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Abstract: In this paper, non-polynomial spline method for solving thegeneralized regularized long wave (GRLW) equation are
presented. In this paper, we take deferent spline functions. The stability analysis using Von-Neumann technique showsthe scheme is
marginally stable. To test accuracy the error normsL2, L∞ are computed. Also, the change in conservation quantities are evaluated
which are found to be very small. To illustrate the applicability and efficiency of the basis, we compare obtained numerical results
with other existing recent methods. Moreover, interactiontwo and three solitary waves are shown. The development of the Maxwellian
initial condition into solitary waves is also shown and we show that the number of solitons which are generated from the Maxwellian
initial condition can be determined.
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1 Introduction

Nowadays, the solitary wave and in particular soliton has been becoming a hot and attractive topic and is studied both

theoretically and experimentally [1-36]. A soliton is a very special type of a solitary wave, which is of permanent form,

is localized within a region, and can interact with other solitons and emerge from the collision unchanged, except for a

phase shift.

GRLW equation is a nonlinear evolution equation of the form

ut + ux + p(p+1)upux − µuxxt = 0, (1)

which is useful in describing various phenomena in science and engineering. It is also one of the weakly nonlinear

dispersive partial differential equations which have manyapplications in several areas, e.g., ion-acoustic waves in

plasma, magneto hydro dynamics waves in plasma, longitudinal dispersive waves in elastic rods, pressure waves in

liquid-gas bubble mixtures, and rotating flow down a tube. The GRLW equation is studied by few authors, Mokhtari used

Sinc-collocation [17], Kaya used a numerical simulation ofsolitary wave solutions [18], El-Danaf et al, used Adomian

decomposition method (ADM) [19] and Thoudam Roshan used a petrov-Galerkin method [20], Mohammadi used the

basis of a reproducing kernel space [21] and Zhang used finitedifference method for a Cauchy problem [22]. Applying

non- polynomial spline functions to solve some partial differential equations does not regard as a new subject, as

someone can pursue this subject in the literature, e.g., using NPS in solving Burgers’ equation, cubic nonlinear
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Schrödinger equation, nonlinear Klein–Gordon equation,variable coefficient fourth-order wave equations, and Bratu’s

problem [23-26]. However, according to our knowledge, there are not yet any publications relevant to applying NPS for

solving GRLW equations. Perhaps, the existence ofut term together withuxxt term in the GRLW equation incommodes

numerical analysts to design such methods. In the next section, with the aid of the well-known Cranck–Nicolson scheme,

we can apply non-polynomial spline functions to develop a numerical method for solving the nonlinear GRLW equation.

In this paper, we take deferent spline functions as forms.

T3 = span{1, x, sin(ωx), cos(ωx)}, T3 = span{1, x, cosh(ωx), sin(ωx)},

T3 = span{1, x, cosh(ωx), sinh(ωx)}, T3 = span{1, x, tanh(ωx), sech(ωx)},

and T3 = span{1, x, eθ , e−θ}, whereω is the frequency of the trigonometric part of the spline functions which will

be used to raise the accuracy of the method. The purpose of this paper is to present fourier stability analysis of the

linearized scheme shows that it is unconditionally stable.Also, the local truncation error of the method is investigated. The

interaction of solitary waves and other properties of the GRLW equation are studied. The development of the Maxwellian

initial condition into solitary waves is also shown and we show that the number of solitons which are generated from the

Maxwellian initial condition can be determined.

2 The problem and analytical solution

The GRLW Eq.1 can be written it in this form [20]

ut + ux + εupux − µuxxt = 0, (2)

whereε = p(p+1) and subscriptsx andt denote differentiation, is considered with the boundary and initial conditions

u → 0 asx →±∞. In this work, the initial and boundary conditions on the region a ≤ x ≤ b are assumed in the form:

u(a, t) = u(b, t) = 0, t ≥ 0, (3)

u(x,0) = f (x), a ≤ x ≤ b, (4)

and then the analytical solution of Eq.2 take the form. [20]

u(x, t) = p

√

(p+2)c
2p

sech(
p
2

√

c
µ(c+1)

(x− (c+1)t− x0)), (5)

wherex0 is an arbitrary constant. It is not always available to get ananalytic solution for nonlinear partial differential

equations, so we try to provide numerical methods to solve such problems.

