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Abstract: In this paper, we study a certain class of equations that model the propagating in dual-core fibers. Linear stability analysis
is applied to discuss the existence of some types of travelling wave solutions and to compute the wave speed. New doubly periodic
solutions are obtained, and new bright and dark soliton solutions are found.
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1 Introduction

Recently, many authors have been working on the methods in constructing the exact solutions of nonlinear partial

differential equations (NPDEs). In various applied branches of science, the researchers give special interest in developing

the methods to obtain the exact solutions of NPDEs, specifically in terms of traveling solitary wave, soliton forms and

Jacobi elliptic functions.

In nonlinear optics, lots of work have been devoted to the study of nonlinear Schrödinger equations (NLS). That is

because of enormous number of potential applications [1,2]. A great deal of study focus on a generalized NLS with

dual-power which is a generalization of the parabolic law nonlinearity, see [3,4,5,6]. Biswas and co-workers have

obtained and studied the soliton solution of NLS type equations, with different nonlinearities [7,8,9,10]. In a recent

work, there has been a considerable interest in adopting various methods to construct solutions of Schrödinger equation

and systems. There has been a focus on extracting exact solutions in terms of Optical solitons; dark and bright solitons

[11,12,13,14,15,16,17,18,19,20,21].

In this article we study the solitary wave in the dual-core fiber. The existence of solitary waves in dual core fiber was

discussed in [22] and [23]. The equations that model the wave envelopes,ψ1 and ψ2, which propagate through the

dual-core fiber are [24,25]

i(
∂ψ1

∂x
+α1

∂ψ2

∂ t
)+α2

∂ 2ψ1

∂ t2 +α3|ψ1|
2ψ1+α4ψ2 = 0, (1)

i(
∂ψ2

∂x
+α1

∂ψ1

∂ t
)+α2

∂ 2ψ2

∂ t2 +α3|ψ2|
2ψ2+α4ψ1 = 0, (2)

where theα1,α2,α3 andα4 are constants (for more details bout the physical significance, see for example [1] [2]).

In [24], the exact solutions using traveling wave technique are obtained. In [26], soliton solutions are obtained by using
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G
′
/G-expansion scheme. In this paper different and new exact solutions are obtained. Dark and bright solitons are

obtained with constraint. Also, linear stability analysisis used to obtain the travelling wave speed for non oscillatory

soliton form solutions.

This article is organized as follows. Section 2 is devoted discussing the existence of tavelling wave solutions using linear

stability analysis by linearizing the proposed system nearthe zero steady state . In Section 3, we use the travelling wave

method to construct new exact solutions of the system (1)-(2). Our work is concluded in Section 4.

2 Existence of Travelling waves

In this section, linear stability analysis is used to obtainthe travelling wave speed for non oscillatory soliton form solutions.

Here, in the traveling wave coordinates(z, t) = (x−Ct, t), whereC is the wave speed, we perturb the system (1) and (2)

near its homogenous steady state,ψ1 = ψ2 = 0. This procedure enables us to study the behavior of the front solution

whether it is monotonic or oscillatory according to the eigenvalues of the obtained characteristic equation. This linear

stability analysis scheme is equivalent to the method of phase plane analysis. In the travelling wave coordinates(z, t) =

(x−Ct, t) the partial derivatives are

∂
∂x

=
∂
∂z

,

∂
∂ t

=
∂
∂ t

−C
∂
∂z

,

∂ 2

∂ t2 =
∂ 2

∂ t2 −2C
∂ 2

∂ t∂z
+C2 ∂ 2

∂z2 .

(3)

Now assume that the perturbations

ψ1 = φ1(z, t) and ψ2 = φ2(z, t), (4)

then system (1) and (2) is linearized near its steady state in the coordinates(z, t) = (x−Ct, t) and appears as

i(
∂φ1

∂z
+α1(

∂φ2

∂ t
−C

∂φ2

∂z
)+α2(

∂ 2φ1

∂ t2 −2C
∂ 2φ1

∂ t∂z
+C2 ∂ 2φ1

∂z2 )+α4φ2 = 0, (5)

i(
∂φ2

∂z
+α1(

∂φ1

∂ t
−C

∂φ1

∂z
)+α2(

∂ 2φ2

∂ t2 −2C
∂ 2φ2

∂ t∂z
+C2 ∂ 2φ2

∂z2 )+α4φ1 = 0. (6)

Now assume that the modulating traveling wave perturbationis in the Fourier form

φ1 = φ2 = εe−iλ teρz, (7)

whereε << 1, λ is real (modulating frequency) andρ is complex. This perturbation is periodic in time with periodic time

