Product of statistical manifolds with a non-diagonal metric

Djelloul Djebbouri and Seddik Ouakkas
Department of Mathematics, Tahar Moulay University, Saida E-nasr Saida, Algeria

Received: 12 December 2015, Accepted: 8 December 2016
Published online: 17 October 2017.

Abstract

In this paper, we generalize the dualistic structures on warped product manifolds to the dualistic structures on generalized warped product manifolds. We have developed an expression of curvature for the connection of the generalized warped product in relation to the corresponding analogues of its base and fiber and warping functions. We show that the dualistic structures on the base M_{1} and the fiber M_{2} induce a dualistic structure on the generalized warped product $M_{1} \times M_{2}$ and that, conversely, $\left(M_{1} \times M_{1}, G_{f_{1} f_{2}}\right)$ or $\left(M_{1} \times M_{1}, \tilde{g}_{f_{1} f_{2}}\right)$ is a statistical manifold if and only if $\left(M_{1}, g_{1}\right)$ and $\left(M_{1}, g_{1}\right)$ are. Finally, Some other interesting consequences are also given.

Keywords: Warped product, dualistic structures, statistical manifold.

1 Introduction

The warped product provides a way to construct new pseudo-riemannian manifolds from the given ones, see [8],[4] and [3]. This construction has useful applications in general relativity, in the study of cosmological models and black holes. It generalizes the direct product in the class of pseudo-Riemannian manifolds and it is defined as follows. Let $\left(M_{1}, g_{1}\right)$ and $\left(M_{2}, g_{2}\right)$ be two pseudo-Riemannian manifolds and let $f_{1}: M_{1} \longrightarrow \mathbb{R}^{*}$ be a positive smooth function on M_{1}, the warped product of $\left(M_{1}, g_{1}\right)$ and $\left(M_{2}, g_{2}\right)$ is the product manifold $M_{1} \times M_{2}$ equipped with the metric tensor $g_{f_{1}}:=\pi_{1}^{*} g_{1}+\left(f \circ \pi_{1}\right)^{2} \pi_{2}^{*} g_{2}$, where π_{1} and π_{2} are the projections of $M_{1} \times M_{2}$ onto M_{1} and M_{2} respectively. The manifold M_{1} is called the base of $\left(M_{1} \times M_{2}, g_{f_{1}}\right)$ and M_{2} is called the fiber. The function f_{1} is called the warping function.

The double warped product is a construction in the class of pseudo-Riemannian manifolds generalizing the warped product and the direct product. It is obtained by homothetically distorting the geometry of each base $M_{1} \times\{q\}$ and each fiber $\{p\} \times M_{2}$ to get a new "doubly warped" metric tensor on the product manifold and it is defined as follows; for $i \in\{1,2\}$, let M_{i} be a pseudo-Riemannian manifold equipped with metric g_{i}, and $f_{i}: M_{i} \rightarrow \mathbb{R}^{*}$ be a positive smooth function on M_{i}. The well-known notion of doubly warped product manifold $M_{1} \times{ }_{f_{1} f_{2}} M_{2}$ is defined as the product manifold $M=M_{1} \times M_{2}$ equipped with pseudo-Riemannian metric which is denoted by $g_{f_{1} f_{2}}$, given by

$$
g_{f_{1} f_{2}}=\left(f_{2} \circ \pi_{2}\right)^{2} \pi_{1}^{*} g_{1}+\left(f_{1} \circ \pi_{1}\right)^{2} \pi_{2}^{*} g_{2} .
$$

The generalized warped product is defined as follows. let c be an arbitrary real number and let $g_{i},(i=1,2)$ be Riemannian metric tensor on M_{i}. Given a smooth positive function f_{i} on M_{i}, the generalized warped product of $\left(M_{1}, g_{1}\right)$ and $\left(M_{2}, g_{2}\right)$
is the product manifold $M_{1} \times M_{2}$ equipped with the metric tensor $G_{f_{1} f_{2}}$ (see [6]), explicitly, given by

$$
\left.G_{f_{1}, f_{2}}(X, Y)=\left(f_{2}^{\nu}\right)^{2} g_{1}^{\pi_{1}}\left(d \pi_{1}(X), d \pi_{1}(Y)\right)+\left(f_{1}^{h}\right)^{2} g_{2}^{\pi_{2}}\left(d \pi_{2}(X), d \pi_{2}(Y)\right)+c f_{1}^{h} f_{2}^{v}\left(X\left(f_{1}^{h}\right) Y\left(f_{2}^{v}\right)+X\left(f_{2}^{v}\right) Y\left(f_{1}^{h}\right)\right)\right)
$$

for all $X, Y \in \Gamma\left(T M_{1} \times M_{2}\right)$. When the warping functions $f_{1}=1$ or $f_{2}=1$ or $c=0$, we obtain a warped product or direct product.

Dualistic structures are closely related to statistical mathematics. They consist of pairs of affine connections on statistical manifolds, compatible with a pseudo-Riemanniann metric [1]. Their importance in statistical physics is underlined by many authors: [5],[2] etc.

Let M be a pseudo-Riemannian manifold equipped with a pseudo-Riemannian metric g and let ∇, ∇^{*} be the affine connections on M. We say that a pair of affine connections ∇ and ∇^{*} are compatible (or conjugate) with respect to g if

$$
\begin{equation*}
X(g(Y, Z))=g\left(\nabla_{X} Y, Z\right)+g\left(Y, \nabla_{X}^{*} Z\right) \text { for all } X, Y, Z \in \Gamma(T M) \tag{1}
\end{equation*}
$$

where $\Gamma(T M)$ is the set of all tangent vector fields on M. Then the triplet $\left(g, \nabla, \nabla^{*}\right)$ is called the dualistic structure on M.

We note that the notion of "conjugate connection" has been attributed to A.P. Norden in affine differential geometry literarture (Simon, 2000) and has been independently introduced by (Nagaoka and Amari, 1982) in information geometry, where it was called " dual connection" (Lauritzen, 1987). The triplet (M, ∇, g) is called a statistical manifold if it admits another torsion-free connection ∇^{*} satisfying the equation (1). We call ∇ and ∇^{*} duals of each other with respect to g.

In the notions of terms on statistical manifolds, for a torsion-free affine connection ∇ and a pseudo-Riemannian metric g on a manifold M, the triple (M, ∇, g) is called a statistical manifold if ∇g is symmetric. If the curvature tensor R of ∇ vanishes, (M, ∇, g) is said to be flat.

This paper extends the study of dualistic structures on warped product manifolds, [9], to dualistic structures on generalized warped products in pseudo-Riemannian manifolds. We develop an expression of curvature for the connection of the generalized warped product in relation to those corresponding analogues of its base and fiber and warping functions.

The paper is organized as follows. In section 2, we collect the basic material about Levi-Civita connection, the notion of conjugate, horizontal and vertical lifts and the generalized warped products.

In section 3, we show that the projection of a dualistic structure defined on a generalized warped product space $\left(M_{1} \times M_{2}, G_{f_{1} f_{2}}\right)$ induces dualistic structures on the base $\left(M_{1}, g_{1}\right)$ and the fiber $\left(M_{2}, g_{2}\right)$. Conversely, there exists a dualistic structure on the generalized warped product space induced by its base and fiber.

In section 4, we show that the projection of a dualistic structure defined on a generalized warped product space $\left(M_{1} \times M_{2}, \tilde{g}_{f_{1} f_{2}}\right)$ induces dualistic structures on the base $\left(M_{1}, g_{1}\right)$ and the fiber $\left(M_{2}, g_{2}\right)$. Conversely, there exists a dualistic structure on the generalized warped product space induced by its base and fiber and finally.

2 Preliminaries

2.1 Statistical manifolds

We recall some standard facts about Levi-Civita connections and the dual statistical manifold. Many fundamental definitions and results about dualistic structure can be found in Amari's monograph ([1],[2]).

Let (M, g) be a pseudo-Riemannian manifold. The metric g defines the musical isomorphisms

$$
\begin{aligned}
\sharp_{g}: T^{*} M & \rightarrow T M \\
\alpha & \mapsto \not \sharp_{g}(\alpha)
\end{aligned}
$$

such that $g\left(\not \sharp_{g}(\alpha), Y\right)=\alpha(Y)$, and its inverse b_{g}. We can thus define the cometric \widetilde{g} of the metric g by :

$$
\begin{equation*}
\widetilde{g}(\alpha, \beta)=g\left(\not \sharp_{g}(\alpha), \not \sharp_{g}(\beta)\right) . \tag{2}
\end{equation*}
$$

A fundamental theorem of pseudo-Riemannian geometry states that given a pseudo-Riemannian metric g on the tangent bundle $T M$, there is a unique connection (among the class of torsion-free connection) that "preserves" the metric; as long as the following condition is satisfied:

$$
\begin{equation*}
X(g(Y, Z))=g\left(\hat{\nabla}_{X} Y, Z\right)+g\left(Y, \hat{\nabla}_{X} Z\right) \quad \text { for } X, Y, Z \in \Gamma(T M) \tag{3}
\end{equation*}
$$

Such a connection, denoted as $\hat{\nabla}$, is known as the Levi-Civita connection. Its component forms, called Christoffel symbols, are determined by the components of pseudo-metric tensor as ("Christoffel symbols of the second Kink ")

$$
\hat{\Gamma}_{i j}^{k}=\sum_{l} \frac{1}{2} g^{k l}\left(\frac{\partial g_{i l}}{\partial x^{j}}+\frac{\partial g_{j l}}{\partial x^{i}}-\frac{\partial g_{i j}}{\partial x^{l}}\right)
$$

and ("Christoffel symbols of the first Kink")

$$
\hat{\Gamma}_{i j, k}=\frac{1}{2}\left(\frac{\partial g_{i k}}{\partial x^{j}}+\frac{\partial g_{j k}}{\partial x^{i}}-\frac{\partial g_{i j}}{\partial x^{k}}\right) .
$$

The Levi-Civita connection is compatible with the pseudo metric, in the sense that it treats tangent vectors of the shortest curves on a manifold as being parallel.

