affine connections∇
i

and∇∗i

are conjugate with respect togi .

Proposition 3. Let (gi ,∇
i

,∇∗i

) be a dualistic structure on Mi (i = 1,2). Then there exists a dualistic structure on M1 ×M2

with respect to Gf1 f2.

Proof.Let ∇ and∇∗ be the connections onM1×M2 given by






dπ1(∇XY) = ∇
π1

Xdπ1(Y)+Y(ln f2
v)dπ1(X)+X(ln f2

v)dπ1(Y)+
1

f h
1 f v

2 (1−c2bh
1bv

2)

{ ( f h
1 )

2

f v
2

Bf v
2
(X,Y)−cbv

2 f v
2B

f h
1
(X,Y)

−c fh
1 (1−cbv

2)
[
X( f h

1)Y( f v
2)+X( f v

2)Y( f h
1 )
]}

(grad f1)◦π1,

dπ2(∇XY) = ∇
π2

Xdπ2(Y)+Y(ln f1
h)dπ2(X)+X(ln f1

h)dπ2(Y)+ 1
f h
1 f v

2 (1−c2bh
1bv

2)

{ ( f v
2)

2

f h
1

B
fh
1
(X,Y)−cbh

1 f h
1 Bfv2

(X,Y)

−c fv
2(1−cbh

1)
[
X( f h

1 )Y( f v
2)+X( f v

2)Y( f h
1 )
]}

(grad f2)◦π2,

dπ1(∇∗
XY) = ∇

π1

X
∗dπ1(Y)+Y(ln f2

v)dπ1(X)+X(ln f2
v)dπ1(Y)+

1
f h
1 f v

2 (1−c2bh
1bv

2)

{ ( f h
1 )

2

f v
2

B∗
f v
2
(X,Y)−cbv

2 f v
2B∗

f h
1
(X,Y)

−c fh
1 (1−cbv

2)
[
X( f h

1)Y( f v
2)+X( f v

2)Y( f h
1 )
]}

(grad f1)◦π1,

dπ2(∇∗
XY) = ∇

π2

X
∗dπ2(Y)+Y(ln f1

h)dπ2(X)+X(ln f1
h)dπ2(Y)+

1
f h
1 f v

2 (1−c2bh
1bv

2)

{ ( f v
2 )

2

f h
1

B∗
f h
1
(X,Y)−cbh

1 f h
1 B∗

f v
2
(X,Y)

−c fv
2(1−cbh

1)
[
X( f h

1 )Y( f v
2)+X( f v

2)Y( f h
1 )
]}

(grad f2)◦π2,

(17)

for anyX,Y ∈ Γ (TM1×M2), whereB
fI
i

andB∗
fI
i
(i = 1,2) the(0,2) tensors fields off I

i
are given respectively by

B
fI
i
(X,Y) = c f I

i

{
X(Y( f I

i ))−g
i

πi
(
∇

πi

Xdπi(Y),(grad fi)◦πi
)}

+cX( f I
i
)Y( f I

i
)−

1

f J
j

g
i

πi
(
dπi(X),dπi(Y)

)
,

and

B∗
fI
i
(X,Y) = c f I

i

{
X(Y( f I

i ))−g
i

πi
(
∇∗

πi

Xdπi(Y),(grad fi)◦πi
)}

+cX( f I
i
)Y( f I

i
)−

1

f J
j

g
i

πi
(
dπi(X),dπi(Y)

)
,

j = i−3 and(i, I),( j ,J) ∈ {(1,h),(2,v)}. Or, for anyXi ,Yi ∈ Γ (TMi) (i = 1,2)





∇Xh
1
Yh

1 = (∇
1

X1Y1)
h+ f v

2
B f1(X1,Y1)

hgrad( f v
2
);

∇Xv
2
Yvh

2 = (∇
2

X2Y2)
v+ f h

1
B f2(X2,Y2)

vgrad( f h
1
);

∇∗
Xh

1
Yh

1 = (∇∗
1

X1Y1)
h+ f v

2
B∗

f1
(X1,Y1)

hgrad( f v
2
);

∇∗
Xv

2
Yv

2 = (∇∗
2

X2Y2)
v+ f h

1
B∗

f2
(X2,Y2)

vgrad( f h
1
);

∇Xh
1
Yv

2 = ∇∗
Xh

1
Yv

2 =−cX1( f1)hY2( f2)v
{

f v
2
grad( f h

1
)+ f h

1
grad( f v

2
)}+

(
Y2(ln f

2
)
)vXh

1 +
(
X1(ln f2)

)hYv
2

∇Yv
2
Xh

1 = ∇∗
Yv

2
Xh

1 = ∇Xh
1
Yv

2 .