2π/λ . Substitute the modulating Fourier ansatz (7) into either equations (5) or (6) to obtain the characteristic equation

α2C
2ρ2+ i(1−α1C+2α2λC)ρ +α4+α1λ −α2λ 2 = 0. (8)

When the eigenvalueρ is purely real, the traveling wave solution reaches its zerosteady state monotonically, and this

happens if

α2C
2ρ2+α4+α1λ −α2λ 2 = 0 and 1− (α1−2α2λ )C= 0. (9)
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From the above conditions displayed in (9), we argue that the system displayed in equations (1) and (2) supports a soliton-

like solutions with a speed of propagation,Cp, given by

Cp =
1

(α1−2α2λ )
, (10)

which can be considered as the transition speed form monotonic to oscillating fronts. These results motivates us to search

for some of these types of solutions, and the next section is devoted to extracting new solutions.

3 The exact solution

In this section, we investigate the system displayed in equations (1) and (2) to construct new exact traveling wave solutions

including bright and dark solitons and doubly periodic solutions in terms of Jacobi elliptic functions. We assume that the

system admits the traveling wave solutions,ψ1(ξ ,θ ) andψ2(ξ ), in the form [27,28]

ψ1 =U(ξ )ei(lx−vt), ψ2 =V(ξ )ei(lx−vt), ξ = kx−wt, (11)

wherek,w, l andv are real constants. Now, substitute (11) into equations (1) and (2) to obtain

α2w2U
′′
+ i(k+2α2vw)U

′
− iα1wV

′
+α3U

3− (l +α2v2)U +(α4+α1v)V = 0, (12)

α2w2V
′′
+ i(k+2α2vw)V

′
− iα1wU

′
+α3V

3− (l +α2v2)V +(α4+α1v)U = 0, (13)

where the prime corresponds to the differentiation with respect toξ . We get the two equations (result from setting the

imaginary parts in (12) and (12) to zero)

(k+2α2vw)U
′
−α1wV

′
= 0, (k+2α2vw)V

′
−α1wU

′
= 0. (14)

Integrate the system displayed in (14), then set the integration constants to zero (without loss of generality), to obtain

(k+2α2vw)U −α1wV = 0, α1wU− (k+2α2vw)V = 0. (15)

The system in (15) possesses a nontrivial envelope solution (U 6= 0 andV 6= 0)

V =U, (16)

in a condition

k+2α2vw= α1w. (17)

From this condition the speed of the wave,C= w/k can be written as

C=
w
k
=

1
α1−2vα2

, (18)

which exactly the same computed speedCp (with the time modulating frequencyv= λ ), deduced in the previous section

and displayed in (10).

Now referring to equation (12) and equate the real part of the left hand side to zero to get

α2w2U
′′
+α3U

3− (l +α2v2)U +(α4+α1v)V = 0, (19)
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and replacingV by U , from (16), results in

α2w2U
′′
+α3U

3+[(α4+α1v)− (l +α2v2)]U = 0. (20)

Multiply the obtained equation (20) by U
′
and integrate once to get a first order nonlinear ordinary differential equation

in the form

U
′2 =

2c0

α2w2 −

(

α4+α1v
α2w2 −

l +α2v2

α2w2

)

U2−
α3

2α2w2U4, (21)

wherec0 is a constant of integration. Fortunately, equation (21) has many solutions in terms of Jacobi elliptic functions

(see [29]). These new extracted solutions are listed in the following two subsections.

3.1 Doubly-periodic solutions

Equation (21) has doubly-periodic solutions in the following forms

(1) Jacobi elliptic sine function,snξ ,

U1(ξ ) = sn(ξ ,M), (22)

whereM is the modulus ofsnξ and (withα2α3 < 0)

c0 =
α2w2

2
, M =±

1
w

√

−α3

2α2
and α3 =−2[(α4+α1v)− (l +α2v2)−α2w2]. (23)

(2) Jacobi elliptic cosine functioncnξ
U2(ξ ) = cn(ξ ,M), (24)

whereM is the modulus ofcnξ and (withα2α3 > 0)

c0 =
1
4
(2α2w2−α3), M =±

1
w

√

α3

2α2
and α3 = α2w2+ l +α2v2−α4−α1v. (25)

(3) A third type elliptic function,dnξ ,

U3(ξ ) = dn(ξ ,M), (26)

whereM is the modulus ofdnξ and

c0 =
1
2

α2
(

M2−1
)

w2, α3 = 2α2w2 and α4 = l +α2M2w2+α2v2−α1v−2α2w
2. (27)

