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Abstract: In this paper, non-polynomial spline method for solving tieneralized regularized long wave (GRLW) equation are
presented. In this paper, we take deferent spline functibng stability analysis using Von-Neumann technique shihesscheme is
marginally stable. To test accuracy the error ndrgnd ., are computed. Also, the change in conservation quantitesealuated
which are found to be very small. To illustrate the appliigband efficiency of the basis, we compare obtained nuraéresults
with other existing recent methods. Moreover, interaction and three solitary waves are shown. The developmenedftdxwellian
initial condition into solitary waves is also shown and wewtthat the number of solitons which are generated from theviddian
initial condition can be determined.
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1 Introduction

Nowadays, the solitary wave and in particular soliton hasnbleecoming a hot and attractive topic and is studied both
theoretically and experimentally [1-36]. A soliton is a yepecial type of a solitary wave, which is of permanent form,
is localized within a region, and can interact with otheiiteals and emerge from the collision unchanged, except for a
phase shift.

GRLW equation is a nonlinear evolution equation of the form
Ut + Ux + P(P+ 1)uPux — Ulee =0, 1)

which is useful in describing various phenomena in sciemmt engineering. It is also one of the weakly nonlinear
dispersive partial differential equations which have mampplications in several areas, e.g., ion-acoustic waves in
plasma, magneto hydro dynamics waves in plasma, longdéldiispersive waves in elastic rods, pressure waves in
liquid-gas bubble mixtures, and rotating flow down a tubes @RLW equation is studied by few authors, Mokhtari used
Sinc-collocation [17], Kaya used a numerical simulatiorsofitary wave solutions [18], El-Danaf et al, used Adomian
decomposition method (ADM) [19] and Thoudam Roshan usedt@p&alerkin method [20], Mohammadi used the
basis of a reproducing kernel space [21] and Zhang used #liffezence method for a Cauchy problem [22]. Applying
non- polynomial spline functions to solve some partial etiéntial equations does not regard as a new subject, as
someone can pursue this subject in the literature, e.gngusiPS in solving Burgers’ equation, cubic nonlinear
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Schrodinger equation, nonlinear Klein—Gordon equati@niable coefficient fourth-order wave equations, and Bsat
problem [23-26]. However, according to our knowledge, ¢hare not yet any publications relevant to applying NPS for
solving GRLW equations. Perhaps, the existenca; @érm together withuxterm in the GRLW equation incommodes
numerical analysts to design such methods. In the nexosgetith the aid of the well-known Cranck—Nicolson scheme,
we can apply non-polynomial spline functions to develop merical method for solving the nonlinear GRLW equation.
In this paper, we take deferent spline functions as forms.

T3 =spar 1, X, sin(wx), cogwx)}, Tz =spafl, x, coshwx), sin(wx)},

T3 = spar{1, X, cosHwx), sinh(wx)}, T3=sparl, x, tanh(wx), seciwx)},

andTs = spar{1, x, €, e 9}, wherew is the frequency of the trigonometric part of the spline tiores which will

be used to raise the accuracy of the method. The purposesopéfier is to present fourier stability analysis of the
linearized scheme shows that it is unconditionally stablso, the local truncation error of the method is investighiThe
interaction of solitary waves and other properties of thd &GRequation are studied. The development of the Maxwellian
initial condition into solitary waves is also shown and wewtthat the number of solitons which are generated from the
Maxwellian initial condition can be determined.

2 The problem and analytical solution
The GRLW Eq.1 can be written it in this form [20]

Ut + Ux + EUPUy — LUy = O, %)

wheree = p(p+ 1) and subscriptg andt denote differentiation, is considered with the boundany iitial conditions
u— 0 asx — +oo. In this work, the initial and boundary conditions on theioea < x < b are assumed in the form:

u(a,t) =u(b,t)=0, t>0, 3)

u(x,0)=f(x), a<x<hb, 4)

and then the analytical solution of Egjtake the form. [20]

u(x,t) = \‘/(p;ripz)csedw(g u(c(it 7 (x—(c+ 1t —xg)), (5)

wherexg is an arbitrary constant. It is not always available to getnalytic solution for nonlinear partial differential
equations, so we try to provide numerical methods to solel puoblems.