It turns out that one can define a kind of "Compatibility" relation more generally than expressed by equation (3), by introducing the notion of "Conjugate" (denoted by *) between two affine connections.

Let (M, g) be a pseudo-Riemannian manifold and let ∇, ∇^{*} be an affine connections on M. A connection ∇^{*} is said to be "conjugate" to ∇ with respect to g if

$$
\begin{equation*}
X(g(Y, Z))=g\left(\nabla_{X} Y, Z\right)+g\left(Y, \nabla_{X}^{*} Z\right) \quad \text { for } X, Y, Z \in \Gamma(T M) \tag{4}
\end{equation*}
$$

Clearly,

$$
\left(\nabla^{*}\right)^{*}=\nabla .
$$

Otherwise, $\hat{\nabla}$, which satisfies equation (3), is special in the sense that it is self-conjugate

$$
(\hat{\nabla})^{*}=\hat{\nabla}
$$

Because pseudo-metric tensor g provides a one-to-one mapping between vectors in the tangent space and co-vectors in the cotangent space, the equation (1) can also be seen as characterizing how co-vector fields are to be parallel-transported in order to preserve their dual pairing $\langle.,$.$\rangle with vector fields. Writing out the equation 1$ explicitly,

$$
\begin{equation*}
\frac{\partial g_{i j}}{\partial x^{k}}=\Gamma_{k i, j}+\Gamma_{k j, i}^{*} \tag{5}
\end{equation*}
$$

where

$$
\nabla_{\partial_{i}}^{*} \partial_{j}=\sum_{l} \Gamma_{i j}^{* l} \partial_{l}
$$

so that

$$
\Gamma_{k j, i}^{*}=g\left(\nabla_{\partial_{j}}^{*} \partial_{k}, \partial_{i}\right)=\sum_{l} g_{i l} \Gamma_{k j}^{* l} .
$$

In the following part, a manifold M with a pseudo-metric g and a pair of conjugate connections ∇, ∇^{*} with respect to g is called a " pseudo-Riemannian manifold with dualistic structure" and denoted by (M, g, ∇, ∇^{*}). Obviously, ∇ and ∇^{*} (or equivalently, Γ and Γ^{*}) satisfy the relation

$$
\hat{\nabla}=\frac{1}{2}\left(\nabla+\nabla^{*}\right) \quad\left(\text { or equivalently }, \hat{\Gamma}=\frac{1}{2}\left(\Gamma+\Gamma^{*}\right)\right)
$$

Thus an affine connection ∇ on (M, g) is metric if and only if $\nabla^{*}=\nabla$ (that it is self-conjugate). For a torsion-free affine connection ∇ and a pseudo-Riemannian metric g on a manifold M, the triplet (M, ∇, g) is called a statistical manifold if ∇g is symmetric. If the curvature tensor \mathscr{R} of ∇ vanishes, (M, ∇, g) is said to be flat.

For a statistical manifold (M, ∇, g), the conjugate connection ∇^{*} with respect to g is torsion-free and $\nabla^{*} g$ symmetric. Then the triplet $\left(M, \nabla^{*}, g\right)$ is called the dual statistical manifold of (M, ∇, g) and $\left(\nabla, \nabla^{*}, g\right)$ is the dualistic structure on M. The curvature tensor of ∇ vanishes if and only if that of ∇^{*} does and in such a case, $\left(\nabla, \nabla^{*}, g\right)$ is called the dually flat structure [2]. More generally, in information geometry, a one-parameter family of affine connections $\nabla^{(\lambda)}$ indexed by λ $(\lambda \in \mathbb{R})$, called λ - connections, is introduced by Amari and Nagaoka in ([1],[2]).

$$
\begin{equation*}
\nabla^{(\lambda)}=\frac{1+\lambda}{2} \nabla+\frac{1-\lambda}{2} \nabla^{*} \quad\left(\text { or equivalently, } \Gamma^{(\lambda)}=\frac{1+\lambda}{2} \Gamma+\frac{1-\lambda}{2} \Gamma^{*}\right) \tag{6}
\end{equation*}
$$

Obviously, $\nabla^{(0)}=\hat{\nabla}$.

It can be shown that for a pair of conjugate connections ∇, ∇^{*}, their curvature tensors R, \mathscr{R}^{*} satisfy

$$
\begin{equation*}
g(\mathscr{R}(X, Y) Z, W)+g\left(Z, \mathscr{R}^{*}(X, Y) W\right)=0 \tag{7}
\end{equation*}
$$

and more generally

$$
\begin{equation*}
g\left(\mathscr{R}^{(\lambda)}(X, Y) Z, W\right)+g\left(Z, \mathscr{R}^{*(\lambda)}(X, Y) W\right)=0 \tag{8}
\end{equation*}
$$

If the curvature tensor \mathscr{R} of ∇ vanishes, ∇ is said to be flat. So, ∇ is flat if and only if ∇^{*} is flat. In this case, $\left(M, g, \nabla, \nabla^{*}\right)$ is said to be dually falt.

When ∇, ∇^{*} is dually flat, then $\nabla^{(\lambda)}$ is called λ-transitively flat. In such case, $\left(M, g, \nabla^{(\lambda)}, \nabla^{*(\lambda)}\right)$ is called an " λ-Hessian manifold", or a manifold with λ-Hessian structure.

2.2 Horizontal and vertical lifts

Throughout this paper M_{1} and M_{2} will be respectively m_{1} and m_{2} dimensional manifolds, $M_{1} \times M_{2}$ the product manifold with the natural product coordinate system and $\pi_{1}: M_{1} \times M_{2} \rightarrow M_{1}$ and $\pi_{2}: M_{1} \times M_{2} \rightarrow M_{2}$ the usual projection maps.

We recall briefly how the calculus on the product manifold $M_{1} \times M_{2}$ derives from that of M_{1} and M_{2} separately. For details see [8].

Let φ_{1} in $C^{\infty}\left(M_{1}\right)$. The horizontal lift of φ_{1} to $M_{1} \times M_{2}$ is $\varphi_{1}^{h}=\varphi_{1} \circ \pi_{1}$. One can define the horizontal lifts of tangent vectors as follows. Let $p_{1} \in M_{1}$ and let $X_{p_{1}} \in T_{p_{1}} M_{1}$. For any $p_{2} \in M_{2}$ the horizontal lift of $X_{p_{1}}$ to $\left(p_{1}, p_{2}\right)$ is the unique tangent vector $X_{\left(p_{1}, p_{2}\right)}^{h}$ in $T_{\left(p_{1}, p_{2}\right)}\left(M_{1} \times M_{2}\right)$ such that $d_{\left(p_{1}, p_{2}\right)} \pi_{1}\left(X_{\left(p_{1}, p_{2}\right)}^{h}\right)=X_{p_{1}}$ and $d_{\left(p_{1}, p_{2}\right)} \pi_{2}\left(X_{\left(p_{1}, p_{2}\right)}^{h}\right)=0$.

We can also define the horizontal lifts of vector fields as follows. Let $X_{1} \in \Gamma\left(T M_{1}\right)$. The horizontal lift of X_{1} to $M_{1} \times M_{2}$ is the vector field $X_{1}^{h} \in \Gamma\left(T\left(M_{1} \times M_{2}\right)\right)$ whose value at each $\left(p_{1}, p_{2}\right)$ is the horizontal lift of the tangent vector $\left(X_{1}\right) p_{1}$ to $\left(p_{1}, p_{2}\right)$. For $\left(p_{1}, p_{2}\right) \in M_{1} \times M_{2}$, we will denote the set of the horizontal lifts to $\left(p_{1}, p_{2}\right)$ of all the tangent vectors of M_{1} at p_{1} by $L\left(p_{1}, p_{2}\right)\left(M_{1}\right)$. We will denote the set of the horizontal lifts of all vector fields on M_{1} by $\mathfrak{L}\left(M_{1}\right)$.

The vertical lift φ_{2}^{v} of a function $\varphi_{2} \in C^{\infty}\left(M_{2}\right)$ to $M_{1} \times M_{2}$ and the vertical lift X_{2}^{v} of a vector field $X_{2} \in \Gamma\left(T M_{2}\right)$ to $M_{1} \times M_{2}$ are defined in the same way using the projection π_{2}. Note that the spaces $\mathfrak{L}\left(M_{1}\right)$ of the horizontal lifts and $\mathfrak{L}\left(M_{2}\right)$ of the vertical lifts are vector subspaces of $\Gamma\left(T\left(M_{1} \times M_{2}\right)\right)$ but neither is invariant under multiplication by arbitrary functions $\varphi \in C^{\infty}\left(M_{1} \times M_{2}\right)$.

Observe that if $\left\{\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{m_{1}}}\right\}$ is the local basis of the vector fields (resp. $\left\{d x_{1}, \ldots, d x_{m_{1}}\right\}$ is the local basis of 1-forms) relative to a chart (U, Φ) of M_{1} and $\left\{\frac{\partial}{\partial y_{1}}, \ldots, \frac{\partial}{\partial y_{m_{2}}}\right\}$ is the local basis of the vector fields (resp. $\left\{d y_{1}, \ldots, d y_{m_{2}}\right\}$ the local basis of the 1 -forms) relative to a chart (V, Ψ) of M_{2}, then $\left\{\left(\frac{\partial}{\partial x_{1}}\right)^{h}, \ldots,\left(\frac{\partial}{\partial x_{m_{1}}}\right)^{h},\left(\frac{\partial}{\partial y_{1}}\right)^{v}, \ldots,\left(\frac{\partial}{\partial y_{m_{2}}}\right)^{v}\right\}$ is the local basis of the vector fields (resp. $\left\{\left(d x_{1}\right)^{h}, \ldots,\left(d x_{m_{1}}\right)^{h},\left(d y_{1}\right)^{v}, \ldots,\left(d y_{m_{2}}\right)^{v}\right\}$ is the local basis of the 1 -forms) relative to the chart $(U \times V, \Phi \times \Psi)$ of $M_{1} \times M_{2}$.

