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Abstract: In this paper, heat transfer study of porous fin with tempeeatiependent thermal conductivity and internal heat igeios
is analyzed numerically using Legendre wavelet colloeatitethod. The numerical solutions are used effects of neafithermal
conductivity, convective and porosity parameters on tleenttal conductivity of the fin. The Legendre wavelet collamatmethod is
verified with the results of numerical method using Runget&method and good agreements are established.
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1 Introduction

The thermal performance of heat transfer equipment has $igeificantly enhanced in recent times through the use of
porous fin. The importance and applications of such fins hagsad many research interests to analyze the thermal
performance of porous fins under various conditions. In spugkst, a pioneer work on the heat transfer enhancement
through the use of porous was carried out by Kiwan and Al-Nibpwho applied numerical method to investigate the
thermal analysis of porous fin while Kiwan [2-4] developedrae method to study the performance of porous fins in
natural convection environment. Also, the same authorsitigated the effects of radiative losses on the heat transfe
from porous fins. Gorla and Bakier [5] numerically carried the thermal analysis of natural convection and radiation i

a rectangular porous fin. Kundu and Bhanja [6] presentedyfcal model for the analysis of performance and
optimization of porous fins. Kundet al. [7] proposed a model for computing maximum heat transferarops fins.
Taklifi et al. [8] investigated the effects of magnetohydrodynamics (MieD the performance of a rectangular porous
fin. In the work, that by imposing MHD in system except nearftheip, heat transfer rate from the porous fin decreases.
Bhanja and Kundu [9] analytically investigated thermal lgsia of a constructal T-shape porous fin with radiation
effects. An increase in heat transfer is found by choosigymmedium condition in the fin. Recently, Kunetwal. [10]
applied Adomian decomposition method on the performanceaptimum design analysis of porous fin of various
profiles operating in convection environment transient lieensfer analysis of variable section pin fins. Saedodih an
Sadeghi [11] analyzed the heat transfer in a cylindricabpsrfin while Saedodin and Olank [12]. Darvishial. [13]
studied the thermal performance of a porous radial fin witin@ convection and radiative heat losses while Hatami and
Ganji [14] investigated the thermal performance of circalanvective-radiative porous fins with different sectibiages

®© 2017 BISKA Bilisim Technology * Corresponding author e-mathikegbeminiyiprof@yahoo.com


http://ntmsci.com/cmma 

(_/
17 BISK A M G. Sobamowo: Heat transfer study in porous fin with temjpeeadependent thermal conductivity...

and materials. Hatamét al. [15 -18] presented various heat transfer studies in bothadiy wet porous fins. All the
studies on porous fin cited above were based on constant dheonductivity. Such assumption might be correct
because, for ordinary fins problem, the thermal condugtitthe fin might be taken to be constant. However, if large
temperature difference exists within the fin, typicallyiaeen tip and the base of the fin, the thermal conductivityois n
constant but temperature-dependent. Also, in their workanous fins, Gorlat al. [19] and Moradiet al. [20] pointed

out that for most materials, the effective thermal condiitgtincreases with temperature. Therefore, while analgzhe