(4) Elliptic functionnsξ ,

U4(ξ ) = ns(ξ ,M) =
1

sn(ξ ,M)
, (28)

whereM is the modulus ofnsξ and

c0 =
1
2

α2M2w2, α3 =−2α2w2 and α4 = l +α2M2w2+α2v2−α1v+α2w2. (29)

(5) Elliptic functionncξ ,

U5(ξ ) = nc(ξ ,M) =
1

cn(ξ ,M)
, (30)
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whereM is the modulus ofncξ and

c0 =−
1
2

α2M2w2, α3 = 2α2
(

M2−1
)

w2 and α4 = l −2α2M2w2+α2v2−α1v+α2w2. (31)

(6) Elliptic functionndξ ,

U6(ξ ) = nd(ξ ,M) =
1

dn(ξ ,M)
, (32)

whereM is the modulus ofndξ and

c0 =−
1
2

α2w2, α3 =−2α2
(

M2−1
)

w2 and α4 = l +α2M2w2+α2v2−α1v−2α2w
2. (33)

(7) Elliptic functionscξ ,

U7(ξ ) = sc(ξ ,M) =
sn(ξ ,M)

cn(ξ ,M)
, (34)

whereM is the modulus ofscξ and

c0 =
α2w2

2
, α3 = 2α2

(

M2−1
)

w2 and α4 = l +α2M2w2+α2v2−α1v−2α2w
2. (35)

(8) Elliptic functionsdξ ,

U8(ξ ) = sd(ξ ,M) =
sn(ξ ,M)

dn(ξ ,M)
, (36)

whereM is the modulus ofsdξ and

c0 =
α2w2

2
, α3 =−2α2M2(M2−1

)

w2 and α4 = l −2α2M
2w2+α2v2−α1v+α2w2. (37)

(9) Elliptic functioncsξ ,

U9(ξ ) = cs(ξ ,M) =
cn(ξ ,M)

sn(ξ ,M)
, (38)

whereM is the modulus ofcsξ and

c0 =−
1
2

α2
(

M2−1
)

w2, α3 =−2α2w2 and α4 = l +α2M2w2+α2v2−α1v−2α2w
2. (39)

(10) Elliptic functioncdξ ,

U10(ξ ) = cd(ξ ,M) =
cn(ξ ,M)

dn(ξ ,M)
, (40)

whereM is the modulus ofcdξ and

c0 =
α2w2

2
, α3 =−2α2M2w2 and α4 = l +α2M2w2+α2v2−α1v+α2w2. (41)

(11) Elliptic functiondsξ ,

U11(ξ ) = ds(ξ ,M) =
dn(ξ ,M)

sn(ξ ,M)
, (42)

whereM is the modulus ofdsξ and

c0 =
1
2

α2M2(M2−1
)

w2, α3 =−2α2
(

2M2−1
)

w2 and α4 = l +α2v2−α1v−α2w2. (43)
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(12) Elliptic functiondcξ ,

U12(ξ ) = dc(ξ ,M) =
dn(ξ ,M)

cn(ξ ,M)
, (44)

whereM is the modulus ofdcξ and

c0 =
1
2

α2M2w2, α3 =−2α2w2 and α4 = l +α2M2w2+α2v2−α1v+α2w2. (45)

3.2 Soliton solutions

The Jacobi elliptic functions degenerate into hyperbolic functions, as the modulus tends to unity. That is asM → 1

sn(ξ ,M)→ tanh(ξ ), cn(ξ ,M)→ sech(ξ ), and dn(ξ ,M)→ sech(ξ ). (46)

We use this property to obtain the following bright and dark soliton solutions. From equations (22) and (23) and when

M = 1, we get a solution in the form

U13(ξ ) == tanh(ξ ), (47)

provided that

c0 =
α2w2

2
, α3 =−2α2w2 and α4 = l +α2v2+2α2w

2−α1v. (48)

Also, when we substituteM = 1 into the obtained solution displayed in (22) and (23), we obtain the solution

U14(ξ ) = sech(ξ ), (49)

along with the conditions

c0 = 0, α3 = 2α2w2 and α4 = l +α2v2−α2w2−α1v. (50)

4 conclusion

In summary, we studied a class of vector Shcrödinger equations that models the wave propagation in dual-core fibers. A

linear stability analysis mechanism is used to examine the existence of monotonic front solutions and to the speed of this

type of waves. New exact solutions in the form of Jacobi elliptic functions are obtained using the traveling waves method

with the help of known solutions to a specific class of nonlinear ordinary differential equation of first order. Special cases

of the obtained solution are derived using the limiting property of the elliptic functions that results in new dark and bright

soliton solutions of the studied system.
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