The following lemma will be useful later for our computations.

Lemma 1.

(1) Let $\varphi_{i} \in C^{\infty}\left(M_{i}\right), X_{i}, Y_{i} \in \Gamma\left(T M_{i}\right)$ and $\alpha_{i} \in \Gamma\left(T^{*} M_{i}\right), i=1,2$. Let $\varphi=\varphi_{1}^{h}+\varphi_{2}^{v}, X=X_{1}^{h}+X_{2}^{v}$ and $\alpha, \beta \in \Gamma\left(T^{*}\left(M_{1} \times\right.\right.$ $\left.M_{2}\right)$). Then
(i) For all $(i, I) \in\{(1, h),(2, v)\}$, we have

$$
X_{i}^{I}(\varphi)=X_{i}\left(\varphi_{i}\right)^{I}, \quad\left[X, Y_{i}^{I}\right]=\left[X_{i}, Y_{i}\right]^{I} \quad \text { and } \quad \alpha_{i}^{I}(X)=\alpha_{i}\left(X_{i}\right)^{I} .
$$

(ii) Iffor all $(i, I) \in\{(1, h),(2, v)\}$ we have $\alpha\left(X_{i}^{I}\right)=\beta\left(X_{i}^{I}\right)$, then $\alpha=\beta$.
(2) Let ω_{i} and η_{i} be r-forms on $M_{i}, i=1,2$. Let $\omega=\omega_{1}^{h}+\omega_{2}^{v}$ and $\eta=\eta_{1}^{h}+\eta_{2}^{v}$. We have

$$
d \omega=\left(d \omega_{1}\right)^{h}+\left(d \omega_{2}\right)^{v} \quad \text { and } \quad \omega \wedge \eta=\left(\omega_{1} \wedge \eta_{1}\right)^{h}+\left(\omega_{2} \wedge \eta_{2}\right)^{v}
$$

Proof. See [7].

Remark. Let X be a vector field on $M_{1} \times M_{2}$, such that $d \pi_{1}(X)=\varphi\left(X_{1} \circ \pi_{1}\right)$ and $d \pi_{2}(X)=\phi\left(X_{2} \circ \pi_{2}\right)$, then $X=\varphi X_{1}^{h}+\phi X_{2}^{v}$.

2.3 The generalized warped product

let $\psi: M \rightarrow N$ be a smooth map between smooth manifolds and let g be a metric on k-vector bundle $\left(F, P_{F}\right)$ over N. The metric $g^{\psi}: \Gamma\left(\psi^{-1} F\right) \times \Gamma\left(\psi^{-1} F\right) \rightarrow C^{\infty}(M)$ on the pull-back $\left(\psi^{-1} F, P_{\psi^{-1} F}\right)$ over M is defined by

$$
g^{\psi}(U, V)(p)=g_{\psi(p)}\left(U_{p}, V_{p}\right), \forall U, V \in \Gamma\left(\psi^{-1} F\right), p \in M .
$$

Given a linear connection ∇^{N} on k-vector bundle $\left(F, P_{F}\right)$ over N, the pull-back connection " ${ }^{\text {is }}$ the unique linear connection on the pull-back $\left(\psi^{-1} F, P_{\psi^{-1} F}\right)$ over M such that

$$
\begin{equation*}
\nabla_{X}^{\prime \prime}(W \circ \psi)=\nabla_{d \psi(X)}^{N}, \quad \forall W \in \Gamma(F), \forall X \in \Gamma(T M) . \tag{9}
\end{equation*}
$$

Further, let $U \in \psi^{-1} F$ and let $p \in M, X \in \Gamma(T M)$. Then

$$
\begin{equation*}
\left({ }_{\nabla}^{*} \nabla_{X} U\right)(p)=\left(\underset{d_{p} \psi\left(X_{p}\right)}{\nabla_{j}^{N}} \underset{\sim}{)}(\psi(p)),\right. \tag{10}
\end{equation*}
$$

where $\widetilde{U} \in \Gamma(F)$ with $\widetilde{U} \circ \psi=U$.
Now, let $\pi_{i}, \mathrm{i}=1,2$, be the usual projection of $M_{1} \times M_{2}$ onto M_{i}, given a linear connection ${ }^{i}$ on vector bundle $T M_{i}$, the pull-back connection ∇_{i} is the unique linear connection on the pull-back $M_{1} \times M_{2} \rightarrow \pi_{i}^{-1}\left(T M_{i}\right)$ such that for each $Y_{i} \in \Gamma\left(T M_{i}\right), X \in \Gamma\left(T M_{1} \times M_{2}\right)$

$$
\begin{equation*}
{\stackrel{\pi}{\dot{V}_{X}}}^{\mathrm{T}_{i}}\left(Y_{i} \circ \pi_{i}\right)=\underset{d \pi_{i}(\dot{X})}{i} \tag{11}
\end{equation*}
$$

Further, let $\left(p_{1}, p_{2}\right) \in M_{1} \times M_{2}, U \in \pi_{i}^{-1}(T M)$ and $X \in \Gamma\left(T M_{1} \times M_{2}\right)$. Then

$$
\begin{equation*}
\left.\left(\nabla_{X}^{\pi_{i}} U\right)\left(p_{1}, p_{2}\right)=\left(\nabla_{\left(\frac{d p_{1},\left(, P_{2}\right)}{}\left(p_{1}, p_{2}\right)\right.}^{i}\right) \widetilde{U}\right)\left(p_{i}\right) . \tag{12}
\end{equation*}
$$

Now, let c be an arbitrary real number and let $g_{i},(i=1,2)$ be a Riemannian metric tensor on M_{i}. Given a smooth positive function f_{i} on M_{i}, the generalized warped product of (M_{1}, g_{1}) and (M_{2}, g_{2}) is the product manifold $M_{1} \times M_{2}$ equipped with the metric tensor (see [6])

$$
G_{f_{1}, f_{2}}=\left(f_{2}^{v}\right)^{2} \pi_{1}^{*} g_{1}+\left(f_{1}^{h}\right)^{2} \pi_{2}^{*} g_{2}+c f_{1}^{h} f_{2}^{v} d f_{1}^{h} \odot d f_{2}^{v},
$$

Where π_{i}, $(i=1,2)$ is the projection of $M_{1} \times M_{2}$ onto M_{i} and

$$
d f_{1}^{h} \odot d f_{2}^{v}=d f_{1}^{h} \otimes d f_{2}^{v}+d f_{2}^{v} \otimes d f_{1}^{h} .
$$

For all $X, Y \in \Gamma\left(T M_{1} \times M_{2}\right)$, we have

$$
\left.G_{f_{1}, f_{2}}(X, Y)=\left(f_{2}^{v}\right)^{2} g_{1}^{\pi_{1}}\left(d \pi_{1}(X), d \pi_{1}(Y)\right)+\left(f_{1}^{h}\right)^{2} g_{2}^{\pi_{2}}\left(d \pi_{2}(X), d \pi_{2}(Y)\right)+c f_{1}^{h} f_{2}^{v}\left(X\left(f_{1}^{h}\right) Y\left(f_{2}^{v}\right)+X\left(f_{2}^{\nu}\right) Y\left(f_{1}^{h}\right)\right)\right) .
$$

The latter is the unique tensor fields such that for any $X_{i}, Y_{i} \in \Gamma\left(T M_{i}\right),(i=1,2)$

$$
\tilde{g}_{f_{1}, 2}\left(X_{i}^{I}, Y_{k}^{K}\right)= \begin{cases}\left(f_{3-i}^{J}\right)^{2} g_{i}\left(X_{i}, Y_{i}\right)^{I}, & \text { if }(i, I)=(k, K) \tag{13}\\ c f_{i}^{I} f_{k}^{K} X_{i}\left(f_{i}\right)^{I} Y_{k}\left(f_{k}\right)^{K}, & \text { otherwise }\end{cases}
$$

If either $f_{1} \equiv 1$ or $f_{2} \equiv 1$ but not both, then we obtain a singly warped product. If both $f_{1} \equiv 1$ and $f_{2} \equiv 1$, then we have a product manifold. If neither f_{1} nor f_{2} is constant and $c=0$, then we have a nontrivial doubly warped product. If neither f_{1} nor f_{2} is constant and $c \neq 0$, then we have a nontrivial generalized warped product.

Now, Let us assume that $\left(M_{i}, g_{i}\right),(i=1,2)$ is a smooth connected Riemannian manifold. The following proposition provides a necessary and sufficient condition for a symmetric tensor field $G_{f_{1}, f_{2}}$ of type $(0,2)$ of two Riemannian metrics to be a Riemannian metric.

