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Abstract: In this paper, we study a certain class of equations that hibderopagating in dual-core fibers. Linear stability gsal
is applied to discuss the existence of some types of tragelliave solutions and to compute the wave speed. New doublydie
solutions are obtained, and new bright and dark solitortisois are found.
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1 Introduction

Recently, many authors have been working on the methodsnistrating the exact solutions of nonlinear partial
differential equations (NPDES). In various applied braagbf science, the researchers give special interest inajeng
the methods to obtain the exact solutions of NPDEs, speltyfitaterms of traveling solitary wave, soliton forms and
Jacobi elliptic functions.

In nonlinear optics, lots of work have been devoted to theystf nonlinear Schrodinger equations (NLS). That is
because of enormous number of potential applicatidn®].[ A great deal of study focus on a generalized NLS with
dual-power which is a generalization of the parabolic lawlmearity, see 3,4,5,6]. Biswas and co-workers have
obtained and studied the soliton solution of NLS type eaumsti with different nonlinearitiess[8,9,10]. In a recent
work, there has been a considerable interest in adoptirigusamethods to construct solutions of Schrodinger eqnoati
and systems. There has been a focus on extracting exadbsslint terms of Optical solitons; dark and bright solitons
[11,12,1314,15,16,17,18,19,20,21].

In this article we study the solitary wave in the dual-corefitilhe existence of solitary waves in dual core fiber was
discussed in32 and [23]. The equations that model the wave envelopgsand ,, which propagate through the
dual-core fiber areZ4,25|

. al,U de 0 l'L 2 + (ﬂl =0
I( Xl al : ) ale 0!3|QUJ | L[l] (14 2 9 ( )
. dl,Uz 7 w 0 2 +Qa. =0
I(—x +oy tl) a at¢2 a3|l.[_lz| [1]7] alf s (2)

where theny, a2, 03 anday are constants (for more details bout the physical signifieasee for exampld] [2]).

In [24], the exact solutions using traveling wave technique ataiobd. In P6], soliton solutions are obtained by using
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G'/G-expansion scheme. In this paper different and new exaotisnt are obtained. Dark and bright solitons are
obtained with constraint. Also, linear stability analy@sused to obtain the travelling wave speed for non oscijato
soliton form solutions.

This article is organized as follows. Section 2 is devoteda$sing the existence of tavelling wave solutions usimegli
stability analysis by linearizing the proposed system tieazero steady state . In Section 3, we use the travelling wav
method to construct new exact solutions of the systBr{Z). Our work is concluded in Section 4.

2 Existence of Travelling waves

In this section, linear stability analysis is used to obth&travelling wave speed for non oscillatory soliton foimtusions.
Here, in the traveling wave coordinatist) = (x — Ct,t), whereC is the wave speed, we perturb the systdjrefd @)
near its homogenous steady state,= > = 0. This procedure enables us to study the behavior of the falntion
whether it is monotonic or oscillatory according to the eimues of the obtained characteristic equation. Thisaline
stability analysis scheme is equivalent to the method ofelane analysis. In the travelling wave coordindrey =
(x—Ct,t) the partial derivatives are

9_29
ox 07’
da 0 0
E - E - d_Z, (3)
9> 92 9? , 02
a2~ or ooz C oz
Now assume that the perturbations
lrul = (pl(zvt) and '1U2 = (»OZ(Zat)v (4)
then systemX) and @) is linearized near its steady state in the coordingtg$ = (x— Ct,t) and appears as
O 0 O ¢ 9%¢ 9% _
(7 T0u(Gr —C) el G ~ X5, TC G ) T A =0, ®)
0P op 99 ’® ¢ 20 _
(g7 TG ~Co )+l G ~ X505, +C 5z )+ e =0 ©
Now assume that the modulating traveling wave perturbasiamthe Fourier form
o=@ =ce e, (7

wheree << 1, A is real (modulating frequency) agdis complex. This perturbation is periodic in time with peliotime
21/ A . Substitute the modulating Fourier ansatyifito either equationssj or (6) to obtain the characteristic equation

a2C2p? +i(1— a1C+ 202AC)p + az+ a1A — a2A% =0. (8)