(18)

WhereBfi
andB∗

fi
(i = 1,2) are the(0,2) tensors fields offi given respectively by

Bfi
(Xi ,Yi) = c fi

{
Xi(Yi( fi))−∇

i

XiYi( fi)

}
+cXi( fi )Yi( fi )−gi (Xi ,Yi),
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and

B∗
fi
(Xi ,Yi) = c fi

{
Xi(Yi( fi))−∇∗

i

XiYi( fi)

}
+cXi( fi )Yi( fi )−gi(Xi ,Yi),

Let us assume that(gi ,∇
i

,∇∗
i

) is a dualistic structures onMi , i = 1,2. Let A be a tensor field of type(0,3) defined for anyX,Y,Z ∈

Γ (TM1×M2) by

A(X,Y,Z) = X(G f1 f2(Y,Z))−G f1 f2(∇XY,Z)−G f1 f2(Y,∇
∗
XZ),

if Xi ,Yi ,Zi ∈ Γ (TMi), i = 1,2, then we have

XI
i (Gf1 f2

(YI
i ,Z

I
i )) = XI

i (( f J
3−i)

2gi(Xi ,Yi)
I ).

Sincedπ3−i(XI
i ) = 0, it follows thatdπ3−i(XI

i )( f3−i = XI
i ( f J

3−i) = 0, and hence

XI
i (Gf1 f2

(YI
i ,Z

I
i )) = ( f J

3−i)
2(X(gi(Yi ,Zi)))

I ,

as(gi ,∇
i

,∇∗
i

) is dualistic structure, we have thus

XI
i (Gf1 f2

(YI
i ,Z

I
i )) = ( f J

3−i)
2{gi(∇

i

XiYi ,Zi)
I +gi(Yi ,∇∗

i

Xi Zi)
I},

From Equations (13), (18), then it’s easily observed that the following equation holds

A(XI
i ,Y

I
i ,Z

I
i ) = 0

In the different lifts(i 6= j), we have

XI
i (Gf1 f2

(YI
i ,Z

J
j )) = c fJ

j (Z j( f j))
JXi(( fi(Y( fi))))

I ,

Gf1 f2
(∇XJ

i
YI

i ,Z
J
j ) = f J

j {c fiXi(Yi( fi))+cXi( fi)Yi( fi)−gi (Xi ,Yi)}
I Z j( f j )

J,

and

Gf1 f2
(∇∗

XI
i
ZJ

j ,Y
I
i ) = f J

j gi(Xi ,Yi)
I Z j( f j)

J.

We add these equations and obtain

A(XI
i ,Y

I
i ,Z

J
j ) = 0

Hence the same applies forA(XJ
j ,Y

I
i ,Z

I
i ) = A(XI

i ,Y
J
j ,Z

I
i ) = 0. This proves that∇∗ is conjugate to∇ with respect toGf1 f2

.

We recall that the connection∇ onM1 ×M2 induced by∇
1

and∇
2

onM1 andM2 respectively, is given by Equation (18).

Proposition 4. (M1,∇
1

,g1) and (M2,∇
2

,g2) are statistical manifolds if and only if(M1 × M2,Gf1 f2
,∇) is a statistical

manifold.

Proof.Let us assume that(Mi ,∇
i

,g
i
) (i = 1,2) is statistical manifold.