Proposition 1. [6] Let $\left(M_{i}, g_{i}\right),(i=1,2)$ be a Riemannian manifold and let f_{i} be a positive smooth function on M_{i} and c be an arbitrary real number. Then the symmetric tensor field $G_{f_{1} f_{2}}$ is a Riemannian metric on $M_{1} \times M_{2}$ if and only if

$$
\begin{equation*}
0 \leq c^{2} g_{1}\left(\operatorname{grad} f_{1}, \operatorname{grad} f_{1}\right)^{h} g_{2}\left(\operatorname{grad} f_{2}, \operatorname{grad} f_{2}\right)^{v}<1 \tag{14}
\end{equation*}
$$

Corollary 1. [6] If the symmetric tensor field $G_{f_{1}, f_{2}}$ of type $(0,2)$ on $M_{1} \times M_{2}$ is degenerate, then for any $i \in\{1,2\}$, $g_{i}\left(\operatorname{gradf}_{i}, \operatorname{grad}_{i}\right)$ is positive constant k_{i} in which

$$
k_{i}=\frac{1}{c^{2} k_{(3-i)}}
$$

In all what follows, we suppose that f_{1} and f_{2} satisfie the inequality (14).
Lemma 2.[6] Let X be an arbitrary vector field of $M_{1} \times M_{2}$, if there exist $\varphi_{i}, \psi_{i} \in C^{\infty}\left(M_{i}\right)$ and $X_{i}, Y_{i} \in \Gamma\left(T M_{i}\right),(i=1,2)$ such that

$$
\left\{\begin{array}{l}
G_{f_{1} f_{2}}\left(X, Z_{1}^{h}\right)=G_{f_{1} f_{2}}\left(\varphi_{2}^{v} X_{1}^{h}+\varphi_{1}^{h} X_{2}^{v}, Z_{1}^{h}\right), \\
G_{f_{1} f_{2}}\left(X, Z_{2}^{v}\right)=h^{h} G_{f_{1} f_{2}}\left(\psi_{2}^{v} Y_{1}^{h}+\psi_{1}^{h} Y_{2}^{v}, Z_{2}^{v}\right) .
\end{array} \quad \forall Z_{i} \in \Gamma\left(T M_{i}\right),\right.
$$

Then we have,

$$
\begin{equation*}
X=\varphi_{2}^{v} X_{1}^{h}+\psi_{1}^{h} Y_{2}^{v}+c f_{1}^{h} f_{2}^{v}\left\{\psi_{2}^{v} Y_{1}\left(f_{1}\right)^{h}-\varphi_{2}^{v} X_{1}\left(f_{1}\right)^{h}\right\} \operatorname{grad}\left(f_{2}^{v}\right)-c f_{1}^{h} f_{2}^{v}\left\{\psi_{1}^{h} Y_{2}\left(f_{2}\right)^{v}-\varphi_{1}^{h} X_{2}\left(f_{2}\right)^{v}\right\} \operatorname{grad}\left(f_{1}^{h}\right) \tag{15}
\end{equation*}
$$

3 Dualistic structure with respect to $G_{f_{1} f_{2}}$

Proposition 2. Let $\left(G_{f_{1} f_{2}}, \nabla, \nabla^{*}\right)$ be a dualistic structure on $M_{1} \times M_{2}$. Then there exists an affine connection $\nabla^{i}, \nabla^{i}{ }^{*}$ on M_{i}, such that $\left(g_{i}, \nabla^{i}, \nabla^{*}\right)$ is a dualistic structure on $M_{i}(i=1,2)$.

Proof. Taking the affine connections on $M_{i},(i=1,2)$.

$$
\left\{\begin{array}{l}
\left(\nabla_{X_{1}} Y_{1}\right) \circ \pi_{1}=d \pi_{1}\left(\nabla_{X_{1}^{h}} Y_{1}^{h}\right)+c \frac{f_{1}^{h}}{f_{2}^{\prime}}\left(\nabla_{X_{1}^{h}} Y_{1}^{h}\right)\left(f_{2}^{v}\right)\left(\operatorname{grad} f_{1}\right) \circ \pi_{1}, \quad \forall X_{1}, Y_{1} \in \Gamma\left(T M_{1}\right) \\
\left(\nabla_{X_{1}}^{*} Y_{1}\right) \circ \pi_{1}=d \pi_{1}\left(\nabla_{X_{1}^{*}}^{*} Y_{1}^{h}\right)+c \frac{f_{1}^{h}}{f_{2}^{v}}\left(\nabla_{X_{1}^{h}}^{*} Y_{1}^{h}\right)\left(f_{2}^{v}\right)\left(\operatorname{grad} f_{1}\right) \circ \pi_{1}, \\
\left(\nabla_{X_{2}} Y_{2}\right) \circ \pi_{2}=d \pi_{2}\left(\nabla_{X_{2}^{v}} Y_{2}^{v}\right)+c \frac{f_{2}^{v}}{f_{1}^{h}}\left(\nabla_{X_{2}^{v}} Y_{2}^{v}\right)\left(f_{1}^{h}\right)\left(\operatorname{grad} f_{2}\right) \circ \pi_{2}, \quad \forall X_{2}, Y_{2} \in \Gamma\left(T M_{2}\right) \\
\left(\nabla_{X_{2}}^{*} Y_{2}\right) \circ \pi_{2}=d \pi_{2}\left(\nabla_{X_{2}^{v}}^{*} Y_{2}^{v}\right)+c \frac{f_{2}^{v}}{f_{1}^{h}}\left(\nabla_{X_{2}^{v}}^{*} Y_{2}^{v}\right)\left(f_{1}^{h}\right)\left(\operatorname{grad} f_{2}\right) \circ \pi_{2} .
\end{array}\right.
$$

Therfore, we have for all $X_{i}, Y_{i}, Z_{i} \in \Gamma\left(T M_{i}\right)(i=1,2)$.

$$
\begin{equation*}
X_{i}^{I}\left(G_{f_{1} f_{2}}\left(Y_{i}^{I}, Z_{i}^{I}\right)\right)=G_{f_{1} f_{2}}\left(\nabla_{X_{i}^{I}} Y_{i}^{I}, Z_{i}^{I}\right)+G_{f_{1} f_{2}}\left(Y_{i}^{I}, \nabla_{X_{i}^{I}}^{*} Z_{i}^{I}\right) \tag{16}
\end{equation*}
$$

Since, $d \pi_{3-i}\left(Z_{i}^{I}\right)=0, X_{i}^{I}\left(f_{3-i}^{J}\right)=0$ and for any $X \in \Gamma\left(T M_{1} \times M_{2}\right)$,

$$
g_{f_{1} f_{2}}\left(X, Z_{i}^{I}\right)=\left(f_{3-i}^{J}\right)^{2} g_{i}^{\pi_{i}}\left(d \pi_{i}(X), Z_{i} \circ \pi_{i}\right)+c f_{1}^{h} f_{2}^{\nu} X\left(f_{3-i}^{J}\right) Z_{i}\left(f_{i}\right)^{I}
$$

then the equation (16) is aquivalent to

$$
\left(f_{3-i}^{J}\right)^{2}\left(X_{i}\left(g_{i}\left(Y_{i}, Z_{i}\right)\right)\right)^{I}=\left(f_{3-i}^{J}\right)^{2}\left\{g_{i}\left({\stackrel{i}{\nabla_{i}}}_{X_{i}} Y_{i}, Z_{i}\right)+g_{i}\left(Y_{i},{\stackrel{i}{X_{i}}}_{*}^{i} Z_{i}\right)\right\}^{I}
$$

where $(i, I),(3-i, J) \in\{(1, h),(2, v)\}$.
Hence, the pair of affine connections $\stackrel{i}{\nabla}$ and $\stackrel{i}{\nabla}^{*}$ are conjugate with respect to g_{i}.
Proposition 3. Let $\left(g_{i}, \stackrel{i}{\nabla}, \nabla^{i}\right)$ be a dualistic structure on $M_{i}(i=1,2)$. Then there exists a dualistic structure on $M_{1} \times M_{2}$ with respect to $G_{f_{1} f_{2}}$.

Proof. Let ∇ and ∇^{*} be the connections on $M_{1} \times M_{2}$ given by
for any $X, Y \in \Gamma\left(T M_{1} \times M_{2}\right)$, where $B_{f_{i}}$ and $B_{A_{i}}^{*}(i=1,2)$ the $(0,2)$ tensors fields of f_{i}^{I} are given respectively by

$$
B_{f_{i}}(X, Y)=c f_{i}^{I}\left\{X\left(Y\left(f_{i}^{I}\right)\right)-g_{i}^{\pi_{i}}\left(\nabla_{X}^{\pi_{i}} d \pi_{i}(Y),\left(\operatorname{grad}_{i}\right) \circ \pi_{i}\right)\right\}+c X\left(f_{i}^{I}\right) Y\left(f_{i}^{I}\right)-\frac{1}{f_{j}^{J}} g_{i}^{\pi_{i}}\left(d \pi_{i}(X), d \pi_{i}(Y)\right),
$$

and

$$
\vec{f}_{i}^{\prime \prime}(X, Y)=c f_{i}^{I}\left\{X\left(Y\left(f_{i}^{I}\right)\right)-g_{i}^{\pi_{i}}\left(\mathbb{Z}^{*} d \pi_{i}(Y),\left(\operatorname{grad}_{i}\right) \circ \pi_{i}\right)\right\}+c X\left(f_{i}^{I}\right) Y\left(f_{i}^{I}\right)-\frac{1}{f_{j}^{J}} g_{i}^{\pi_{i}}\left(d \pi_{i}(X), d \pi_{i}(Y)\right),
$$

$j=i-3$ and $(i, I),(j, J) \in\{(1, h),(2, v)\}$. Or, for any $X_{i}, Y_{i} \in \Gamma\left(T M_{i}\right)(i=1,2)$

$$
\left\{\begin{array}{l}
\nabla_{X_{1}^{h}} Y_{1}^{h}=\left(\nabla_{1}^{1} Y_{1}\right)^{h}+f_{2}^{v} B_{f_{1}}\left(X_{1}, Y_{1}\right)^{h} \operatorname{grad}\left(f_{2}^{v}\right) ; \tag{18}\\
\nabla_{X_{2}^{v}} Y_{2}^{v h}=\left(\nabla_{X_{2}} Y_{2}\right)^{v}+f_{1}^{h} B_{f_{2}}\left(X_{2}, Y_{2}\right)^{v} \operatorname{grad}\left(f_{1}^{h}\right) ; \\
\nabla_{X_{1}^{h}}^{*} Y_{1}^{h}=\left(\nabla_{X_{1}^{*}}^{*} Y_{1}\right)^{h}+f_{2}^{v} B_{f_{1}}^{*}\left(X_{1}, Y_{1}\right)^{h} \operatorname{grad}\left(f_{2}^{v}\right) ; \\
\nabla_{X_{2}^{\prime}}^{*} Y_{2}^{v}=\left(\nabla_{X_{2}}^{*} Y_{2}\right)^{v}+f_{1}^{h} B_{f_{2}}^{*}\left(X_{2}, Y_{2}\right)^{v} \operatorname{grad}\left(f_{1}^{h}\right) ; \\
\nabla_{X_{1}^{h}} Y_{2}^{v}=\nabla_{X_{1}^{h}}^{*} Y_{2}^{v}=-c X_{1}\left(f_{1}\right)^{h} Y_{2}\left(f_{2}\right)^{v}\left\{f_{2}^{v} \operatorname{grad}\left(f_{1}^{h}\right)+f_{1}^{h} \operatorname{grad}\left(f_{2}^{v}\right)\right\}+\left(Y_{2}\left(\ln f_{2}\right)\right)^{v} X_{1}^{h}+\left(X_{1}\left(\ln f_{2}\right)\right)^{h} Y_{2}^{v} \\
\nabla_{Y_{2}^{v}} X_{1}^{h}=\nabla_{Y_{2}^{v}}^{*} X_{1}^{h}=\nabla_{X_{1}^{h}} Y_{2}^{v} .
\end{array}\right.
$$