2.1 Derivation of the numerical method

In this section we given theoretically discussed for the arioal method using deferent spline functions.
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Case 1.We take spline function in this foriiy = spar{1, x, sin(wx), cogwx)}. To set up the non-polynomial spline
method, we select an integhir- 0 and a time step side> 0. With h = ﬁ;ﬁ, the mesh pointgx;,tj) arex; =a+jh
and t, = nk, wheren=0,1,...,andj =0,1,....N+ 1. LetUj” be an approximation ta(x;,tn), obtained by the segment

p;j(x,tn) of the mixed spline function passing through the po{jsU;") and(xj+1,U}", ;). Each segment has the form

jr1
Pj (X,th) = @j(tn) cosw(X — X;j) + bj(tn) Sinw(X — X;j) + €j (tn) (X— Xj) + d; (tn), (6)
for eachj =0,1,...,N. To obtain expressions for the coefficients of Edp terms ofU]', U ;, S andS], ; which are as
follows:
U= pj(xj,tn), UL 1 = pj(Xj+1,tn), S = p/j/(xj,tn) and S, = p/j/(xj+17tn)' (7)
Using Eqs6 and7, we get
aj+dj=UJ,
ajcosd +bjsin@+cjh+dj =UJ ,, ®)
—a, w2 + dj =

)
2 ?sing —
—ajw-cosf —bjwsind =9,

wherea; = aj(tn), bj=bj(ta), c¢j=cj(tn), dj=dj(tn) and 6 =wh. by solving the last four equations & We
obtain expressions for the coefficients as:

R - hZ(SJ‘cose—SJ‘H)
aj =55, bj= Zsi
[ 62sin@ ’
UL,-UP | h(Sa-9) h? n
G=—"tF—t+—g - di=gS+U] ©)
a9 b h?(Scoso -9, ;)
CEL e
417 i+17) h?
C=—"F+t—@ - di=eS+u)

Using the continuity condition of the first derivativexat; x; thatisp| (x;,tn) = pj_1(X;,tn), we get the flowing equations:
bjw+cj = —aj_1wsin@ +bj_jwcosf+cj_1, j=1,...,N. (10)

Using EQq.9, after slight rearrangements, then BE§.becomes

jn+172an+an71: aS'j1+1+BS‘j1+aS?,l, ]: :I.,...,N7 (11)
where ) ) ) )
h h 2h“cosf 2h
O=Gsng 82 P~ "gsng Tz 30 =0

Remark. As w — 0, thatis6 — 0, then(a, ) — (h—;, 4%‘2).

Case 2We take spline function in this foris = spar{1, x, cosiwx), sin(wx)}.

To set up the non-polynomial spline method, we select amértd> 0 and a time step size> 0. With h = ﬁ};ﬁ the
mesh pointgx;,t,) arex; =a+ih andt,=nk, wheren=0,1,...,andj =0,1,...,N+1. LetUjn be an approximation
to u(x;j,tn), obtained by the segmem;(x,tn) of the mixed spline function passing through the poifksU]') and

(Xj+1,U}1). Each segment has the form

Pj (X,th) = @j(tn) coshw(x — Xj) + bj (tn) sinw(x — X;j) + Cj(tn) (X — X;j) +d;(tn), (12)
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foreachj =0,1,...,N. To obtain expressions for the coefficients of Egin terms ofU,U}, ;,S] andS], ; which are as

j+1 j+1
follows:
an = Pj (vatn)vujn+1 = Pj (Xj+1,tn),5? = p'j/(xj,tn) and S?Jrl = p’j’(xj+l;tn)' (13)
Using Eqsl12and13, we get
aj+dj=UJ,
aj coshd +bj sin6+cjh+dj =U} ,,
) (14)
ajw =8