When the eigenvalup is purely real, the traveling wave solution reaches its zteady state monotonically, and this
happens if
aC?0%+ as+ aid —aA?=0 and 1 (a;—202A)C=0. (9)

(© 2017 BISKA Bilisim Technology



=
CMMA 2, No. 2, 39-46 (2017) htmsci.com/cmma BISKA 41

From the above conditions displayed 8),(we argue that the system displayed in equatiGhaiid @) supports a soliton-
like solutions with a speed of propagati@j, given by

1

P (0172(12)\), (10)

which can be considered as the transition speed form moidtoascillating fronts. These results motivates us tocear
for some of these types of solutions, and the next sectioavistdd to extracting new solutions.

3 The exact solution

In this section, we investigate the system displayed in g (L) and @) to construct new exact traveling wave solutions
including bright and dark solitons and doubly periodic $iolus in terms of Jacobi elliptic functions. We assume that t
system admits the traveling wave solutiogig(&, 8) andyi (&), in the form R7,28]

g1 =U (&), Yo =V (&)X, & = kx—wt, (11)

wherek, w,| andv are real constants. Now, substitutd)into equations) and @) to obtain

WU +i(k+ 20vwW)U" — oWV + asU3 — (I + av@)U + (ag+ a1v)V = 0, (12)
aWAV +i(k+ 20vWV —iagwU' + a3V3 — (I + aVP)V + (as+ apv)U = 0, (13)

where the prime corresponds to the differentiation witlpees toé. We get the two equations (result from setting the
imaginary parts inX2) and (L2) to zero)

(k+ Zang)U/ — alv\N/ =0, (k+ Zang)v/ — alWU/ =0. (24)
Integrate the system displayed ¥, then set the integration constants to zero (without Iégenerality), to obtain
(k+ 2avw)U — agwV = 0, awU — (K+ 2avw)V = 0. (15)
The system in15) possesses a nontrivial envelope solutidnA£ 0 andV # 0)
V =U, (16)

in a condition
K+ 2avw = ayw. (17)
From this condition the speed of the wa@s= w/k can be written as
w 1
=" —— 1
c k a; — ZV(JZ7 ( 8)

which exactly the same computed sp&€pdwith the time modulating frequenay= A), deduced in the previous section
and displayed inX0).

Now referring to equationl?) and equate the real part of the left hand side to zero to get

WU + a3U3 — (I + avA)U + (s + agv)V =0, (19)
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and replaciny by U, from (16), results in
awPU" + azUs + [(ag+ a1v) — (1 + axv?)|U = 0. (20)

Multiply the obtained equatior2() by U’ and integrate once to get a first order nonlinear ordinafgdiftial equation
in the form

U4, (21)

U2 2o <a4+a1v I+a2v2)U2 a3

R R C 2a,W2

wherecy is a constant of integration. Fortunately, equati®t) has many solutions in terms of Jacobi elliptic functions
(see R9)). These new extracted solutions are listed in the follgtimo subsections.

3.1 Doubly-periodic solutions

Equation 21) has doubly-periodic solutions in the following forms

(1) Jacobi elliptic sine functiorsné,

Ui(¢) =sn(§, M), (22)
whereM is the modulus o$né and (withaas < 0)
_ oW M=t2 /2% ang a3 = —2[(as+ a1v) — (I + a2v?) — awW?] (23)
Co= 5 ~ W\ 20, 3= 4+ 01 2 W
(2) Jacobi elliptic cosine functiooné
Uz(§) =cn(§, M), (24)

whereM is the modulus o€né and (withazas > 0)