Where $B_{f_{i}}$ and $B_{i}^{*}(i=1,2)$ are the $(0,2)$ tensors fields of f_{i} given respectively by

$$
B_{f_{i}}\left(X_{i}, Y_{i}\right)=c f_{i}\left\{X_{i}\left(Y_{i}\left(f_{i}\right)\right)-{ }_{X_{i}}^{i} Y_{i}\left(f_{i}\right)\right\}+c X_{i}\left(f_{i}\right) Y_{i}\left(f_{i}\right)-g_{i}\left(X_{i}, Y_{i}\right),
$$

and

$$
B_{f_{i}}^{*}\left(X_{i}, Y_{i}\right)=c f_{i}\left\{X_{i}\left(Y_{i}\left(f_{i}\right)\right)-\stackrel{i}{X}_{i}^{*} Y_{i}\left(f_{i}\right)\right\}+c X_{i}\left(f_{i}\right) Y_{i}\left(f_{i}\right)-g_{i}\left(X_{i}, Y_{i}\right),
$$

Let us assume that $\left(g_{i}, \nabla_{\nabla}^{i}, \nabla^{i}\right)$ is a dualistic structures on $M_{i}, i=1,2$. Let A be a tensor field of type (0,3) defined for any $X, Y, Z \in$ $\Gamma\left(T M_{1} \times M_{2}\right)$ by

$$
A(X, Y, Z)=X\left(G_{f_{1} f_{2}}(Y, Z)\right)-G_{f_{1} f_{2}}\left(\nabla_{X} Y, Z\right)-G_{f_{1} f_{2}}\left(Y, \nabla_{X}^{*} Z\right),
$$

if $X_{i}, Y_{i}, Z_{i} \in \Gamma\left(T M_{i}\right), i=1,2$, then we have

$$
X_{i}^{I}\left(G_{f_{1}, 2}\left(Y_{i}^{I}, Z_{i}^{I}\right)\right)=X_{i}^{I}\left(\left(f_{3-i}^{J}\right)^{2} g_{i}\left(X_{i}, Y_{i}\right)^{I}\right) .
$$

Since $d \pi_{3-i}\left(X_{i}^{I}\right)=0$, it follows that $d \pi_{3-i}\left(X_{i}^{I}\right)\left(f_{3-i}=X_{i}^{I}\left(f_{3-i}^{J}\right)=0\right.$, and hence

$$
X_{i}^{I}\left(G_{f_{1} f_{2}}\left(Y_{i}^{I}, Z_{i}^{I}\right)\right)=\left(f_{3-i}^{J}\right)^{2}\left(X\left(g_{i}\left(Y_{i}, Z_{i}\right)\right)\right)^{I}
$$

as $\left(g_{i}, \stackrel{i}{V}^{i}, \nabla^{*}\right.$ is dualistic structure, we have thus

$$
X_{i}^{I}\left(G_{f_{1} f_{2}}\left(Y_{i}^{I}, Z_{i}^{I}\right)\right)=\left(f_{3-i}^{J}\right)^{2}\left\{g_{i}\left(\nabla_{X_{i}}^{i} Y_{i}, Z_{i}\right)^{I}+g_{i}\left(Y_{i}, \bar{\nabla}_{X_{i}^{*}}^{i} Z_{i}\right)^{I}\right\}
$$

From Equations (13), (18), then it's easily observed that the following equation holds

$$
A\left(X_{i}^{I}, Y_{i}^{I}, Z_{i}^{I}\right)=0
$$

In the different lifts $(i \neq j)$, we have

$$
\begin{gathered}
X_{i}^{I}\left(G_{f_{1} f_{2}}\left(Y_{i}^{I}, Z_{j}^{J}\right)\right)=c f_{j}^{J}\left(Z_{j}\left(f_{j}\right)\right)^{J} X_{i}\left(\left(f_{i}\left(Y\left(f_{i}\right)\right)\right)\right)^{I}, \\
G_{f_{1} f_{2}}\left(\nabla_{X_{i}^{\prime}} Y_{i}^{I}, Z_{j}^{J}\right)=f_{j}^{J}\left\{c f_{i} X_{i}\left(Y_{i}\left(f_{i}\right)\right)+c X_{i}\left(f_{i}\right) Y_{i}\left(f_{i}\right)-g_{i}\left(X_{i}, Y_{i}\right)\right\}^{I} Z_{j}\left(f_{j}\right)^{J},
\end{gathered}
$$

and

$$
G_{f_{1}, f_{2}}\left(\nabla_{X_{i}^{I}}^{*} Z_{j}^{J}, Y_{i}^{I}\right)=f_{j}^{J} g_{i}\left(X_{i}, Y_{i}\right)^{I} Z_{j}\left(f_{j}\right)^{J}
$$

We add these equations and obtain

$$
A\left(X_{i}^{I}, Y_{i}^{I}, Z_{j}^{J}\right)=0
$$

Hence the same applies for $A\left(X_{j}^{J}, Y_{i}^{I}, Z_{i}^{I}\right)=A\left(X_{i}^{I}, Y_{j}^{J}, Z_{i}^{I}\right)=0$. This proves that ∇^{*} is conjugate to ∇ with respect to $G_{f_{1} f_{2}}$.
We recall that the connection ∇ on $M_{1} \times M_{2}$ induced by $\nabla^{\frac{1}{2}}$ and ${ }^{2}$ on M_{1} and M_{2} respectively, is given by Equation (18).
Proposition 4. $\left(M_{1}, \stackrel{1}{\nabla}, g_{1}\right)$ and $\left(M_{2}, \stackrel{2}{\nabla}, g_{2}\right)$ are statistical manifolds if and only if $\left(M_{1} \times M_{2}, G_{f_{1} f_{2}}, \nabla\right)$ is a statistical manifold.

Proof. Let us assume that $\left(M_{i}, \stackrel{i}{\nabla}, g_{i}\right)(i=1,2)$ is statistical manifold.
Firstly, we show that ∇ is torsion-free. Indeed; by Equation (17), we have for any $X, Y \in \Gamma\left(T M_{1} \times M_{2}\right)$

$$
d \pi_{i}(T(X, Y)) \stackrel{\pi_{i}}{=}{ }^{\Downarrow} d \pi_{i}(Y)-{ }^{\pi_{i}} \nabla d \pi_{i}(X)-d \pi_{i}([X, Y])
$$

Since for $i=1,2, \stackrel{i}{\nabla}$ is torsion-free, then

$$
{ }^{\pi_{i}} \boxtimes d \pi_{i}(Y)-{ }^{\pi_{i}} \nabla d \pi_{i}(X)=d \pi_{i}([X, Y])
$$

Therefore, from Remark 2.2, the connection ∇ is torsion-free.

Secondly, we show that $\nabla G_{f_{1}, f_{2}}$ is symmetric. In fact; for $i=1,2$,

$$
\left(\nabla G_{f_{1} f_{2}}\right)\left(X_{i}^{I}, Y_{i}^{I}, Z_{i}^{J}\right)=X_{i}^{I}\left(G_{f_{1} f_{2}}\left(Y_{i}^{I}, Z_{i}^{I}\right)\right)-G_{f_{1} f_{2}}\left(\nabla_{X_{i}^{I}} Y_{i}^{I}, Z_{i}^{I}\right)-G_{f_{1} f_{2}}\left(Y_{i}^{I}, \nabla_{X_{i}^{I}} Z_{i}^{I}\right)
$$

by Equations (13) and (18) and since $\left(\stackrel{i}{\nabla} g_{i}\right), i=1,2$, is symmetric, we have

$$
\begin{aligned}
\left(\nabla G_{f_{1} f_{2}}\right)\left(X_{i}^{I}, Y_{I}^{I}, Z_{i}^{I}\right) & =\left(f_{3-i}^{J}\right)^{2}\left(\left(\stackrel{i}{\nabla} g_{i}\right)\left(X_{i}, Y_{i}, Z_{i}\right)\right)^{I} \\
& =\left(f_{3-i}^{J}\right)^{2}\left(\left(\nabla g_{i}\right)\left(Y_{i}, X_{i}, Z_{i}\right)\right)^{h} \\
& =\left(\nabla G_{f_{1} f_{2}}\right)\left(Y_{i}^{I}, X_{I}^{I}, Z_{i}^{I}\right) .
\end{aligned}
$$

In the different lifts, we have

$$
\left(\nabla G_{f_{1} f_{2}}\right)\left(X_{i}^{I}, Y_{i}^{I}, Z_{3-i}^{J}\right)=\left(\nabla G_{f_{1} f_{2}}\right)\left(X_{3-i}^{J}, Y_{i}^{I}, Z_{i}^{I}\right)=\left(\nabla G_{f_{1} f_{2}}\right)\left(X_{i}^{I}, Y_{3-i}^{I}, Z_{i}^{I}\right)=0
$$

Therefore, $\left(\nabla G_{f_{1} f_{2}}\right)$ is symmetric. Thus $\left(M_{1} \times M_{2}, g_{f_{1} f_{2}}, \nabla\right)$ is a statistical manifold.
Conversely, if $\left(M_{1} \times M_{2}, G_{f_{1} f_{2}}, \nabla\right)$ is a statistical manifold, then $\left(\nabla G_{f_{1} f_{2}}\right)$ is symmetric and ∇ is torsion-free, particularly, when $X_{i}, Y_{i}, Z_{i} \in \Gamma\left(T M_{i}\right)$, we have

$$
\left\{\begin{array}{l}
\left(\nabla G_{f_{1} f_{2}}\right)\left(X_{i}^{I}, Y_{I}^{I}, Z_{i}^{I}\right)=\left(\nabla G_{f_{1} f_{2}}\right)\left(Y_{i}^{I}, X_{I}^{I}, Z_{i}^{I}\right), \forall i=1,2 \\
T\left(X_{i}^{I}, Y_{i}^{I}\right)=0, \forall i=1,2,
\end{array}\right.
$$

Then, by Equations (13) and (18), we obtained, for $i=1,2, \stackrel{i}{\nabla} g_{i}$, is symmetric and $\stackrel{i}{\nabla}$, is torsion-free. Therefore, $\left(M_{i}, \stackrel{i}{\nabla}, g_{i}\right)$, $i=1,2$, is a statistical manifold.