)
2 (2sing —
—ajw coshd —bjwsind =9,

wherea; = aj(tn),bj = bj(tn),cj = ¢j(ta), dj =dj(tn) and 6 =wh. by solving the last four equations . We
obtain expressions for the coefficients as:

aj = %, b = 793)02)?@7:1]“,
G —un 9 9 cosho _
Cj = L+ dj =7 +Uf
h ) )
a g ' coshe -5, . (15)
=g D= e
Ohur 9,7 5 cosh g
Cj= + dj=—+U"
i h o?h = TR

using the continuity condition of the first derivativeat x; that ispj(x;,tn) = p’jfl(xj ,th), we get the flowing equations:
bjw+c¢j = —aj_1wsinh@ 4 bj_jwcosd+cj_1, j=1,...,N. (16)

Using Eq.15, after slight rearrangements, then E§.becomes

an+17 2U1n+UJnfl = agj)+1+BSq+ VS‘j‘lfla J = 15 "'7N7 (17)
where
g h? B h_2 B —h2?cos@ N 2h%coshd B hZcosf
" fsinf 62’ " Osind 62 6sin6’

_ h?sinB N h?cosf coshd N h_2 B 2h?coshd
] 06sin6 62 62

, and 6 = wh.

Remark. As w — 0, thatis8 — 0, then(a, 3,y) — (h—62, 4—22, h—Gz).

Case 3We take spline function in this foris = spar{1, x, coshwx), sinh(wx) }.

To set up the non-polynomial spline method, we select amgértd > 0 and a time step size> 0. With h = ,E;jl‘, the
mesh pointgx;,t,) arex; =a+ jh and t, =nk, wheren=0,1,...,andj =0,1,...,.N+ 1. LetUJ-n be an approximation
to u(x;,tn), obtained by the segmem(x,tn) of the mixed spline function passing through the poiftsU') and

(Xj+1,U} 1). Each segment has the form

Pj (X,th) = @j(tn) coshw(x — Xj) + bj (tn) sinhcw(x — X;j) + Cj(tn) (X — X;) +d;(tn), (18)

(© 2017 BISKA Bilisim Technology
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foreachj =0,1,...,N. To obtain expressions for the coefficients of E§in terms ofU; nyn .S andS‘J‘Jrl which are as

415
follows:
an = Pj (vatn)vujn+1 = Pj(Xj+1,tn), S? p,(xjvtn) and Sn+1 = pj (Xj+1,tn). (19)
Using Eqs18and19, we get
aj+d;j=U
aj coshd + bj sinh6 +cjh+dj =U}, 4, (20)
ajw” =9,

a; wzcoshe +bjw’sinhe =S,

wherea; = aj(t,), bj=Dbj(tn), c¢j=cj(t,), dj=dj(tn) and 6 =wh. by solving the last four equations &0 We
obtain expressions for the coefficients as:

29 b= h?(—S cosho+9], )
N TR
1~ 1t h
I PN B R (21)
2 2( ] cosho+5]. ;)
a=29 p = —Hl
no_yr _q ) h2
= T4+ ) g gy,

using the continuity condition of the first derivative@t x;, that ispj(x;,tn) = pj_; (Xj,ta), we get the flowing equations:
bjw+cj = —a;_jwsinh@ +bj_jwcoshd +cj_1, j=1,...,N. (22)

Using Eq.21, after slight rearrangements, then g becomes

U]+1 2U +U] 1—agj‘l+1+ng‘l+agj‘lfl, j:l,...,N7 (23)
where 5 5 5 5
h h 2h“cosh® 2h
- bl L — wh,
O=—gsine " 62 P~ Tgsnng gz 30 =@®

Remark. As w — 0, thatis8 — 0, then(a,3) — (h—;, %hz).

Case 4We take spline function in this forffs = spar{ 1, X, tanh(wx), sechiwx)} To set up the non-polynomial spline
method, we select an integir> 0 and a time step side> 0. With h = N+1’ the mesh point$x;,t,) arex; =a+ jh
and t, = nk, wheren=0,1,...,andj =0,1,...,N+ 1. LetUjn be an approximation ta(xj, t,), obtained by the segment
p;j(x.tn) of the mixed spline function passing through the po{jsU;") and(x;+1,U}, ;). Each segment has the form