Co= }(Zazvvz— as), M= ii, /9 and a3 = 0oWP + | + 0oV — 0y — Q7 V. (25)
4 w\ 2ar
(3) Athird type elliptic functiondné,
Us(&) =dn(¢,M), (26)
whereM is the modulus ofiné and
Co= %02 (M2 —1)w?,  az=2aW* and as=I+aM*W? + aV? — av— 2awP. (27)
(4) Elliptic functionnst,
1
U4(f):nS(E,M):W, (28)
whereM is the modulus ohs and
Co= %GZMZWZ, a3 =—2aoW° and  as =+ aM?WP + a2 — aqV+ WP, (29)
(5) Elliptic functionncé,
1
Us(¢) =nc(&,M) = nE M)’ (30)
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whereM is the modulus ohcé and
Co= —%azMZV\rz, a3 =2 (M>—1)w?  and aq=I—2aM?W? + aV? — aqv+ apw?. (31)
(6) Elliptic functionndé,
1
Us(§) = nd(&,M) = G (32)
whereM is the modulus ohdé and
Co= f%azwz, a3 =20 (M*~1)W? and o =+ aM2WP + @V — v — 2002, (33)
(7) Elliptic functionscg,
_ ~snEM)
U7(E)*SC(55M)7 Cn(EJVI)? (34)
whereM is the modulus oéc€ and
W ey (M2 1) W 1 M v
Co=—%5— o3 = 2a, (M?—1) and ag =1+ oM W + V- — a1V — 20w, (35)
(8) Elliptic functionsdé,
_ _ sné&,M)
whereM is the modulus oédé and
Co= 012;/\127 a3=—20oM? (M2~ 1)w? and  ag =1 —20;M?W? + 0> — a1V + apW2. (37)
(9) Elliptic functioncsg,
cn(&,M)
U =cy¢é,M) = , 38
o(&) = os&.M) = (38)
whereM is the modulus o€sf and
Co= —%az (M>—1)w?  az3=-2aWw? and oy =+ 0M2WP + 0V — oV — 20002, (39)
(20) Elliptic functioncdé,
B _cn(é, M)
UlO(E)_Cd(E’M)_dn(E,M)’ (40)
whereM is the modulus o€dé and
_ orzvvz . 2 . 2
C=-%—, d3= —2a,M2W2  and  ag =1+ aaMAWA + oV — agV+ aowP. (41)
(11) Elliptic functionds,
_ _ an(¢,M)
whereM is the modulus ofis£ and
Co= 1azM2 (M2—1D) w2,  az=-2a2(2M?>—~1)W? and as=I+aV? — oV — oW, (43)

2
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(12) Elliptic functiondcé,

Usal€) = dofE.M) = STl (44)
whereM is the modulus oficé and
Co= %GZMZW‘?, a3 =—20oW° and  as =+ aM?WP + a2 — aqV+ WP, (45)
3.2 Soliton solutions
The Jacobi elliptic functions degenerate into hyperbalitcctions, as the modulus tends to unity. That idas> 1
sn(é,M) —tanh(é), cn(é,M) —sectté), and dn(&,M)— seché). (46)

We use this property to obtain the following bright and daskten solutions. From equationg%) and £3) and when
M =1, we get a solution in the form
Ui3(§) ==tanh({), (47)
provided that
szW2
Co= 5
Also, when we substituti®l = 1 into the obtained solution displayed @22 and 3), we obtain the solution

a3 = —20oW2 and  ag =+ VP + 20,W° — ayV. (48)

U14(¢) = sech), (49)
along with the conditions

co=0, as =20 and  ag =+ ooV — aWP — aqv. (50)

4 conclusion

In summary, we studied a class of vector Shcrodinger egusithat models the wave propagation in dual-core fibers. A
linear stability analysis mechanism is used to examinexfgance of monotonic front solutions and to the speed &f thi
type of waves. New exact solutions in the form of Jacobi gdifunctions are obtained using the traveling waves method
with the help of known solutions to a specific class of nordinerdinary differential equation of first order. Specisgdes

of the obtained solution are derived using the limiting pdyp of the elliptic functions that results in new dark anjbt
soliton solutions of the studied system.
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