4 Dualistic structure with respect to $\tilde{g}_{f_{1} f_{2}}$

Let c be an arbitrary real number and let $g_{i},(i=1,2)$ be a Riemannian metric tensors on M_{i}. Given a smooth positive function f_{i} on M_{i}, we define a metric tensor field on $M_{1} \times M_{2}$ by

$$
\begin{equation*}
\tilde{g}_{f_{1}, f_{2}}=\pi_{1}^{*} g_{1}+\left(f_{1}^{h}\right)^{2} \pi_{2}^{*} g_{2}+\frac{c^{2}}{2}\left(f_{2}^{\nu}\right)^{2} d f_{1}^{h} \odot d f_{1}^{h} \tag{19}
\end{equation*}
$$

where $\pi_{i},(i=1,2)$ is the projection of $M_{1} \times M_{2}$ onto M_{i} (see [6]).
For all $X, Y \in \Gamma\left(T M_{1} \times M_{2}\right)$, we have

$$
\left.\tilde{g}_{f_{1}, f_{2}}(X, Y)=g_{1}^{\pi_{1}}\left(d \pi_{1}(X), d \pi_{1}(Y)\right)+\left(f_{1}^{h}\right)^{2} g_{2}^{\pi_{2}}\left(d \pi_{2}(X), d \pi_{2}(Y)\right)+\left(c f_{2}^{v}\right)^{2} X\left(f_{1}^{h}\right) Y\left(f_{1}^{h}\right)\right)
$$

The latter is the unique tensor fields such that for any $X_{i}, Y_{i} \in \Gamma\left(T M_{i}\right),(i=1,2)$

$$
\left\{\begin{array}{l}
\tilde{g}_{f_{1} f_{2}}\left(X_{1}^{h}, Y_{1}^{h}\right)=g_{1}\left(X_{1}, Y_{1}\right)^{h}+\left(c f_{2}^{v}\right)^{2} X_{1}\left(f_{1}\right) Y_{1}\left(f_{1}\right)^{h} \tag{20}\\
\tilde{g}_{f_{1} f_{2}}\left(X_{1}^{h}, Y_{2}^{v}\right)=\tilde{g}_{f_{1} f_{2}}\left(Y_{2}^{v}, X_{1}^{h}\right)=0 \\
\tilde{g}_{f_{1} f_{2}}\left(X_{2}^{v}, Y_{2}^{v}\right)=\left(f_{1}^{h}\right)^{2} g_{2}\left(X_{2}, Y_{2}\right)^{v}
\end{array}\right.
$$

Proposition 5. Let $\left(\tilde{g}_{f_{1} f_{2}}, \nabla, \nabla^{*}\right)$ be a dualistic structure on $M_{1} \times M_{2}$. Then there exists an affine connections $\stackrel{i}{\nabla}, \stackrel{i}{\nabla^{*}}$ on M_{i}, such that $\left(g_{i}, \stackrel{i}{\nabla}, \nabla^{*}\right)$ is a dualistic structure on $M_{i}(i=1,2)$.

Proof. Taking the affine connections on $M_{i},(i=1,2)$.

$$
\begin{align*}
& \left\{\begin{array}{l}
\left(\nabla_{X_{1}}^{1} Y_{1}\right) \circ \pi_{1}=d \pi_{1}\left(\nabla_{X_{1}^{h}} Y_{1}^{h}\right)-\left(c f_{2}^{v}\right)^{2} H^{f_{1}^{h}}\left(X_{1}^{h}, Y_{1}^{h}\right)\left(\operatorname{grad}_{1}\right) \circ \pi_{1}, \\
\left(\nabla_{X_{1}}^{*} Y_{1}\right) \circ \pi_{1}= \\
\left\{\pi_{1}\left(\nabla_{X_{1}^{K}}^{*} Y_{1}^{h}\right)-\left(c f_{2}^{v}\right)^{2} H^{* f_{1}^{h}}\left(X_{1}^{h}, Y_{1}^{h}\right)\left(\operatorname{grad}_{1}\right) \circ \pi_{1},\right. \\
\\
\left\{\begin{array}{l}
\left(\nabla_{X_{2}}^{2} Y_{2}\right) \circ \pi_{2}=\frac{1}{\left(f_{1}^{h}\right)^{2}} d \pi_{2}\left(\nabla_{X_{2}^{v}} Y_{2}^{v}\right) \\
\left(\nabla_{X_{2}}^{*} Y_{2}\right) \circ \pi_{2}=\frac{1}{\left(f_{1}^{h}\right)^{2}} d \pi_{2}\left(\nabla_{X_{2}^{v}}^{*} Y_{2}^{v}\right)
\end{array}\right.
\end{array} .\right. \tag{21}
\end{align*}
$$

Therefore, we have for all $X_{i}, Y_{i}, Z_{i} \in \Gamma\left(T M_{i}\right)(i=1,2)$.

$$
\begin{equation*}
X_{i}^{I}\left(\tilde{g}_{f_{1} f_{2}}\left(Y_{i}^{I}, Z_{i}^{I}\right)\right)=\tilde{g}_{f_{1} f_{2}}\left(\nabla_{X_{i}^{I}} Y_{i}^{I}, Z_{i}^{I}\right)+\tilde{g}_{f_{1} f_{2}}\left(Y_{i}^{I}, \nabla_{X_{i}^{I}}^{*} Z_{i}^{I}\right) \tag{23}
\end{equation*}
$$

Since, $d \pi_{3-i}\left(Z_{i}^{I}\right)=0, X_{i}^{I}\left(f_{3-i}^{J}\right)=0$ and for any $X \in \Gamma\left(T M_{1} \times M_{2}\right)$,

$$
\tilde{g}_{f_{1} f_{2}}\left(X, Z_{i}^{I}\right)=\left\{\begin{array}{l}
g_{1}^{\pi_{1}}\left(d \pi_{1}(X), Z_{1} \circ \pi_{1}\right)+\left(c f_{2}^{v}\right)^{2} X\left(f_{1}^{h}\right) Z_{i}\left(f_{1}\right)^{h}, \text { if }(i, I)=(1, h) \\
\left(f_{1}^{h}\right)^{2} g_{2}^{\pi_{2}}\left(d \pi_{2}(X), Z_{2} \circ \pi_{2}\right),(i, I)=(2, v)
\end{array}\right.
$$

Substituting from Equations (21) and (22) into Formula (23) we get

$$
\left\{\begin{array}{l}
\left(X_{1}\left(g_{1}\left(Y_{1}, Z_{1}\right)\right)\right)^{h}=g_{1}^{\pi_{1}}\left(\nabla_{X_{1}}^{1} Y_{1}, Z_{1} \circ \pi_{1}\right)+g_{1}^{\pi_{1}}\left(\nabla_{X_{1}}^{*} Z_{1}, Y_{1} \circ \pi_{1}\right), \\
\left(f_{1}^{h}\right)^{2}\left(X_{2}\left(g_{2}\left(Y_{2}, Z_{2}\right)\right)\right)^{v}=\left(f_{1}^{h}\right)^{2}\left\{g_{2}^{\pi_{2}}\left(\nabla_{X_{2}}^{2} Y_{2}, Z_{2} \circ \pi_{2}\right)+g_{2}^{\pi_{2}}\left(\nabla_{X_{2}}^{2} Z_{2}, Y_{2} \circ \pi_{2}\right)\right\},
\end{array}\right.
$$

Hence, the pair of affine connections ∇^{i} and ∇^{i} are conjugate with respect to g_{i}.
Proposition 6. Let $\left(g_{i}, \stackrel{i}{\nabla}, \nabla^{i}\right)$ be a dualistic structure on $M_{i}(i=1,2)$. Then there exists a dualistic structure on $M_{1} \times M_{2}$ with respect to $\tilde{g}_{f_{1} f_{2}}$.