Pj (X,th) = aj(tn) tanhw(x — X;) + bj (tn) sechw(x — Xj) + Cj(tn) (X — X;j) +d;j(tn), (24)

foreachj =0,1,...,N. To obtain expressions for the coefficients of E4in terms ofu",U" [y S1 andSn 1 Which are as
follows:
an = Pj (XJ atn)annJrl = Pj (Xj+1,tn),qu = pljl (Xj7tn) and S?+1 = p,jl (XjJrlvtn)' (25)

(© 2017 BISKA Bilisim Technology
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Using Eqs24 and?25, we get

aj+dj= UJ-n,

aj tanhd + bj sech® +cjh+dj =UJ ;, (26)
—bjwz = ST

—2aj w?sech?@tanhd — bj w? sech36 + bj w? sechBtantf 6 = S ;,

wherea; = aj(tn),bj = bj(tn),cj = ¢j(tn) , dj =dj(tn) and 6 = wh. by solving the last four equations 6.

h?(S se®6— S sechbtant? 6

_h2 ) 2
b = 55, a = -, dj = g §+ U,

202sech?@tanhf
U -U  h(S'sehd—S)) = h(S]sech®6+S)sechdtani? 6+5], )
Cj= + + !
) h , P 26Zsed?6 ) 27)
b — a— h?(S sech®6 - sechbtani? 65 ) q - thj—i—U-n
I TAASERA 262 sec?6tanhg » M T 92 i
U, -U  h(S'sed-S)) | h(S]sec®0+S)sechftani? 6+5, )
Ci = + ] ] + ] 1 ]
] h 62 262sech?0 ’

We obtain expressions for the coefficients as: using theirgity condition of the first derivative at = x;, that is
Pj(Xj,th) = p’jfl(xj ,tn), we get the flowing equations:

ajw+cj = aj_1wsed’d — bj_jwsedftanhd +¢j_1, j=1,..,N. (28)

Using Eq.27, after slight rearrangements, then E§becomes

J—n+1—2an+an,1:aS?+1+Bqu+ yslj“lil, J ::I.,...,N7 (29)
where

. h3w B h?

~ 20%sedh?Btanh®  262sedh?O’

—h3wseth30 h?

= ¥ 6262 2 ho + —
B 2925ed129tanh9+wsemetan 626°sech“6tanhb + 02
_ h?sechd N h?sed®6 h?sech@tantt 6 P N h?

262 262 202sed?0 202tanhf = 262sed?6’

_ hlw(sed®6 — sechftanif 6) N h3wsedcBtanhd N h?(sechf — 1) N h?(—sed®0 4 sechBtanit 0)

o 262tanhf 62 62 2602sech?8 ’
and
6 = wh.

h?2 4n? h?

Remark. As w — 0, thatis6 — 0, then(a,B,y) — (5,5 > )

Case 5We take spline function in this forifs = spar{1, x, €%, e 9}.

To set up the non-polynomial spline method, we select amgértd > 0 and a time step size> 0. With h = ,E;jl‘, the
mesh pointgx;,t,) arex; =a+ jh and t, =nk, wheren=0,1,...,andj =0,1,...,N+ 1. LetUjn be an approximation

tou(x;j,tn), obtained by the segment;(x,t,) of the mixed spline function passing through the poi()t;s,Uj”) and

(© 2017 BISKA Bilisim Technology
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(Xj+1,U], ;). Each segment has the form
Pi (X, tn) = a; (tn) €™ + bj (tn)e™ ) 4 ¢j (tn) (X — X;) + dj (tn), (30)

for eachj =0,1,...,N. To obtain expressions for the coefficients of Bqin terms ob[\U}, ;,S! andS',; which are as

j+15) j+1
follows:

an = Pj (Xj,tn),anJrl = Pj (Xj+17tn),5? = p/j, (Xj,tn) and S?H = p,j/ (Xj+1,tn)- (31)

Using Eqs30and31, we get
aj+bj+d;= an,
a;€® +bje +cjh+dj=UJ,y,
ajw’ +bjw’ =S

(269 4 b e b —
ajwe’ +bjwe’=9",,

(32)

whereaj = aj(tn),bj = bj(tn),cj = ¢j(tn) , dj =dj(tn) and 8 = wh. by solving the last four equations 82. We obtain
expressions for the coefficients as:

LG L SEVE A s (Y (33)
1= 92(e79 _ e@) g 92(e76 _ ee) ’
ur,—-ut h(-s'.,+9 h2
o i+l J 1+1 J -
T e Ao R

Using the continuity condition of the first derivativexat x;, that isp’j (Xj,th) = p’jfl(xj ,th), we get the flowing equations:
ajw—bjw+cj =aj_1we® —bj_1we ¥ +¢j_1, j=1,..,N. (34)
Using EQq.33, after slight rearrangements, then Bg.becomes
l—20'+U] =aS), 1 +BS+aS 4, j=1,...,N, (35)

where
2h3w h? 2nw(—e % —¢ef) 2nw?

azez(e*"fee)—k@’ﬁz 02(ef—ef) 92’

andf = wh.

Remark. As w — 0, thatis6 — 0, then(a, ) — (h—;, %hz).

After we studied the five cases we show that all five cases ithlythe same equation and the same valués g8).
i.e. The equation&l, 17, 23, 29 and35 are same equation in this form
jn+1_2an+an7].:as'j?l+l+BS?+aS?71) J :15"'7N7 (36)

where(a,B) — (5,5 )-

(© 2017 BISKA Bilisim Technology
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Then we consider EQ6 at two-time leveh, n+ 1 and subtract them to obtain the following relation

(U =Ul) =200 = UM + (U~ Ul ) = a(S]11 - S, )+ =) +a(S -5 y), i =1,..N.

(37)
On the other hand, we rewrite Egjas
d  du(xt) 1 1 du(x;t) pdu(xt)
E( Ix2 _Hu(x7t) ) - H( ax +£(U(X,t)) Ix )a
and follow the famous Cranck—Nicolson scheme to derive
ou(Xj,thy1) 1 Ju(xj,tn) 1 Lk
( ajixzmr - HU(Xj,thrl) )= ( Tzn - HU(Xjatn) )= auh (1+&(u(xj,tn41))?) (UXj+1,trr1) —UXj-1,ts1))
k
+ o (148U, t))P) (U(Xj41,th) —U(Xj-1,t))
uh
From this equation, the following difference equation carektracted:
1
S8 = (U= UD) — (L (U] P) U - U 1L (U)P) (U]~ UL, (38)
wherer = mkh and j = 1,...,N. Substituting Eq38in Eq.37 and doing some calculations, we get
AUME+BUM +GUMNT = DUl + EjUD + FUT,, (39)

where
Aj=1-2+2ar(1+UMP)+ Br(1+e(UMHP),
Bj=-2— ﬁ +2cx£r((UJ-”jll)p—(anfll "),
Cj=1-2 —2ar(1+gUNHP) —Br(1+eUNP),
Dj=1-{—2ar(1+&Ul,)P)—PBr(1+e(Uf)P),
p),

-B
Ej=-2— % —2aer((Ufl)P = (UlLy)
Fj=1— 2 +2ar(1+ (U, ))P) + Br(1+(UNP),

now to solving this system we using initial conditions Ecto find the value ofJ?, WhererO = f(xj), for eachj =
0,1,..,N+1. If the procedure is reapplied all the approximatlofi are known, the values a7, U?, U}, .. can be
obtained in a similar manner .

2.2 Truncation error

Theorem 1.The difference 39 has the local truncation error (LTE) kh?(1+ k).

Proof. Using the difference schen®® at p = 3 we obtain the truncation error

n_ a.,n+1 0+l 0+l N 4N N
TJ _Alujfl—’—BJuj +CJUJ-+1—DJUJ'71—EJUJ'—FJUJ'JF]_, (40)

(© 2017 BISKA Bilisim Technology
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where
Aj=1— 94 2ar(1+&(u D)%) + Br(1+e(u) ™)),
B :72754»208'.(( n+l) 7( n+1)3)7

+1
c :1—%—Zar(1+85 uri®) - B (1 eur™?),
Dj=1-4—2ar(1+e(u]_,)%) - Br(l+e())?),

Ej=-2-8 —Zaer((u;‘ﬂ)‘o’ (UT,1)3),
Fj= 1——+2ar(1+£( J+1) )+[§r(1+8(UT)3)7

Expanding this equation in Taylor series in teruis;,t,) and its derivatives after simplifying, we obtain the foliog
expression

b h’a

h2a
> )kZDxxtu +frach26——)k3Dx>mu +..