2.1 Derivation of the numerical method

In this section we given theoretically discussed for the numerical method using deferent spline functions.
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Case 1.We take spline function in this formT3 = span{1, x, sin(ωx), cos(ωx)}. To set up the non-polynomial spline

method, we select an integerN> 0 and a time step sizek> 0. With h = b−a
N+1, the mesh points(x j, t j) arex j = a+ j h

and tn = n k, wheren = 0,1, ..., and j = 0,1, ...,N +1. LetUn
j be an approximation tou(x j, tn), obtained by the segment

p j(x, tn) of the mixed spline function passing through the points(x j,Un
j ) and(x j+1,Un

j+1). Each segment has the form

p j(x, tn) = a j(tn)cosω(x− x j)+ b j(tn)sinω(x− x j)+ c j(tn)(x− x j)+ d j(tn), (6)

for eachj = 0,1, ...,N. To obtain expressions for the coefficients of Eq.6 in terms ofUn
j , Un

j+1, Sn
j andSn

j+1 which are as

follows:

Un
j = p j(x j, tn),U

n
j+1 = p j(x j+1, tn), Sn

j = p′′j (x j, tn) and Sn
j+1 = p′′j (x j+1, tn). (7)

Using Eqs.6 and7, we get
a j + d j =Un

j ,

a j cosθ + b j sinθ + c jh+ d j =Un
j+1,

−a jω2+ d j = Sn
j ,

−a jω2cosθ − b jω2sinθ = Sn
j+1,

(8)

wherea j ≡ a j(tn), b j ≡ b j(tn), c j ≡ c j(tn), d j ≡ d j(tn) and θ = wh. by solving the last four equations in8. We

obtain expressions for the coefficients as:

a j =
−h2

θ2 Sn
j , b j =

h2(Sn
j cosθ−Sn

j+1)

θ2 sinθ ,

c j =
Un

j+1−Un
j

h +
h(Sn

j+1−Sn
j )

θ2 , d j =
h2

θ2 Sn
j +Un

j ,

a j =
−h2

θ2 Sn
j , b j =

h2(Sn
j cosθ−Sn

j+1)

θ2 sinθ ,

c j =
Un

j+1−Un
j

h +
h(Sn

j+1−Sn
j )

θ2 , d j =
h2

θ2 Sn
j +Un

j ,

(9)

Using the continuity condition of the first derivative at,x= x j that isp′j(x j, tn) = p′j−1(x j, tn), we get the flowing equations:

b jω + c j =−a j−1ω sinθ + b j−1ω cosθ + c j−1, j = 1, ...,N. (10)

Using Eq.9, after slight rearrangements, then Eq.10becomes

Un
j+1−2Un

j +Un
j−1 = αSn

j+1+β Sn
j +αSn

j−1, j = 1, ...,N, (11)

where

α =
h2

θ sinθ
− h2

θ 2 , β =−2h2cosθ
θ sinθ

+
2h2

θ 2 and θ = ωh.

Remark. As ω → 0, that isθ → 0, then(α,β )→ ( h2

6 ,
4h2

6 ).

Case 2.We take spline function in this formT3 = span{1, x, cosh(ωx), sin(ωx)}.

To set up the non-polynomial spline method, we select an integer N> 0 and a time step sizek> 0. With h = b−a
N+1, the

mesh points(x j, tn) arexi = a+ i h and tn = n k, wheren = 0,1, ..., and j = 0,1, ...,N +1. LetUn
j be an approximation

to u(x j, tn), obtained by the segmentp j(x, tn) of the mixed spline function passing through the points(x j,Un
j ) and

(x j+1,Un
j+1). Each segment has the form

p j(x, tn) = a j(tn)coshω(x− x j)+ b j(tn)sinω(x− x j)+ c j(tn)(x− x j)+ d j(tn), (12)
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for each j = 0,1, ...,N. To obtain expressions for the coefficients of Eq.12 in terms ofUn
j ,Un

j+1,Sn
j andSn

j+1 which are as

follows:

Un
j = p j(x j , tn),U

n
j+1 = p j(x j+1, tn),S

n
j = p′′j (x j , tn) and Sn

j+1 = p′′j (x j+1, tn). (13)

Using Eqs.12and13, we get
a j + d j =Un

j ,

a j coshθ + b j sinθ + c jh+ d j =Un
j+1,

a jω2 = Sn
j ,

−a j ω2coshθ − b j ω2sinθ = Sn
j+1,

(14)

wherea j ≡ a j(tn),b j ≡ b j(tn),c j ≡ c j(tn), d j ≡ d j(tn) and θ = wh. by solving the last four equations in14. We

obtain expressions for the coefficients as:

a j =
Sn

j

ω2 , bi =
Sn

j coshθ−Sn
j+1

ω2 sinθ ,

c j =
Un

j+1−Un
j

h +
Sn

j+1+Sn
j−2Sn

j coshθ
ω2h

, d j =
−Sn

j

ω2 +Un
j ,

a j =
Sn

j

ω2 , bi =
Sn

j coshθ−Sn
j+1

ω2 sinθ ,

c j =
Un

j+1−Un
j

h +
Sn

j+1+Sn
j−2Sn

j coshθ
ω2h

, d j =
−Sn

j

ω2 +Un
j ,

(15)

using the continuity condition of the first derivative atx = x j that isp′j(x j, tn) = p′j−1(x j, tn), we get the flowing equations:

b jω + c j =−a j−1ω sinhθ + b j−1ω cosθ + c j−1, j = 1, ...,N. (16)