Firstly, we show that∇ is torsion-free. Indeed; by Equation (17), we have for anyX,Y ∈ Γ (TM1×M2)

dπi(T(X,Y)) = ∇
πi

Xdπi(Y)−∇
πi

Ydπi(X)−dπi([X,Y])

Since fori = 1,2, ∇
i

is torsion-free, then

∇
πi

Xdπi(Y)−∇
πi

Ydπi(X) = dπi([X,Y])

Therefore, from Remark2.2, the connection∇ is torsion-free.
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Secondly, we show that∇Gf1, f2 is symmetric. In fact; fori = 1,2,

(∇Gf1 f2
)(XI

i ,Y
I
i ,Z

J
i ) = XI

i (Gf1 f2
(YI

i ,Z
I
i ))−Gf1 f2

(∇XI
i
YI

i ,Z
I
i )−Gf1 f2

(YI
i ,∇XI

i
ZI

i )

by Equations (13) and (18) and since(∇
i

gi), i = 1,2, is symmetric, we have

(∇Gf1 f2
)(XI

i ,Y
I
I ,Z

I
i ) = ( f J

3−i)
2((∇

i

gi)(Xi ,Yi ,Zi))
I

= ( f J
3−i)

2((∇
i

gi)(Yi ,Xi ,Zi))
h

= (∇Gf1 f2
)(YI

i ,X
I
I ,Z

I
i ).

In the different lifts, we have

(∇Gf1 f2
)(XI

i ,Y
I
i ,Z

J
3−i) = (∇Gf1 f2

)(XJ
3−i,Y

I
i ,Z

I
i ) = (∇Gf1 f2

)(XI
i ,Y

I
3−i ,Z

I
i ) = 0,

Therefore,(∇Gf1 f2
) is symmetric. Thus(M1 ×M2,gf1 f2

,∇) is a statistical manifold.

Conversely, if(M1 ×M2,Gf1 f2
,∇) is a statistical manifold, then(∇Gf1 f2

) is symmetric and∇ is torsion-free, particularly,

whenXi,Yi ,Zi ∈ Γ (TMi), we have




(∇Gf1 f2

)(XI
i ,Y

I
I ,Z

I
i ) = (∇Gf1 f2

)(YI
i ,X

I
I ,Z

I
i ), ∀ i = 1,2,

T(XI
i ,Y

I
i ) = 0, ∀ i = 1,2, .

Then, by Equations (13) and (18), we obtained, fori = 1,2, ∇
i

gi , is symmetric and∇
i

, is torsion-free. Therefore,(Mi ,∇
i

,gi),

i = 1,2, is a statistical manifold.

4 Dualistic structure with respect to g̃f1 f2

Let c be an arbitrary real number and letgi, (i = 1,2) be a Riemannian metric tensors onMi . Given a smooth positive

function fi onMi , we define a metric tensor field onM1×M2 by

g̃f1, f2
= π∗

1g
1
+( f h

1 )
2π∗

2g
2
+

c2

2
( f v

2)
2d fh

1 ⊙d fh
1 , (19)

whereπi, (i = 1,2) is the projection ofM1 ×M2 ontoMi (see [6]).

For all X,Y ∈ Γ (TM1×M2), we have

g̃f1, f2
(X,Y) = gπ1

1
(dπ1(X),dπ1(Y))+ ( f h

1 )
2gπ2

2
(dπ2(X),dπ2(Y))+ (c fv

2)
2X( f h

1 )Y( f h
1 )).

The latter is the unique tensor fields such that for anyXi ,Yi ∈ Γ (TMi), (i = 1,2)





g̃f1 f2
(Xh

1 ,Y
h
1 ) = g1(X1,Y1)

h+(c fv
2)

2X1( f1)Y1( f1)h,

g̃f1 f2
(Xh

1 ,Y
v
2 ) = g̃f1 f2

(Yv
2 ,X

h
1 ) = 0,

g̃f1 f2
(Xv

2,Y
v
2 ) = ( f h

1 )
2g2(X2,Y2)

v.

(20)

Proposition 5. Let (g̃f1 f2
,∇,∇∗) be a dualistic structure on M1 ×M2. Then there exists an affine connections∇

i

, ∇∗
i

on Mi ,

such that(g
i
,∇

i

,∇∗
i

) is a dualistic structure on Mi (i = 1,2).
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Proof.Taking the affine connections onMi , (i = 1,2).