T"=(h?

J — 20 — h?a — B)KDyeU + (-

(41)

then the local truncation error of the scheme i$kB?(1+k)).

2.3 Sability analysis of the method

In this section, the standard Von-Neumann concept is appdiénvestigate the stability analysis of the scheme. At,firs
we must linearize the nonlinear term of the GRLW equation lakimg e(UJ-”)p as a local constant. According to the
Von- Neumann method, we get

Uf'={"explijg),
Zn+l

¢

where@p = kh, k is the mode number= /—1 andg is the amplification factor of the scheme. Substituting 42jinto
the difference Eq39, we get

(42)

g:

" H(Aexp(i(j — 1)) +Bexplij@) + Cexpli(j + 1)) = {"(Dexpli(j — 1)¢) +Eexp(ijp) + Fexpli(j + 1)), (43)
where
A=1-0+2ar(1+A)+pr(1+2),
B=-2-8 Cc=1-%_2ar(1+))-Br(1+2),
D=1-%-2ar(1+A)-Br(1+A), E=-2-£
F=1-4+2ar(1+A)+Br(1+A),
after simple calculations, E¢3leads to
_ Dexp(—ip) +E+Fexpio)
~ Aexp(—i@) +B+Cexpi) ’
using the well-known Euler’s formula, we have
XY
T X—iY?
whereX = (2— )cos<p 2— Elandr =r(1+A)(2a + ) sing. Obviously,
9l =1, (44)

(© 2017 BISKA Bilisim Technology
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then, the linearized scheme is marginally stable.

2.4 Numerical tests and results of GRLW equation
In this section, we present some numerical examples to #iglity of our scheme for solving GRLW E@. For this

purpose, we aim to simulate motion of single solitary wakggriaction of two and three solitary waves, wave undulation
and propagation of wave with the Maxwellian initial conditi

2.4.1 The motion of single solitary waves
In previous section, we have provided the non-polynomia¢ate for the GRLW equation, and we can take the following

as an initial condition.
~ /(p+2)c p /[ ¢c
U(X7 0) - \p/ 2p Semz(i [.l(C+ 1) (X_ XO))7 (45)

The normd_»-norm and_..-norm are used to compare the numerical solution with thé/ioal solution

Lo = [|Juf = || = \/nio(uf — U2, o

Lm:max’u-Efu’j\", j=0,1,---,N.
j

J

WhereUuE is the exact solutiom andu® is the approximation solutiody. and the quantitiet;, |, andlzare shown to
measure conservation for the schemes.

Iy = [Z,u(x,t)dx = hsz:OU.”,
lo = [2, (W + pu2)dx = hy N o (U2 + p(UA)D), . )

) 2 ~ 2
Iy = [, (uP+? - R ax = h L o((UPH2)] — B2 R UR))),

Now we consider two test problems.

Problem 1. Now, we consider a test problem whege= 3, c=0.1, t =1, h=0.1, Xo = 40, At = k = 0.1 with range
[0, 80]. The simulations are done uptte= 5. The changes of the invariarits 1, andlz are approach to zero in the
computer program for the scheme. Errors, alsb=ab are satisfactorily small,-error =363674 x 10~* andL-error =
2.06037x 10* for the scheme. Our results are recorded in Table 1 and themuaftsolitary wave is plotted at different
time levels in Fig. 1.

Problem 2. Now, for comparison, we consider a test problem whpete3, c=1.2, u=1, h=0.1, X =40At =k =
0.025 with range [0,100]. The simulations are done up $02.5. The changes of the invariadtsand|, approach to
zero and the invariang changed by less.8 x 10~° in the computer program for the scheme. Errors, alsb=a2.5 are
satisfactorily small-error =238109x 103 andL.-error = 160851x 103 for the scheme. Our results are recorded in
Table 2. The motion of solitary wave is plotted at differénte levels in Fig. 2.

In the next table we make comparison between the resultsrdfgbheme and the results have been published in Search
[20]. We find that our results are related to the results cfaesh [20].