Using Eq.15, after slight rearrangements, then Eq.16becomes

Un
j+1−2Un

j +Un
j−1 = αSn

j+1+β Sn
i + γSn

j−1, j = 1, ...,N, (17)

where

α =
h2

θ sinθ
− h2

θ 2 , β =
−h2cosθ

θ sinθ
+

2h2coshθ
θ 2 − h2cosθ

θ sinθ
,

γ =
h2sinθ

θ
+

h2cosθ coshθ
θ sinθ

+
h2

θ 2 −
2h2coshθ

θ 2 , and θ = ωh.

Remark. As ω → 0, that isθ → 0, then(α,β ,γ)→ ( h2

6 ,
4h2

6 ,
h2

6 ).

Case 3.We take spline function in this formT3 = span{1, x, cosh(ωx), sinh(ωx) }.

To set up the non-polynomial spline method, we select an integer N> 0 and a time step sizek> 0. With h = b−a
N+1, the

mesh points(x j, tn) arex j = a+ j h and tn = n k, wheren = 0,1, ..., and j = 0,1, ...,N +1. LetUn
j be an approximation

to u(x j, tn), obtained by the segmentp j(x, tn) of the mixed spline function passing through the points(x j,Un
j ) and

(x j+1,Un
j+1). Each segment has the form

p j(x, tn) = a j(tn)coshω(x− x j)+ b j(tn)sinhω(x− x j)+ c j(tn)(x− x j)+ d j(tn), (18)
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for each j = 0,1, ...,N. To obtain expressions for the coefficients of Eq.18 in terms ofUn
j ,Un

j+1,Sn
j andSn

j+1 which are as

follows:

Un
j = p j(x j, tn),U

n
j+1 = p j(x j+1, tn), Sn

j = p′′j (x j, tn) and Sn
j+1 = p′′j (x j+1, tn). (19)

Using Eqs.18and19, we get
a j + d j =Un

j ,

a j coshθ + b j sinhθ + c jh+ d j =Un
j+1,

a jω2 = Sn
j ,

a j ω2coshθ + b j ω2sinhθ = Sn
j+1,

(20)

wherea j ≡ a j(tn), b j ≡ b j(tn), c j ≡ c j(tn), d j ≡ d j(tn) and θ = wh. by solving the last four equations in20We

obtain expressions for the coefficients as:

a j =
h2

θ2 Sn
j , b j =

h2(−Sn
j coshθ+Sn

j+1)

θ2 sinθ ,

c j =
Un

j+1−Un
j

h +
h(−Sn

j+1+Sn
j )

θ2 , d j =− h2

θ2 Sn
j +Un

j ,

a j =
h2

θ2 Sn
j , b j =

h2(−Sn
j coshθ+Sn

j+1)

θ2 sinθ ,

c j =
Un

j+1−Un
j

h +
h(−Sn

j+1+Sn
j )

θ2 , d j =− h2

θ2 Sn
j +Un

j ,

(21)

using the continuity condition of the first derivative atx = x j, that isp′j(x j, tn) = p′j−1(x j, tn), we get the flowing equations:

b jω + c j =−a j−1ω sinhθ + b j−1ω coshθ + c j−1, j = 1, ...,N. (22)

Using Eq.21, after slight rearrangements, then Eq.22becomes

Un
j+1−2Un

j +Un
j−1 = αSn

j+1+β Sn
j +αSn

j−1, j = 1, ...,N, (23)

where

α =− h2

θ sinhθ
+

h2

θ 2 , β =
2h2coshθ
θ sinhθ

− 2h2

θ 2 ,andθ = ωh.

Remark. As ω → 0, that isθ → 0, then(α,β )→ ( h2

6 ,
4h2

6 ).