(∇
1

X1Y1)◦π1 = dπ1(∇Xh
1
Yh

1 )− (c fv
2)

2H f h
1 (Xh

1 ,Y
h
1 )(grad f1)◦π1,

(∇∗1

X1Y1)◦π1 = dπ1(∇∗
Xh

1
Yh

1 )− (c fv
2)

2H∗ f h
1 (Xh

1 ,Y
h
1 )(grad f1)◦π1,

(21)





(∇
2

X2Y2)◦π2 =
1

( f h
1 )

2 dπ2(∇Xv
2
Yv

2 )

(∇∗2

X2Y2)◦π2 =
1

( f h
1 )

2 dπ2(∇∗
Xv

2
Yv

2 ).
(22)

Therefore, we have for allXi ,Yi ,Zi ∈ Γ (TMi ) (i = 1,2).

XI
i (g̃f1 f2

(YI
i ,Z

I
i )) = g̃f1 f2

(∇XI
i
YI

i ,Z
I
i )+ g̃f1 f2

(YI
i ,∇∗

XI
i
ZI

i ). (23)

Since,dπ
3−i
(ZI

i ) = 0, XI
i ( f J

3−i) = 0 and for anyX ∈ Γ (TM1×M2),

g̃f1 f2(X,ZI
i ) =





gπ1

1 (dπ1(X),Z1 ◦π1)+ (c fv
2)

2X( f h
1 )Zi( f1)h, if (i, I) = (1,h)

( f h
1 )

2gπ2
2 (dπ2(X),Z2 ◦π2), (i, I) = (2,v)

Substituting from Equations (21) and (22) into Formula (23) we get





(X1(g1(Y1,Z1)))
h = gπ1

1 (∇
1

X1Y1,Z1◦π1)+gπ1
1 (∇∗1

X1Z1,Y1◦π1),

( f h
1 )

2 (X2(g2(Y2,Z2)))
v = ( f h

1 )
2

{
gπ2

2 (∇
2

X2Y2,Z2◦π2)+gπ2
2 (∇∗2

X2Z2,Y2 ◦π2)

}
,

Hence, the pair of affine connections∇
i

and∇∗i

are conjugate with respect togi .

Proposition 6. Let (gi ,∇
i

,∇∗i

) be a dualistic structure on Mi (i = 1,2). Then there exists a dualistic structure on M1 ×M2

with respect tõgf1 f2.

Proof.Let ∇ and∇∗ be the connections onM1×M2 given by






∇Xh
1
Yh

1 = (∇
1

X1Y1)
h+

(c fv
2)

2H f1(X1,Y1)
h

1+(c fv
2)

2bh
1

(grad f1)h− c2 f v
2(X1(ln f1)Y1(ln f1))h(grad f2)v,

∇Xv
2
Yvh

2 = (∇
2

X2Y2)
v−

f h
1 g2(X2,Y2)

v

1+(c fv
2)

2bh
1
(grad f1)h,

∇∗
Xh

1
Yh

1 = (∇∗
1

X1Y1)
h+

(c fv
2)

2H∗ f1(X1,Y1)
h

1+(c fv
2)

2bh
1

(grad f1)h− c2 f v
2(X1(ln f1)Y1(ln f1))h(grad f2)v,

∇∗
Xv

2
Yv

2 = (∇∗
2

X2Y2)
v−

f h
1 g2(X2,Y2)

v

1+(c fv
2)

2bh
1
(grad f1)h,

∇Xh
1
Yv

2 = ∇∗
Xh

1
Yv

2 =
c2 f v

2Y2( f2)
vX1( f1)

h

1+(c fv
2)

2bh
1

(grad f1)h+
(
X1(ln f1)

)h
Yv

2 ,

∇Yv
2
Xh

1 = ∇∗
Yv

2
Xh

1 = ∇Xh
1
Yv

2 .

(24)

for anyXi ,Yi ∈ Γ (TMi) (i = 1,2) and whereH f1 andH∗ f1 are the Hessian off1 with respect to∇
1

and∇∗1

respectively.