Proof. Let ∇ and ∇^{*} be the connections on $M_{1} \times M_{2}$ given by

$$
\left\{\begin{array}{l}
\nabla_{X_{1}^{h}} Y_{1}^{h}=\left(\nabla_{X_{1}} Y_{1}\right)^{h}+\frac{\left(c f_{2}^{v}\right)^{2} H^{f_{1}}\left(X_{1}, Y_{1}\right)^{h}}{1+\left(c f_{2}^{v}\right)^{2} b_{1}^{h}}\left(\operatorname{grad}_{1}\right)^{h}-c^{2} f_{2}^{v}\left(X_{1}\left(\ln f_{1}\right) Y_{1}\left(\ln f_{1}\right)\right)^{h}\left(\operatorname{grad} f_{2}\right)^{v}, \tag{24}\\
\nabla_{X_{2}^{v}} Y_{2}^{v h}=\left(\nabla_{X_{2}} Y_{2}\right)^{v}-\frac{f_{1}^{h} z_{2}\left(X_{2}, Y_{2} v^{v^{2}}\right.}{\left.1+(c c c)^{v}\right)^{h} b_{1}^{h}}\left(\operatorname{grad}_{1}\right)^{h}, \\
\nabla_{X_{1}^{h}}^{*} Y_{1}^{h}=\left(\nabla_{X_{1}}^{*} Y_{1}\right)^{h}+\frac{\left(c f_{2}^{v}\right)^{2} H^{*} f_{1}\left(X_{1}, Y_{1}\right)^{h}}{1+\left(c f_{2}^{v}\right)^{2} b_{1}^{h}}\left(\operatorname{grad}_{1}\right)^{h}-c^{2} f_{2}^{v}\left(X_{1}\left(\ln f_{1}\right) Y_{1}\left(\ln f_{1}\right)\right)^{h}\left(\operatorname{grad}_{2}\right)^{v}, \\
\nabla_{X_{2}^{v}}^{*} Y_{2}^{v}=\left(\nabla_{X_{2}}^{*} Y_{2}\right)^{v}-\frac{f_{1}^{h} g_{2}\left(X_{2}, Y_{2}\right)^{v}}{1+\left(c c f_{2}^{v}\right)^{2} b_{1}^{h}}\left(\operatorname{grad}_{1}\right)^{h}, \\
\nabla_{X_{1}^{h}} Y_{2}^{v}=\nabla_{X_{1}^{h}}^{*} Y_{2}^{v}=\frac{c^{2} f_{2}^{f} Y_{2}\left(f_{2}\right)^{v} X_{1}\left(f_{1}\right)^{h}}{1+\left(c f_{2}^{v}\right)^{2} b_{1}^{h}}\left(\operatorname{grad}_{1}\right)^{h}+\left(X_{1}\left(\ln f_{1}\right)\right)^{h} Y_{2}^{v}, \\
\nabla_{Y_{2}^{v}} X_{1}^{h}=\nabla_{Y_{2}^{v}}^{*} X_{1}^{h}=\nabla_{X_{1}^{h}} Y_{2}^{v} .
\end{array}\right.
$$

for any $X_{i}, Y_{i} \in \Gamma\left(T M_{i}\right)(i=1,2)$ and where $H^{f_{1}}$ and $H^{* f_{1}}$ are the Hessian of f_{1} with respect to $\stackrel{1}{\nabla}^{\text {and }} \nabla^{\frac{1}{\nabla}}$ respectively.
Let us assume that $\left(g_{i}, \stackrel{i}{\nabla}, \stackrel{i}{\nabla}\right)$ is a dualistic structure on $M_{i}, i=1,2$. Let A be a tensor field of type $(0,3)$ defined for any $X, Y, Z \in \Gamma\left(T M_{1} \times M_{2}\right)$ by

$$
A(X, Y, Z)=X\left(\tilde{g}_{f_{1} f_{2}}(Y, Z)\right)-\tilde{g}_{f_{1} f_{2}}\left(\nabla_{X} Y, Z\right)-\tilde{g}_{f_{1} f_{2}}\left(Y, \nabla_{X}^{*} Z\right)
$$

Since $d \pi_{3-i}\left(X_{i}^{I}\right)=0$, it follows that

$$
X_{i}^{I}\left(f_{3-i}^{J}\right)=d \pi_{3-i}\left(X_{i}^{I}\right)\left(f_{3-i}\right)=0, \quad \forall(i, I),(j, J) \in\{(i, h),(2, v)\}
$$

and hence, for all $X_{i}, Y_{i}, Z_{i} \in \Gamma\left(T M_{i}\right)(i=1,2)$, we have

$$
\left\{\begin{array}{l}
X_{1}^{h}\left(\tilde{g}_{f_{1} f_{2}}\left(Y_{1}^{h}, Z_{1}^{h}\right)\right)=\left(X_{1}\left(g_{1}\left(Y_{1}, Z_{1}\right)\right)\right)^{h}+\left(c f_{2}^{v}\right)^{2}\left\{Y_{1}\left(f_{1}\right) X_{1}\left(Z_{1}\left(f_{1}\right)\right)+Z_{1}\left(f_{1}\right) X_{1}\left(Y_{1}\left(f_{1}\right)\right)\right\}^{h} \\
X_{2}^{v}\left(\tilde{g}_{f_{1} f_{2}}\left(Y_{2}^{v}, Z_{2}^{v}\right)\right)=\left(c f_{2}^{v}\right)^{2}\left(X_{2}\left(g_{2}\left(Y_{2}, Z_{2}\right)\right)\right)^{h}
\end{array}\right.
$$

as $\left(g_{i}, \stackrel{i}{\nabla}, \stackrel{i}{\nabla}{ }^{*}\right.$) is a dualistic structure and from Equations (20), (24), then it's easily seen that the following equation holds

$$
A\left(X_{i}^{I}, Y_{i}^{I}, Z_{i}^{I}\right)=0, \quad \forall(i, I),(j, J) \in\{(i, h),(2, v)\}
$$

In the different lifts $(i \neq j)$, we have

$$
\begin{gathered}
X_{i}^{I}\left(\tilde{g}_{f_{1} f_{2}}\left(Y_{i}^{I}, Z_{j}^{J}\right)\right)=0, \\
\left\{\begin{array}{l}
\tilde{g}_{f_{1} f_{2}}\left(\nabla_{X_{1}^{h}} Y_{1}^{h}, Z_{2}^{v}\right)=-c^{2} f_{2}^{v} X_{1}\left(f_{1}\right)^{h} Y_{1}\left(f_{1}\right)^{h} Z_{2}\left(f_{2}\right)^{v}, \\
\tilde{g}_{f_{1} f_{2}}\left(\nabla_{X_{2}^{v}}^{V},\right. \\
\left.V_{2}^{v}, Z_{1}^{h}\right)=-f_{1}^{h} g_{2}\left(X_{2}, Y_{2}\right)^{v} Z_{1}\left(f_{1}\right)^{h},
\end{array}\right.
\end{gathered}
$$

and

$$
\left\{\begin{array}{l}
\tilde{g}_{f_{1} f_{2}}\left(Y_{1}^{h}, \nabla_{X_{1}^{h}}^{*} Z_{2}^{v}\right)=c^{2} f_{2}^{v} X_{1}\left(f_{1}\right)^{h} Y_{1}\left(f_{1}\right)^{h} Z_{2}\left(f_{2}\right)^{v} \\
\tilde{g}_{f_{1} f_{2}}\left(Y_{2}^{v}, \nabla_{X_{2}^{v}}^{*} Z_{1}^{h}\right)=f_{1}^{h} g_{2}\left(X_{2}, Y_{2}\right)^{v} Z_{1}\left(f_{1}\right)^{h}
\end{array}\right.
$$

We add these equations and obtain

$$
A\left(X_{i}^{I}, Y_{i}^{I}, Z_{j}^{J}\right)=0, \quad \forall(i, I),(j, J) \in\{(i, h),(2, v)\}
$$

Hence the same applies for $A\left(X_{j}^{J}, Y_{i}^{I}, Z_{i}^{I}\right)=A\left(X_{i}^{I}, Y_{j}^{J}, Z_{i}^{I}\right)=0$. This proves that ∇^{*} is conjugate to ∇ with respect to $\tilde{g}_{f_{1} f_{2}}$.
We recall that the connection ∇ on $M_{1} \times M_{2}$ induced by $\stackrel{1}{\nabla}^{2}$ and ∇^{2} on M_{1} and M_{2} respectively, is given by Equation (24).
Proposition 7. $\left(M_{1}, \stackrel{1}{\nabla}, g_{1}\right)$ and $\left(M_{2}, \stackrel{2}{\nabla}, g_{2}\right)$ are statistical manifolds if and only if $\left(M_{1} \times M_{2}, \tilde{g}_{f_{1} f_{2}}, \nabla\right)$ is a statistical manifold.

Proof. Let us assume that $\left(M_{i}, \stackrel{i}{\nabla}, g_{i}\right)(i=1,2)$ is a statistical manifold. Firstly, we show that ∇ is torsion-free. Indeed; by Equation (24), we have for any $X, Y \in \Gamma\left(T M_{1} \times M_{2}\right)$

$$
d \pi_{i}(T(X, Y)) \stackrel{\pi_{i}}{=} \boxtimes d \pi_{i}(Y)-\stackrel{\pi_{i}}{Y} d \pi_{i}(X)-d \pi_{i}([X, Y])
$$

Since for $i=1,2, \stackrel{i}{\nabla}$ is torsion-free, then

$$
{ }^{\pi_{i}} \boxtimes d \pi_{i}(Y)-{ }_{-}^{\pi_{i}} \nabla d \pi_{i}(X)=d \pi_{i}([X, Y])
$$

Therefore, from Remark 2.2, the connection ∇ is torsion-free.