Case 4.We take spline function in this formT3 = span{1, x, tanh(ωx), sech(ωx)}. To set up the non-polynomial spline

method, we select an integerN> 0 and a time step sizek> 0. With h = b−a
N+1, the mesh points(x j, tn) arex j = a+ j h

and tn = n k, wheren = 0,1, ..., and j = 0,1, ...,N +1. LetUn
j be an approximation tou(x j, tn), obtained by the segment

p j(x, tn) of the mixed spline function passing through the points(x j,Un
j ) and(x j+1,Un

j+1). Each segment has the form

p j(x, tn) = a j(tn) tanhω(x− x j)+ b j(tn)sechω(x− x j)+ c j(tn)(x− x j)+ d j(tn), (24)

for each j = 0,1, ...,N. To obtain expressions for the coefficients of Eq.24 in terms ofUn
j ,Un

j+1, Sn
j andSn

j+1 which are as

follows:

Un
j = p j(x j, tn),U

n
j+1 = p j(x j+1, tn),S

n
j = p′′j (x j, tn) and Sn

j+1 = p′′j (x j+1, tn). (25)
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Using Eqs.24and25, we get

a j + d j =Un
j ,

a j tanhθ + b j sechθ + c jh+ d j =Un
j+1,

−b jω2 = Sn
j ,

−2a j ω2sech2θ tanhθ − b j ω2sech3θ + b j ω2sechθ tanh2 θ = Sn
j+1,

(26)

wherea j ≡ a j(tn),b j ≡ b j(tn),c j ≡ c j(tn) , d j ≡ d j(tn) and θ = wh. by solving the last four equations in26.

b j =
−h2

θ2 Sn
j , ai =

h2(Sn
j sech3θ−Sn

j sechθ tanh2θ−Sn
j+1)

2θ2sech2θ tanhθ , d j =
h2

θ2 Sn
j +Un

j ,

c j =
Un

j+1−Un
j

h +
h(Sn

j sechθ−Sn
j )

θ2 +
h(Sn

j sech3θ+Sn
j sechθ tanh2 θ+Sn

j+1)

2θ2 sech2θ ,

b j =
−h2

θ2 Sn
j , ai =

h2(Sn
j sech3θ−Sn

j sechθ tanh2 θ−Sn
j+1)

2θ2 sech2θ tanhθ , d j =
h2

θ2 Sn
j +Un

j ,

c j =
Un

j+1−Un
j

h +
h(Sn

j sechθ−Sn
j )

θ2 +
h(Sn

j sech3θ+Sn
j sechθ tanh2 θ+Sn

j+1)

2θ2 sech2θ ,

(27)

We obtain expressions for the coefficients as: using the continuity condition of the first derivative atx = x j, that is

p′j(x j, tn) = p′j−1(x j, tn), we get the flowing equations:

a jω + c j = a j−1ω sech2θ − b j−1ω sechθ tanhθ + c j−1, j = 1, ...,N. (28)

Using Eq.27, after slight rearrangements, then Eq.28becomes

Un
j+1−2Un

j +Un
j−1 = αSn

j+1+β Sn
j + γSn

j−1, j = 1, ...,N, (29)

where

α =
h3ω

2θ 2sech2θ tanhθ
− h2

2θ 2sech2θ
,

β =
−h3ω sech3θ

2θ 2sech2θ tanhθ
+ω sechθ tanh2 θ2θ 2sech2θ tanhθ +

h2

θ 2

− h2sechθ
2θ 2 +

h2sech3θ
2θ 2 − h2sechθ tanh2 θ

2θ 2sech2θ
− h2ω

2θ 2 tanhθ
+

h2

2θ 2sech2θ
,

γ =
h3ω(sech3θ − sechθ tanh2 θ )

2θ 2 tanhθ
+

h3ω sechθ tanhθ
θ 2 +

h2(sechθ −1)
θ 2 +

h2(−sech3θ + sechθ tanh2 θ )
2θ 2sech2θ

,

and

θ = ωh.

Remark. As ω → 0, that isθ → 0, then(α,β ,γ)→ ( h2

6 ,
4h2

6 ,
h2

6 ).

Case 5.We take spline function in this formT3 = span{1, x, eθ , e−θ}.

To set up the non-polynomial spline method, we select an integer N> 0 and a time step sizek> 0. With h = b−a
N+1, the

mesh points(x j, tn) arex j = a+ j h and tn = n k, wheren = 0,1, ..., and j = 0,1, ...,N +1. LetUn
j be an approximation

tou(x j, tn), obtained by the segmentp j(x, tn) of the mixed spline function passing through the points(x j,Un
j ) and

c© 2017 BISKA Bilisim Technology
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(x j+1,Un
j+1). Each segment has the form

p j(x, tn) = a j(tn)e
ω(x−x j)+ b j(tn)e

−ω(x−x j)+ c j(tn)(x− x j)+ d j(tn), (30)

for each j = 0,1, ...,N. To obtain expressions for the coefficients of Eq.30 in terms ofUn
j ,Un

j+1,Sn
j andSn

j+1 which are as

follows:

Un
j = p j(x j, tn),U

n
j+1 = p j(x j+1, tn),S

n
j = p′′j (x j, tn) and Sn

j+1 = p′′j (x j+1, tn). (31)

Using Eqs.30and31, we get
a j + b j + d j =Un

j ,

a j eθ + b j e−θ + c jh+ d j =Un
j+1,

a jω2+ b jω2 = Sn
j ,

a j ω2eθ + b j ω2e−θ = Sn
j+1,

(32)

wherea j ≡ a j(tn),b j ≡ b j(tn),c j ≡ c j(tn) , d j ≡ d j(tn) and θ = wh. by solving the last four equations in32. We obtain

expressions for the coefficients as:

a j =
h2(Sn

je
−θ − Sn

j+1)

θ 2(e−θ − eθ )
, b j =

h2(−Sn
je

θ + Sn
j+1)

θ 2(e−θ − eθ )
, (33)

c j =
Un

j+1−Un
j

h
+

h(−Sn
j+1+ Sn

j)

θ 2 , d j =− h2

θ 2 Sn
j +Un

j ,

Using the continuity condition of the first derivative atx= x j, that isp′j(x j, tn) = p′j−1(x j, tn), we get the flowing equations:

a jω − b jω + c j = a j−1ωeθ − b j−1ωe−θ + c j−1, j = 1, ...,N. (34)

Using Eq.33, after slight rearrangements, then Eq.34becomes

Un
j+1−2Un

j +Un
j−1 = αSn

j+1+β Sn
j +αSn

j−1, j = 1, ...,N, (35)

where

α =
2h3ω

θ 2(e−θ − eθ )
+

h2

θ 2 , β =
2h3ω(−e−θ − eθ )

θ 2(e−θ − eθ )
− 2h2

θ 2 ,andθ = ωh.

Remark. As ω → 0, that isθ → 0, then(α,β )→ ( h2

6 ,
4h2

6 ).

After we studied the five cases we show that all five cases implythat the same equation and the same values of(α,β ).

i.e. The equations11, 17, 23, 29and35are same equation in this form

Un
j+1−2Un

j +Un
j−1 = αSn

j+1+β Sn
j +αSn

j−1, j = 1, ...,N, (36)

where(α,β )→ ( h2

6 ,
4h2

6 ).
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Then we consider Eq.36at two-time leveln, n+1 and subtract them to obtain the following relation

(Un+1
j+1 −Un

j+1)−2(Un+1
j −Un

i )+ (Un+1
j−1 −Un

j−1) = α(Sn+1
j+1 − Sn

j+1)+β (Sn+1
j − Sn

j)+α(Sn+1
j−1− Sn

j−1), j = 1, ...,N.

(37)

On the other hand, we rewrite Eq.2 as

∂
∂ t

(
∂u(x, t)

∂x2 − 1
µ

u(x, t) ) =
1
µ
(

∂u(x, t)
∂x

+ ε(u(x, t))p ∂u(x, t)
∂x

) ,

and follow the famous Cranck–Nicolson scheme to derive

(
∂u(x j, tn+1)

∂x2 − 1
µ

u(x j, tn+1) )− (
∂u(x j, tn)

∂x2 − 1
µ

u(x j, tn) )∼=
k

4µh
( 1+ ε(u(x j, tn+1))

p ) ( u(x j+1, tn+1)−u(x j−1, tn+1)
)

+
k

4µh
( 1+ ε(u(x j, tn))

p )( u(x j+1, tn)−u(x j−1, tn)
)

.

From this equation, the following difference equation can be extracted:

Sn+1
j − Sn

j =
1
µ
(Un+1

j −Un
j )− r(1+ ε(Un+1

j )p)(Un+1
j+1 −Un+1

j−1 )+ r(1+ ε(Un
j )

p)(Un
j+1−Un

j−1), (38)

wherer = k
4µh and j = 1, ...,N. Substituting Eq.38 in Eq.37and doing some calculations, we get

A jU
n+1
j−1 +B jU

n+1
j +C jU

n+1
j+1 = D jU

n
j−1+E jU

n
j +FjU

n
j+1, (39)

where
A j = 1− α

µ +2α r(1+ ε(Un+1
j−1 )

p)+β r(1+ ε(Un+1
j )p),

B j =−2− β
µ +2αε r((Un+1

j+1 )
p − (Un+1

j−1 )
p),

C j = 1− α
µ −2α r(1+ ε(Un+1

j+1 )
p)−β r(1+ ε(Un+1

j )p),

D j = 1− α
µ −2α r(1+ ε(Un

j−1)
p)−β r(1+ ε(Un

j )
p),

E j =−2− β
µ −2αε r((Un

j+1)
p − (Un

j−1)
p),

Fj = 1− α
µ +2α r(1+ ε(Un

j+1)
p)+β r(1+ ε(Un

j )
p),

now to solving this system we using initial conditions Eq.4 to find the value ofU0
j , whereU0

j = f (x j), for each j =

0,1, ...,N + 1. If the procedure is reapplied all the approximationU1
j are known, the values ofU2

j , U3
j , U4

j , ... can be

obtained in a similar manner .