Let us assume that(gi ,∇
i

,∇∗i

) is a dualistic structure onMi , i = 1,2. Let A be a tensor field of type(0,3) defined for any

X,Y,Z ∈ Γ (TM1×M2) by

A(X,Y,Z) = X(g̃f1 f2(Y,Z))− g̃f1 f2(∇XY,Z)− g̃f1 f2(Y,∇
∗

XZ),
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Sincedπ3−i(XI
i ) = 0, it follows that

XI
i ( f J

3−i) = dπ3−i(X
I
i )( f3−i) = 0, ∀(i, I),( j,J) ∈ {(i,h),(2,v)},

and hence, for allXi ,Yi ,Zi ∈ Γ (TMi) (i = 1,2), we have

{
Xh

1

(
g̃f1 f2(Y

h
1 ,Z

h
1)
)
= (X1(g1(Y1,Z1)))

h+(c fv
2)

2{Y1( f1)X1(Z1( f1))+Z1( f1)X1(Y1( f1))}
h ,

Xv
2

(
g̃f1 f2(Y

v
2 ,Z

v
2)
)
= (c fv

2)
2 (X2(g2(Y2,Z2)))

h .

as(gi ,∇
i

,∇∗
i

) is a dualistic structure and from Equations (20), (24), then it’s easily seen that the following equation holds

A(XI
i ,Y

I
i ,Z

I
i ) = 0, ∀(i, I),( j,J) ∈ {(i,h),(2,v)}.

In the different lifts(i 6= j), we have

XI
i (g̃f1 f2

(YI
i ,Z

J
j )) = 0,

{
g̃f1 f2

(∇Xh
1
Yh

1 ,Z
v
2) =−c2 f v

2X1( f1)hY1( f1)hZ2( f2)v,

g̃f1 f2
(∇Xv

2
Yv

2 ,Z
h
1) =− f h

1 g2(X2,Y2)
vZ1( f1)h,

and {
g̃f1 f2

(Yh
1 ,∇

∗

Xh
1
Zv

2) = c2 f v
2X1( f1)hY1( f1)hZ2( f2)v,

g̃f1 f2
(Yv

2 ,∇
∗

Xv
2
Zh

1) = f h
1 g2(X2,Y2)

vZ1( f1)h,

We add these equations and obtain

A(XI
i ,Y

I
i ,Z

J
j ) = 0, ∀(i, I),( j,J) ∈ {(i,h),(2,v)}.

Hence the same applies forA(XJ
j ,Y

I
i ,Z

I
i ) = A(XI

i ,Y
J
j ,Z

I
i ) = 0. This proves that∇∗

is conjugate to∇ with respect to ˜gf1 f2
.

We recall that the connection∇ onM1 ×M2 induced by∇
1

and∇
2

onM1 andM2 respectively, is given by Equation (24).

Proposition 7. (M1,∇
1

,g1) and (M2,∇
2

,g2) are statistical manifolds if and only if(M1 × M2, g̃f1 f2
,∇) is a statistical

manifold.

Proof.Let us assume that(Mi ,∇
i

,g
i
) (i = 1,2) is a statistical manifold. Firstly, we show that∇ is torsion-free. Indeed; by

Equation (24), we have for anyX,Y ∈ Γ (TM1×M2)

dπi(T(X,Y)) = ∇
πi

Xdπi(Y)−∇
πi

Ydπi(X)−dπi([X,Y])

Since fori = 1,2, ∇
i

is torsion-free, then

∇
πi

Xdπi(Y)−∇
πi

Ydπi(X) = dπi([X,Y])

Therefore, from Remark2.2, the connection∇ is torsion-free.

Secondly, we show that∇Gf1, f2 is symmetric. In fact; for(i, I) ∈ {(i,h),(2,v)},

(∇g̃f1 f2
)(XI

i ,Y
I
i ,Z

I
i ) = XI

i (g̃f1 f2
(YI

i ,Z
I
i ))− g̃f1 f2

(∇XI
i
YI

i ,Z
I
i )− g̃f1 f2

(YI
i ,∇XI

i
ZI

i )
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by Equations (20), (24) and since(∇
i

gi), i = 1,2, is symmetric, we have

(∇g̃f1 f2
)(XI

i ,Y
I
i ,Z

I
i ) = (∇g̃f1 f2

)(YI
i ,X

I
i ,Z

I
i ).

In the different lifts, for all(i, I),( j,J) ∈ {(i,h),(2,v)}, we have

(∇g̃f1 f2
)(XI

i ,Y
I
i ,Z

J
3−i) = (∇g̃f1 f2

)(XJ
3−i ,Y

I
i ,Z

I
i ) = (∇g̃f1 f2

)(XI
i ,Y

J
3−i ,Z

I
i ) = 0.

Therefore,(∇g̃f1 f2
) is symmetric. Thus(M1 ×M2, g̃f1 f2

,∇) is a statistical manifold.