Secondly, we show that $\nabla G_{f_{1}, f_{2}}$ is symmetric. In fact; for $(i, I) \in\{(i, h),(2, v)\}$,

$$
\left(\nabla \tilde{g}_{f_{1} f_{2}}\right)\left(X_{i}^{I}, Y_{i}^{I}, Z_{i}^{I}\right)=X_{i}^{I}\left(\tilde{g}_{f_{1} f_{2}}\left(Y_{i}^{I}, Z_{i}^{I}\right)\right)-\tilde{g}_{f_{1} f_{2}}\left(\nabla_{X_{i}^{I}} Y_{i}^{I}, Z_{i}^{I}\right)-\tilde{g}_{f_{1} f_{2}}\left(Y_{i}^{I}, \nabla_{X_{i}^{I}} Z_{i}^{I}\right)
$$

by Equations (20), (24) and since $\left(\stackrel{i}{\nabla} g_{i}\right), i=1,2$, is symmetric, we have

$$
\left(\nabla \tilde{g}_{f_{1} f_{2}}\right)\left(X_{i}^{I}, Y_{i}^{I}, Z_{i}^{I}\right)=\left(\nabla \tilde{g}_{f_{1} f_{2}}\right)\left(Y_{i}^{I}, X_{i}^{I}, Z_{i}^{I}\right)
$$

In the different lifts, for all $(i, I),(j, J) \in\{(i, h),(2, v)\}$, we have

$$
\left(\nabla \tilde{g}_{f_{1} f_{2}}\right)\left(X_{i}^{I}, Y_{i}^{I}, Z_{3-i}^{J}\right)=\left(\nabla \tilde{g}_{f_{1} f_{2}}\right)\left(X_{3-i}^{J}, Y_{i}^{I}, Z_{i}^{I}\right)=\left(\nabla \tilde{g}_{f_{1} f_{2}}\right)\left(X_{i}^{I}, Y_{3-i}^{J}, Z_{i}^{I}\right)=0
$$

Therefore, $\left(\nabla \tilde{g}_{f_{1} f_{2}}\right)$ is symmetric. Thus $\left(M_{1} \times M_{2}, \tilde{g}_{f_{1} f_{2}}, \nabla\right)$ is a statistical manifold.
Conversely, if $\left(M_{1} \times M_{2}, \tilde{g}_{f_{1} f_{2}}, \nabla\right)$ is a statistical manifold, then $\left(\nabla \tilde{g}_{f_{1} f_{2}}\right)$ is symmetric and ∇ is torsion-free, particularly, when $X_{i}, Y_{i}, Z_{i} \in \Gamma\left(T M_{i}\right)$, we have

$$
\left\{\begin{array}{l}
\left(\nabla \tilde{g}_{f_{1} f_{2}}\right)\left(X_{i}^{I}, Y_{I}^{I}, Z_{i}^{I}\right)=\left(\nabla \tilde{g}_{f_{1} f_{2}}\right)\left(Y_{i}^{I}, X_{I}^{I}, Z_{i}^{I}\right), \forall i=1,2 \\
T\left(X_{i}^{I}, Y_{i}^{I}\right)=0
\end{array}\right.
$$

Then, by Equations (20) and (24), we obtain, for $i=1,2, \stackrel{i}{\nabla} g_{i}$, is symmetric and $\stackrel{i}{\nabla}$, is torsion-free. Therefore, $\left(M_{i}, \stackrel{i}{\nabla}, g_{i}\right)$, $i=1,2$, is statistical manifold.
At first, note that $\left(M_{1} \times M_{2}, \tilde{g}_{f_{1} f_{2}}, \nabla\right)$ is the statistical manifold induced from $\left(M_{1}, g_{1}, \stackrel{1}{\nabla}\right)$ and $\left(M_{2}, g_{2}, \nabla^{2}\right)$.
Now, let $\left(M_{1}, \stackrel{1}{\nabla}, g_{1}\right)$ and $\left(M_{2}, \stackrel{2}{\nabla}, g_{2}\right)$ be two statistical manifolds and let $\stackrel{1}{\mathscr{R}}, \stackrel{2}{\mathscr{R}}$ and \mathscr{R} be the curvature tensors with respect to $\stackrel{1}{\nabla}, \stackrel{2}{\nabla}^{\nabla}$ and ∇ respectively.
Proposition 8. Let $\left(M_{i}, \stackrel{i}{\nabla}, \nabla_{,}^{*} g_{i}\right),(i=1,2)$ be a connected statistical manifold. Assume that the gradient of f_{i} is parallel with respect to $\stackrel{i}{\nabla}$ and ${ }^{1} \nabla^{*}(i=1,2)$. Then for any $X_{i}, Y_{i}, Z_{i} \in \Gamma\left(T M_{i}\right)(i=1,2)$ we have
(1) $\mathscr{R}\left(X_{1}{ }^{h}, Y_{1}{ }^{h}\right) Z_{1}{ }^{h}=\left(\mathscr{R}^{1}\left(X_{1}, Y_{1}\right) Z_{1}\right)^{h}$,
(2) $\mathscr{R}\left(X_{2}{ }^{v}, Y_{2}{ }^{v}\right) Z_{2}^{v}=\left(\mathscr{R}^{2}\left(X_{2}, Y_{2}\right) Z_{2}\right)^{v}-\frac{b_{1}}{1+\left(c f_{2}^{v}\right)^{2} b_{1}}\left\{\left(X_{2} \wedge_{g_{2}} Y_{2}\right) Z_{2}\right\}^{v}+\frac{c^{2} f_{1}^{h} f_{2}^{v} b_{1}}{\left(1+\left(c f_{2}^{v}\right)^{2} b_{1}\right)^{2}}\left\{\left(\left(X_{2} \wedge_{g_{2}} Y_{2}\right) Z_{2}\right)\left(f_{2}\right)\right\}^{v}\left(\operatorname{gradf}_{1}\right)^{h}$,
(3) $\mathscr{R}\left(X_{1}{ }^{h}, Y_{1}{ }^{h}\right) Z_{2}{ }^{v}=0$,
(4) $\mathscr{R}\left(X_{1}{ }^{h}, Y_{2}{ }^{v}\right) Z_{1}{ }^{h}=\frac{c^{2} X_{1}\left(\ln f_{1}\right)^{h} Z_{1}\left(\ln f_{1}\right)^{h} Y_{2}\left(f_{2}\right)^{v}}{1+\left(c f_{2}^{v}\right)^{2} b_{1}}\left(\operatorname{grad} f_{2}\right)^{v}$,
where the wedge product $\left(X_{2} \wedge_{g_{2}} Y_{2}\right) Z_{2}=g_{2}\left(Y_{2}, Z_{2}\right) X_{2}-g_{2}\left(X_{2}, Z_{2}\right) Y_{2}$.
Proof. After long and straightforward calculations, as in proof of proposal (2), and where it uses the fact that connections are compatible with the metric, we obtain the same results as in (2), knowing we use only the connections are symmetrical.
Corollary 2. Let $\left(M_{i}, \stackrel{i}{\nabla}, \nabla, \nabla_{g}^{*}\right),(i=1,2)$ be a connected statistical manifold. Assume that f_{1} is a non-constant positive function and $c \neq 0$.

If $\left(\nabla, \nabla^{*}, \tilde{g}_{f_{1} f_{2}}\right)$ is a dually flat structure then $\left(\nabla^{1}, \nabla^{1}, g_{1}^{*}\right)$ is also dually flat and $\left(\nabla^{2}, \nabla^{2}, g_{2}^{*}\right)$ has a constant sectional curvature.
Proof. Let $\left(\nabla, \nabla^{*}, \tilde{g}_{f_{1} f_{2}}\right)$ be a dually flat structure. By Proposition 8 , for any $X_{1}, Y_{1}, Z_{1} \in \Gamma\left(T M_{1}\right)$, we have

$$
\stackrel{1}{\mathscr{R}}\left(X_{1}, Y_{1}\right) Z_{1}=0
$$

From Equation (7), Since $\left(M_{1}, \stackrel{1}{\nabla}, g_{1}\right)(i=1,2)$ is a statistical manifold, we have

$$
\mathscr{R}^{1^{*}}\left(X_{1}, Y_{1}\right) Z_{1}=0
$$

Hence $\left(M_{1}, \stackrel{1}{\nabla}, \nabla^{\nabla}, g_{1}\right)$ is dually flat. By 4 . of Proposition 8 , for any $X_{1}, Z_{1} \in \Gamma\left(T M_{1}\right)$ and $Y_{2} \in \Gamma\left(T M_{2}\right)$, we have

$$
\frac{c^{2} X_{1}\left(\ln f_{1}\right)^{h} Z_{1}\left(\ln f_{1}\right)^{h} Y_{2}\left(f_{2}\right)^{v}}{1+\left(c f_{2}^{v}\right)^{2} b_{1}}\left(\operatorname{grad}_{2}\right)^{v}=0
$$

So f_{2} is a constant function since f_{1} is a non-constant function and M_{2} is assumed to be connected. Moreover, by 2. of Proposition 8, for any $X_{2}, Y_{2}, Z_{2} \in \Gamma\left(T M_{2}\right)$, we have

$$
\stackrel{2}{\mathscr{R}}\left(X_{2}, Y_{2}\right) Z_{2}=\frac{b_{1}}{1+\left(c f_{2}^{v}\right)^{2} b_{1}}\left\{\left(X_{2} \wedge_{g_{2}} Y_{2}\right) Z_{2}\right\}^{v}
$$

Since b_{1} and f_{2} are constants, it follows from the previous equality that $\left({ }^{2}, \nabla^{2}, g_{2}\right)$ has a constant sectional curvature $\frac{b_{1}}{1+\left(c f_{2}^{v}\right)^{2} b_{1}}$.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors have contributed to all parts of the article. All authors read and approved the final manuscript.

References

[1] Amari, S., Differential-geometrical Methods in statistics, Lecture Notes in statistics, 28, Springer, Berlin, 1985.55.
[2] S. Amari, H. Nagaoka, Methods of information geometry, Amer. Math.Soc., Providence; Oxford University Press, Oxford, 2000.
[3] J. K. Beem, P. E. Ehrlich and Th. G. Powell, Warped product manifolds in relativity, Selected Studies: Physics-astrophysics, mathematics, history of science, pp. 41-56, North-Holland, Amesterdam-New York, 1982.
[4] R. L. Bishop and B. O'Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc., 145 (1969), 1-49.
[5] Furuhata, H., Hypersurfaces in statistical manifolds, Diff. Geom. Appl., 27, 2009, 420-429.55.
[6] R. Nasri, Non-diagonal metric on a product riemannian manifold, arXiv: 1501.00308, 2015.
[7] R. Nasri and M. Djaa, Sur la courbure des variétés riemanniennes produits, Sciences et Technologie, A-24 (2006), 15-20.
[8] B. O’Neill, Semi-Riemannian geometry, Academic Press, New-York, 1983.
[9] Todjihounde, L., Dualistic structures on warped product manifolds, Diff. Geom.-Dyn. Syst. 8, (2006), 278-284.