fin, effects of the temperature-dependent thermal condtyctnust be taken into consideration. In carrying out such
analysis, the thermal conductivity may be modelled for sacid other many engineering applications by linear
dependency on temperature. Such dependency of thermauctrity on temperature renders the problem highly
non-linear and difficult to solve exactly. It is also very lisic to consider the temperature-dependent internat hea
generation in the fin (electric-current carrying conductarclear rods or any other heat generating components of
thermal systems). In solving the heat transfer problem op® fin, Kundu [6-7, 10] applied Adomian decomposition
method (ADM) on the performance and optimum design analystee fins while Saedodin and Sadeghi [11], Kiwan
[1-5] applied Runge-Kutta for the thermal analysis in pardim. Golar and Baker [5] and Gorkt al. [19] applied
Spectral collocation method (SCM) to study the effects afalde thermal conductivity on the natural convection and
radiation in porous fin. Saedodin and Shahababaei [21] add#ddmotopoy perturbation method (HPM) to analyse heat
transfer in longitudinal porous fins while Darvigdtial. [13] and Moradiet al. [20] and Haet al. [22] adopted Homotopy
analysis method (HAM) to provide solution to the naturalwexetion and radiation in a porous and porous moving fins
while Hoshyaret al. [23] used Homotopy perturbation method and collocatiorhméfor Thermal performance analysis
of porous fins with temperature-dependent heat generadimiami and Ganji [14] applied least square method (LSM) to
study the thermal behaviour of convective-radiative inqusrfin with different sections and ceramic materials. Also,
Rostamiyaaret al. [24] applied variational iterative method (VIM) to proecanalytical solution for heat transfer in
porous fin. Ghasenst al. [25] used differential transformation method (DTM) for héansfer analysis in porous and
solid fin. The approximate analytical methods as applied &st pesearchers solve the differential equations without
linearization, discretization or no approximation, lineation restrictive assumptions or perturbation, corxipyeof
expansion of derivatives and computation of derivativestsylically. However, the search for a particular value thiit
satisfy second the boundary condition or the determinaifauxiliary parameters necessitated the use of softwatte an
such could result in additional computational cost in theagation of solution to the problem. Also, most of the
approximate methods give accurate predictions only whemtimlinearities are weak or for small values of the fin
thermo-geometric parameter, they fail to predict accusatations for strong nonlinear models. Also, the methodsrof
involved complex mathematical analysis leading to analgiipression involving a large number terms and when they
are routinely implemented, they can sometimes lead to eoas results [26, 27]. Moreover, in practice, approximate
analytical solutions with large number of terms are not emient for use by designers and engineers. Inevitably,lsimp
yet accurate expressions are required to determine the rfipeiature distribution, efficiency, effectiveness and the
optimum parameter. In other to reduce the computation aodttime in the analysis of nonlinear problems, different
wavelet collocation methods such as Legendre, Haar, ChelysLeibnitz-Haar, cubic B-spline, sympletic,
multi-sympletic, adaptive, multi-level, interpolatingational, spectral, ultraspherical, first split-step,eseosine and
semiorthogonal B-spline wavelet collocation methods hed@pted to solve different nonlinear equations. The ease of
use, simplicity and fast rate of convergence have in redemst made these methods gain popularity in nonlinear
analysis of systems and they have been applied to nonlimebklgms in heat transfer analysis of fins [28-32]. Also, the
ability of these wavelet collocation methods to solve thalimear differential equations directly without simpliton,
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linearization, perturbation, Taylor’s series expansimesh independent study, determination of auxiliary patarsg
functions, Lagrange multiplier, Adomian polynomials amtursive relations as carried out HAM, VIM, ADM, VIM,
DTM etc. Therefore, in this paper, Legendre wavelet coliocamethod is applied to analyze heat transfer in porous fin
with temperature-dependent thermal conductivity andim@teheat generation. The numerical solutions are usedtsffe
of nonlinear thermal conductivity, convective and porpgiarameters on the thermal conductivity of the fin. The tasul
of obtained by LWCM are in excellent agreements with exaet\dital solutions (for the linear model) and the direct
numerical solutions (for the nonlinear model).

2 Problem formula

Consider a straight porous fin of length L and thickrtesgposed on both faces to a convective environment at tertopera
Te as shown in Fig.1.The dimensiapertains to the height coordinate which has its origin afithep and has a positive
orientation from fin tip to fin base. Assuming that the porowedium is homogeneous, isotropic and saturated with a
single phase fluid, the physical properties of solid as wefldd are constant except density variation of liquid, tiéfl
and porous mediums are locally thermodynamic equilibrinrthe domain, surface radiative transfers and non-Darcian
effects are negligible and there is no thermal contacttasie at the fin base and the fin tip is adiabatic type.

/—— Porous Medium

Fig. 1: Schematic of the longitudinal porous fin geometry with therinal heat generation.

Based on Darcy’s model and the above assumptions, the gogerquation for one-dimensional steady state heat transfe
in the fin is given as

+0a(T) =0 1)

d dT] hP(T-T.) pCcpgB KP(T —Tw)?
&[ke”m&}_ A Avi

The boundary conditions are

dT
x=0, =0 5
2

x=L, T=Ty

For many engineering applications, the thermal condugtivand the coefficient of heat transfer are
temperature-dependent. Therefore, the temperatureadepethermal properties and internal heat generationiaes g
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by
keff(T) = @ki + (1 — @)ks = Keff.a[1+ A (T — T)] 3)

Qint(T) = Qa1+ Y(T — Te)] (4)