2.2 Truncation error

Theorem 1.The difference 39 has the local truncation error (LTE) kh2(1+ k).

Proof. Using the difference scheme39at p = 3 we obtain the truncation error

T n
j = A ju

n+1
j−1 +B ju

n+1
j +C ju

n+1
j+1−D ju

n
j−1−E ju

n
j −Fju

n
j+1, (40)
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where
A j = 1− α

µ +2α r(1+ ε(un+1
j−1)

3)+β r(1+ ε(un+1
j )3),

B j =−2− β
µ +2αε r((un+1

j+1)
3− (un+1

j−1)
3),

C j = 1− α
µ −2α r(1+ ε(un+1

j+1)
3)−β r(1+ ε(un+1

j )3),

D j = 1− α
µ −2α r(1+ ε(un

j−1)
3)−β r(1+ ε(un

j)
3),

E j =−2− β
µ −2αε r((un

j+1)
3− (un

j−1)
3),

Fj = 1− α
µ +2α r(1+ ε(un

j+1)
3)+β r(1+ ε(un

j)
3),

Expanding this equation in Taylor series in termsu(x j, tn) and its derivatives after simplifying, we obtain the following

expression

T n
j = (h2−2α − h2α −β )kDxxtu

n
j +(

h2

2
− h2α

2
)k2Dxxt u

n
j + f rach26− h2α

6
)k3Dxxttt u

n
j + ..., (41)

then the local truncation error of the scheme is O(kh2(1+ k)).

2.3 Stability analysis of the method

In this section, the standard Von-Neumann concept is applied to investigate the stability analysis of the scheme. At first,

we must linearize the nonlinear term of the GRLW equation by makingε(Un
j )

p as a local constantλ . According to the

Von- Neumann method, we get

Un
j = ζ n exp(i jφ), (42)

g =
ζ n+1

ζ n ,

whereφ = k h , k is the mode number,i =
√
−1 andg is the amplification factor of the scheme. Substituting Eq.42 into

the difference Eq.39, we get

ζ n+1(Aexp(i( j−1)φ)+Bexp(i jφ)+Cexp(i( j+1)φ) = ζ n(Dexp(i( j−1)φ)+E exp(i jφ)+F exp(i( j+1)φ), (43)

where
A = 1− α

µ +2α r(1+λ )+β r(1+λ ),
B =−2− β

µ , C = 1− α
µ −2α r(1+λ )−β r(1+λ ),

D = 1− α
µ −2α r(1+λ )−β r(1+λ ), E =−2− β

µ ,

F = 1− α
µ +2α r(1+λ )+β r(1+λ ),

after simple calculations, Eq.43 leads to

g =
Dexp(−iφ)+E +F exp(iφ)
Aexp(−iφ)+B+Cexp(iφ)

,

using the well-known Euler’s formula, we have

g =
X + iY
X − iY

,

whereX = (2− 2α
µ )cosφ −2− β

µ ,andY = r(1+λ )(2α +β )sinφ . Obviously,

|g|= 1, (44)
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then, the linearized scheme is marginally stable.

2.4 Numerical tests and results of GRLW equation

In this section, we present some numerical examples to test validity of our scheme for solving GRLW Eq.2. For this

purpose, we aim to simulate motion of single solitary wave, interaction of two and three solitary waves, wave undulation

and propagation of wave with the Maxwellian initial condition.

2.4.1 The motion of single solitary waves

In previous section, we have provided the non-polynomial scheme for the GRLW equation, and we can take the following

as an initial condition.

u(x,0) = p

√

(p+2)c
2p

sech2(
p
2

√

c
µ(c+1)

(x− x0)), (45)

The normsL2-norm andL∞-norm are used to compare the numerical solution with the analytical solution

L2 =
∥

∥uE − uN
∥

∥=
√

h∑N
i=0(u

E
j − uN

j )
2,

L∞ = max
j

∣

∣

∣
uE

j − uN
j

∣

∣

∣
, j = 0, 1, · · · ,N.

(46)

WhereuE is the exact solutionu anduN is the approximation solutionUN . and the quantitiesI1, I2 andI3are shown to

measure conservation for the schemes.