(© 2017 BISKA Bilisim Technology



CMMA 2, No. 2, 1-17 (2017) htmsci.com/cmma BISKA 11

2.4.2 Interaction of two solitary waves

The interaction of two GRLW solitary waves having differantplitudes and traveling in the same direction is illugtdat
We consider GRLW equation with initial conditions given thetlinear sum of two well separated solitary waves of
various amplitudes

& L/ (P+ 2 P Cj _
u(x,O)_le\/Tsechz(E m(x—x,)), (48)

where,j = 1,2, x; andcjare arbitrary constants. In our computational work.

Now, we choosec; = 1, ¢ = 0.5, Xy = 15, x,=35,u =1, h=0.1, k= 0.1 with interval [0, 80]. In Fig. 3, the
interactions of these solitary waves are plotted at diffetiene levels. We also, observe an appearance of a tail of sma
amplitude after interaction and the three invariants f@g ttase are shown in Table 4. The invariantd, andlz are
changed by less than@6 x 1073, 3.5 x 10~* and 313 x 10~%, respectively for the scheme.

2.4.3 Interaction of three solitary waves

The interaction of three GRLW solitary waves having differ@mplitudes and traveling in the same direction is illatstd.
We consider the GRLW equation with initial conditions giugnthe linear sum of three well separated solitary waves of

various amplitudes:
S, (P+2)c P/ G
_ p ) 2(F | v
U(X,O) le\/ 2p sedh (2 N(CJ+1) (X XJ))) (49)

where,j = 1,2, 3, xj andc;are arbitrary constants. In our computational work. Now,clveosec; = 1,c, = 0.75,c3 =
0.5, x; = 15x, = 35, x3 = 45 with interval [0, 80]. In Fig. 4. The interactions of thesaitary waves are plotted at
different time levels. We also, observe an appearance dfaf emall amplitude after interaction and the three ingats
for this case are shown in Table 5. The invariaatsl, andls are changed by less thamix 1073, 1.72x 1073 and
1.08 x 103, respectively for the scheme.

2.4.4 The Maxwellian initial condition
In final series of numerical experiments, the developmetti@Maxwellian initial condition
u(x,0) = exp(—(x—40)?) (50)

into a train of solitary waves is examined. We apply it to thelygpem for different cases: (y=0.1, (I)u=0.04, (Ill)
U=0.01 and (IV)u= 0.005. Wheny is large such as case (l), only single soliton is generateshawn in Fig. 5a.
However, wheru is reduced, increasingly solitary waves are formed, sincedse (ll), two solitary waves are generated
as shown in Fig. 5b, and for case (l1l) the Maxwellian pulsedtits up into a train of at least three solitary waves as shown
in Fig. 6a. Finally, for (IV) case, the Maxwellian initial odition has decayed into four stable solitary waves as shiown
Fig. 6b. The peaks of the well-developed wave lie on a sttaigh so that their velocities are linearly dependent orirthe
amplitudes and we observe a small oscillating tail appgdrehind the last wave as shown in the figures 5 and 6, and all
states at = 5. Moreover, the total number of solitary waves which areegeted from the Maxwellian initial condition
according to the results obtained from the numerical schiarest problem as shown in Table 7, can be shown to follow
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approximately the relation

3 Conclusions

(51)

In this paper, we applied non-polynomial spline functiomglevelop a numerical method for solving GRLW equation
and shown that the schemes are marginally stable. We teatestbemes through a single solitary wave in which the
analytic solution is known, then extend it to study the iat#ion of solitons where no analytic solution is known dgrin
the interaction and its accuracy was shown by calculatingr @rormsL, andL.. The Maxwellian initial condition has
been used and a relation betwgeand the number of waves was explored.