Conversely, if(M1 ×M2, g̃f1 f2
,∇) is a statistical manifold, then(∇g̃f1 f2

) is symmetric and∇ is torsion-free, particularly,

whenXi ,Yi ,Zi ∈ Γ (TMi), we have

{
(∇g̃f1 f2

)(XI
i ,Y

I
I ,Z

I
i ) = (∇g̃f1 f2

)(YI
i ,X

I
I ,Z

I
i ), ∀ i = 1,2,

T(XI
i ,Y

I
i ) = 0.

Then, by Equations (20) and (24), we obtain, fori = 1,2, ∇
i

gi , is symmetric and∇
i

, is torsion-free. Therefore,(Mi ,∇
i

,gi),

i = 1,2, is statistical manifold.

At first, note that(M1×M2, g̃f1 f2
,∇) is the statistical manifold induced from(M1,g1,∇

1

) and(M2,g2,∇
2

).

Now, let(M1,∇
1

,g1) and(M2,∇
2

,g2) be two statistical manifolds and letR
1

, R
2

andR be the curvature tensors with respect

to ∇
1

, ∇
2

and∇ respectively.

Proposition 8. Let (Mi ,∇
i

,∇∗i

,g
i
), (i = 1,2) be a connected statistical manifold. Assume that the gradient of fi is parallel

with respect to∇
i

and∇∗1

(i = 1,2). Then for any Xi ,Yi ,Zi ∈ Γ (TMi ) (i = 1,2) we have

(1) R(X1
h,Y1

h)Z1
h= (R

1
(X1,Y1)Z1)

h,

(2) R(X2
v,Y2

v)Z2
v= (R

2
(X2,Y2)Z2)

v− b1
1+(c fv

2)
2b1

{
(X2∧g2 Y2)Z2

}v
+

c2 f h
1 f v

2b1

(1+(c fv
2)

2b1)
2

{
((X2∧g2 Y2)Z2)( f2)

}v
(grad f1)h,

(3) R(X1
h,Y1

h)Z2
v= 0,

(4) R(X1
h,Y2

v)Z1
h= c2X1(ln f1)

hZ1(ln f1)
hY2( f2)

v

1+(c fv
2)

2b1
(grad f2)v,

where the wedge product(X2∧g2 Y2)Z2 = g2(Y2,Z2)X2−g2(X2,Z2)Y2.

Proof.After long and straightforward calculations, as in proof ofproposal (2), and where it uses the fact that connections

are compatible with the metric, we obtain the same results asin (2), knowing we use only the connections are symmetrical.

Corollary 2. Let (Mi ,∇
i

,∇∗1

,g
i
), (i = 1,2) be a connected statistical manifold. Assume that f1 is a non-constant positive

function and c6= 0.

If (∇,∇∗
, g̃f1 f2

) is a dually flat structure then(∇
1

,∇∗1

,g1 ) is also dually flat and(∇
2

,∇∗2

,g2 ) has a constant sectional

curvature.

Proof.Let (∇,∇∗
, g̃f1 f2

) be a dually flat structure. By Proposition8, for anyX1,Y1,Z1 ∈ Γ (TM1), we have

R
1

(X1,Y1)Z1 = 0,

From Equation (7), Since(M1,∇
1

,g1) (i = 1,2) is a statistical manifold, we have

R
∗1

(X1,Y1)Z1 = 0.
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Hence(M1,∇
1

,∇∗1

,g1) is dually flat. By 4. of Proposition8, for anyX1,Z1 ∈ Γ (TM1) andY2 ∈ Γ (TM2) , we have

c2X1(ln f1)hZ1(ln f1)hY2( f2)v

1+(c fv
2)

2b1
(grad f2)

v = 0.

So f2 is a constant function sincef1 is a non-constant function andM2 is assumed to be connected. Moreover, by 2. of

Proposition8, for anyX2,Y2,Z2 ∈ Γ (TM2), we have

R
2

(X2,Y2)Z2 =
b1

1+(c fv
2)

2b1

{
(X2∧g2 Y2)Z2

}v
,

Sinceb1 and f2 are constants, it follows from the previous equality that(∇
2

,∇∗2

,g2 ) has a constant sectional curvature
b1

1+(c fv
2)

2b1
.
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