I1 =
∫ ∞
−∞ u(x, t)dx ∼= h∑N

j=0Un
j ,

I2 =
∫ ∞
−∞(u

2+ µu2
x)dx ∼= h∑N

j=0((U
2)n

j + µ(U2
x )

n
j ),

I3 =
∫ ∞
−∞(u

p+2− (p+1)(p+2)µ
2 ε u2

x)dx ∼= h∑N
j=0((U

p+2)n
j −

(p+1)(p+2)µ
2 ε (U2

x )
n
j),











. (47)

Now we consider two test problems.

Problem 1. Now, we consider a test problem wherep = 3, c = 0.1, µ = 1,h = 0.1, x0 = 40, ∆ t = k = 0.1 with range

[0, 80]. The simulations are done up tot = 5. The changes of the invariantsI1, I2 and I3 are approach to zero in the

computer program for the scheme. Errors, also, att = 5 are satisfactorily smallL2-error =3.63674×10−4 andL∞-error =

2.06037×10−4 for the scheme. Our results are recorded in Table 1 and the motion of solitary wave is plotted at different

time levels in Fig. 1.

Problem 2.Now, for comparison, we consider a test problem wherep = 3, c = 1.2, µ = 1, h = 0.1, x0 = 40,∆ t = k =

0.025 with range [0,100]. The simulations are done up tot = 2.5. The changes of the invariantsI1 and I2 approach to

zero and the invariantI3 changed by less 3.6×10−5 in the computer program for the scheme. Errors, also, att = 2.5 are

satisfactorily smallL2-error =2.38109×10−3 andL∞-error = 1.60851×10−3 for the scheme. Our results are recorded in

Table 2. The motion of solitary wave is plotted at different time levels in Fig. 2.

In the next table we make comparison between the results of third scheme and the results have been published in Search

[20]. We find that our results are related to the results of research [20].
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2.4.2 Interaction of two solitary waves

The interaction of two GRLW solitary waves having differentamplitudes and traveling in the same direction is illustrated.

We consider GRLW equation with initial conditions given by the linear sum of two well separated solitary waves of

various amplitudes

u(x,0) =
2

∑
j=1

p

√

(p+2)c j

2p
sech2(

p
2

√

c j

µ(c j +1)
(x− x j)), (48)

where,j = 1,2, x j andc jare arbitrary constants. In our computational work.

Now, we choosec1 = 1, c2 = 0.5, x1 = 15, x2= 35 ,µ = 1, h = 0.1, k = 0.1 with interval [0, 80]. In Fig. 3, the

interactions of these solitary waves are plotted at different time levels. We also, observe an appearance of a tail of small

amplitude after interaction and the three invariants for this case are shown in Table 4. The invariantsI1, I2 and I3 are

changed by less than 1.06×10−3, 3.5×10−4 and 3.13×10−4, respectively for the scheme.

2.4.3 Interaction of three solitary waves

The interaction of three GRLW solitary waves having different amplitudes and traveling in the same direction is illustrated.

We consider the GRLW equation with initial conditions givenby the linear sum of three well separated solitary waves of

various amplitudes:

u(x,0) =
3

∑
j=1

p

√

(p+2)c j

2p
sech2(

p
2

√

c j

µ(c j +1)
(x− x j)), (49)

where, j = 1,2, 3, x j andc jare arbitrary constants. In our computational work. Now, wechoosec1 = 1,c2 = 0.75,c3 =

0.5, x1 = 15,x2 = 35, x3 = 45 with interval [0, 80]. In Fig. 4. The interactions of thesesolitary waves are plotted at

different time levels. We also, observe an appearance of a tail of small amplitude after interaction and the three invariants

for this case are shown in Table 5. The invariantsI1, I2 and I3 are changed by less than 1.2× 10−3, 1.72× 10−3 and

1.08×10−3, respectively for the scheme.

2.4.4 The Maxwellian initial condition

In final series of numerical experiments, the development ofthe Maxwellian initial condition

u(x,0) = exp(−(x−40)2) , (50)

into a train of solitary waves is examined. We apply it to the problem for different cases: (I)µ= 0.1 , (II)µ= 0.04 , (III)

µ= 0.01 and (IV)µ= 0.005. Whenµ is large such as case (I), only single soliton is generated asshown in Fig. 5a.