4 Tables and figures

Table 1: Invariants and errors for single solitary wape-3,c=0.1, h=0.1k=0.1, and xg =40, 0 <x < 80.

t I1 P I3 Lo-norm Le-norm
0 4.06257 | 1.13382 | 0.0165781 | 0.0 0.0
1 4.06257 | 1.13382 | 0.0165782 | 8.15023E-5 | 5.10793E-5
2 4.06256 | 1.13382 | 0.0165782 | 1.59786E-4 | 1.01785E-4
3 4.06255 | 1.13382 | 0.0165782 | 2.32965E-4 | 1.44328 E-4
4 406254 | 1.13382 | 0.0165782 | 3.00723E-4 | 1.78179E-4
5 4.06252 | 1.13382 | 0.0165782 | 3.63674E-4 | 2.06037E-4
| N
04 'I 5'. : A\
| 04+ A
03 . | | |
[ 03 [\
02 ,"I \ 02 I" I'u
.III II\ IIII
0l 0l !
/ \ \
/ ,
T . 4 o 80 0o #
(a) (b)

i R0

Fig. 1: Single solitary wave witlt = 0.1, h= 0.1, k= 0.1and, = 40, 0 < x < 80,t = 0, 5 respectively

Competing interests

The authors declare that they have no competing interests.

(© 2017 BISKA Bilisim Technology



=
CMMA 2, No. 2, 1-17 (2017) htmsci.com/cmma BISKA 13

Table 2: Invariants and errors for single solitary wape- 3, c=1.2, h=0.1, k= 0.025 andxg = 40, 0 < x < 100.

t I1 I» I3 Lo-norm Leo-norm

0 3.79713 2.87871 | 0.881628 | 0.0 0.0

0.5 3.79713 2.87871 | 0.881615 | 8.13695E-4 | 8.09267E-4
1.0 3.79713 2.87871 | 0.881615 | 1.39242E-3 | 1.05441E-3
1.5 3.79713 2.87871 | 0.881594 | 1.78371E-3 | 1.30178E-3
2 3.79713 2.87871 | 0.881592 | 2.09581E-3 | 1.45102E-3
2.5 3.79713 2.87871 | 0.881592 | 2.38109E-3 | 1.60851E-3

10} ) 10
0 | '.J‘Jl. ||

06 |l 06

L] an L] &0 L] n mn 40 i & 100

04 | |

02

20 40 M) R 100

Fig. 2: Single solitary wave witlt = 1.2, h= 0.1,k = 0.025 andxg = 40, 0 < x< 100t =0, 1, 2 respectively.

Table 3: Invariants and errors for single solitary wave- 1.2, h= 0.1, k = 0.025 andxg = 40, 0 < x < 100f = 2.

Method I [P I3 Lo-norm Lo-norm
Analytical 3.79713 2.87871 0.881628 | 0.0 0.0

Our 3.79713 2.87871 0.881592 | 2.09581E-3 | 1.45102E-3
scheme 3.79713 2.88122 0.972388 | 2.13434E-3 | 1.47042E-3
[20]

Table 4: Invariants of interaction two solitary waves of GRLW eqoatic; = 1,¢, = 0.5,x; = 15, = 350 < x < 80.

I I I3

7.35999 | 4.51990 | 0.847824
7.35999 | 4.51004 | 0.847634
7.35977 | 4.51014 | 0.847571
7.35958 | 4.51014 | 0.847553
7.35933 | 4.51017 | 0.847563
0 7.35893 | 4.51025 | 0.847501]

PO R~ANO
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06

04

02
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Fig. 3: interaction two solitary waves with
c1=1,¢c=05x =15 X =35 0<x<80attimet =0, 20respectively.

Table 5: Invariants of interaction three solitary waves of GRLW eipra c; = 1, ¢, = 0.75, c3 = 0.5, X3 = 15, Xp =

35, x3 = 45, 0< x < 80.

t Il |2 |3
0 11.0225 | 6.85159 | 1.28631
2 11.0223 | 6.85208 | 1.28589
4 11.0221 | 6.85251 | 1.28563
6 11.0219 | 6.85276 | 1.28555
8 11.0216 | 6.85302 | 1.28542
10 11.0213 | 6.85331 | 1.28523
03 [ \."I u
I i' i
0 ‘ l\ A os |
' [ ' [ '
S A
[ I .‘ |
0 |\ N “.‘ 02
- m 4 I = 80 T

an 1] 80

(b)

Fig. 4: interaction three solitary waves with
c1=1,c,=0.75c3=05x; =15 x,=35x3=450<x<80attimest=0, 5, 10, 15respectively.
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