However, whenµ is reduced, increasingly solitary waves are formed, since for case (II), two solitary waves are generated

as shown in Fig. 5b, and for case (III) the Maxwellian pulse breaks up into a train of at least three solitary waves as shown

in Fig. 6a. Finally, for (IV) case, the Maxwellian initial condition has decayed into four stable solitary waves as shownin

Fig. 6b. The peaks of the well-developed wave lie on a straight line so that their velocities are linearly dependent on their

amplitudes and we observe a small oscillating tail appearing behind the last wave as shown in the figures 5 and 6, and all

states att = 5. Moreover, the total number of solitary waves which are generated from the Maxwellian initial condition

according to the results obtained from the numerical schemein test problem as shown in Table 7, can be shown to follow
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approximately the relation

N ∼=
[

1
4
√µ

]

. (51)

3 Conclusions

In this paper, we applied non-polynomial spline functions to develop a numerical method for solving GRLW equation

and shown that the schemes are marginally stable. We tested our schemes through a single solitary wave in which the

analytic solution is known, then extend it to study the interaction of solitons where no analytic solution is known during

the interaction and its accuracy was shown by calculating error normsL2 andL∞. The Maxwellian initial condition has

been used and a relation betweenµ and the number of waves was explored.

4 Tables and figures

Table 1: Invariants and errors for single solitary wavep = 3,c = 0.1, h = 0.1,k = 0.1, and x0 = 40, 0≤ x ≤ 80.

t I1 I2 I3 L2-norm L∞-norm
0
1
2
3
4
5

4.06257
4.06257
4.06256
4.06255
4.06254
4.06252

1.13382
1.13382
1.13382
1.13382
1.13382
1.13382

0.0165781
0.0165782
0.0165782
0.0165782
0.0165782
0.0165782

0.0
8.15023E-5
1.59786E-4
2.32965E-4
3.00723E-4
3.63674E-4

0.0
5.10793E-5
1.01785 E-4
1.44328 E-4
1.78179E-4
2.06037E-4

Fig. 1: Single solitary wave withc = 0.1, h = 0.1, k = 0.1andx0 = 40, 0≤ x ≤ 80,t = 0, 5 respectively
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Table 2: Invariants and errors for single solitary wavep = 3, c = 1.2, h = 0.1, k = 0.025 andx0 = 40, 0≤ x ≤ 100.

t I1 I2 I3 L2-norm L∞-norm
0
0.5
1.0
1.5
2
2.5

3.79713
3.79713
3.79713
3.79713
3.79713
3.79713

2.87871
2.87871
2.87871
2.87871
2.87871
2.87871

0.881628
0.881615
0.881615
0.881594
0.881592
0.881592

0.0
8.13695E-4
1.39242E-3
1.78371E-3
2.09581E-3
2.38109E-3

0.0
8.09267E-4
1.05441E-3
1.30178E-3
1.45102E-3
1.60851E-3

Fig. 2: Single solitary wave withc = 1.2, h = 0.1,k = 0.025 andx0 = 40, 0≤ x ≤ 100,t = 0, 1, 2 respectively.

Table 3: Invariants and errors for single solitary wavec = 1.2, h = 0.1, k = 0.025 andx0 = 40, 0≤ x ≤ 100,t = 2.

Method I1 I2 I3 L2-norm L∞-norm
Analytical
Our
scheme
[20]

3.79713
3.79713
3.79713

2.87871
2.87871
2.88122

0.881628
0.881592
0.972388

0.0
2.09581E-3
2.13434E-3

0.0
1.45102E-3
1.47042E-3

Table 4: Invariants of interaction two solitary waves of GRLW equation,c1 = 1,c2 = 0.5,x1 = 15,x2 = 35,0≤ x ≤ 80.

t I1 I2 I3
0
2
4
6
8
10

7.35999
7.35999
7.35977
7.35958
7.35933
7.35893

4.51990
4.51004
4.51014
4.51014
4.51017
4.51025

0.847824
0.847634
0.847571
0.847553
0.847563
0.847501
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Fig. 3: interaction two solitary waves with
c1 = 1, c2 = 0.5, x1 = 15, x2 = 35, 0≤ x ≤ 80at time t = 0, 20 respectively.

Table 5: Invariants of interaction three solitary waves of GRLW equation. c1 = 1, c2 = 0.75, c3 = 0.5, x1 = 15, x2 =
35, x3 = 45, 0≤ x ≤ 80.

t I1 I2 I3
0
2
4
6
8
10

11.0225
11.0223
11.0221
11.0219
11.0216
11.0213

6.85159
6.85208
6.85251
6.85276
6.85302
6.85331

1.28631
1.28589
1.28563
1.28555
1.28542
1.28523

Fig. 4: interaction three solitary waves with
c1 = 1,c2 = 0.75, c3 = 0.5,x1 = 15, x2 = 35, x3 = 45,0≤ x ≤ 80at times t = 0, 5, 10, 15 respectively.
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