Substituting Egs. (3) and (4) into Eq. (1), we have

d dT] h(T-To) pcpoKB (T-Tw)?®  Ga
ax |LFAT = Te)l gt = - - 14+ ¢(T-To)] =0 5
dx [ ( )] dX:| keff,at keff,atvf keff,a[ LIJ( )] ( )
On introducing the following dimensionless parametersgn(B) into Eq. (5);
_ 1T 43
XZE’ GZQ, Ra=Gr.Pr= Bg-gbt (pchf), Da:é? Q: / qut 2 (6)
- b Vi) \Kerta t PCoBGK (Ty— T)
hL? B'g(Th — T)t3 (pc va) (L/t)>  RaDa(L/t)?
M2= —— § = P - V=0T —Tw), B=A(To—Te
et 1 al . ( % Keff.at? ) Keffa Kettf.a y=v( ). B (To )

We arrived at the dimensionless governing differential yjand the boundary conditions

d

ax |1+ 88)

de

&}_we_&eusmvew@:o Y

If we expand Eq. (7), we have;

d2e d2e de\? )
Wﬂ;emﬂs(&) —M?6—-S16°+S1Qy6+S1Q=0 (8)
The boundary conditions are
X = de _
O’ dXx 0 (9)
X=1 6=1

3 Method of solution: L egendre wavelet collocation method

There is a difficulty in developing an explicit exact anatgficlosed-form solution for the above non-linear Eq. (8).
Therefore, in this work, we apply Legendre wavelet collaramethod. The wavelet algorithm is based on collocation
method and the procedures for applications are describfedl@ass.

Wavelets: Continuous wavelet are defined by the following formula

b (X) = a7y (%37 abeRaz0 (10)

where a and b are dilation and translation parameters,ctgplg. The Legendre wavelets defined on the intef@Al] is
given by
k ~ ~ a
m+122/2 zkxin, n—lén—l
wn,m<X>{ (mERZEEX. F = F a1

otherwise
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where m=0,1

M-1 and n=1,2,X.2. Py(x) is the Legendre polynomial of order

Ro(X) =1,P(X) =X

3

Prr1(X) = ZBEXP, (X) — 20 Pn1 (X) (12)
m=123...,M-1
A function f (x) defined in domairn0, 1] can be expressed as
f(X) = z Z Cn’mwnym (X) (13)
n=1m=0
wherechm =< f (X),ynhm(X)> in which <...> denotes the inner product. Taking some terms in infiniteesere can
write Eqg. (10) as
2*1m-1
Z > Camm( CTy(X) (14)
=1 m=0
where C andp (X) areM x1 matrices given by
C=c1,0,¢1,1,.....,01,M —1,C2,1, ... C2,M — 1, Coie 1,1, .., o1, M — 1] T
T
‘.IJ(X) _ LIJLO(X)awl,l (X)w"awl,Mfl (X)7LIJ2,0(X) """" )
Yom-1 (X) ;e

s Pok-1,0 (X) Y1 1 (X) ooy Poo1,m-1 (X)

(15)
(i) Property of the product of two Legendre wavelets. If E giveen wavelets vector, then we have the property

ETLIJLIJT — wTé

(16)
(i) Operational matrix of integration: The integrationwéveletsy (X) which is defined in Eq. (8) can be obtained as

X
/t,u )ds= Py (X),X €[0,1]
0

whereP is 2~ 1Mx2~1M, the operational matrix of integration is given by

0

(17)

......... .'_ V2M73

(2M—3)y/2M—1
0 O 0 v vov e e VM3
(2M=3)/2M—1
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3.1 Legendre wavelet collation method

Let
6" (X) =CTy(X) (18)

Integrating Eq. (15) with respect idfrom 0 tox, we have
0’ (X)=6'(0)+C TPy (x) =60 (X)=CTPy(x) since 6'(0)=0. (19)

If we integrate Eq. (16) and use the boundary conditions,weeal at

6 (X)=8(0)+C"P?y(X). (20)
PutX=1in (16), we have
6(0)=1-C"P?y (1), since 6(1)=1, (21)
on substituting Eq. (18) into E.(17)
0’ (X) =1—-C"P2y (1) +CTP2y (X). (22)

Again, integrating above equation, with respect to X frono Xt we obtain
8 (X)=1-CTP?y (1) +CTP?y(X) (23)
Substituting,8” (X), 8” (X)and8” (X) in Eq. (6), we arrived at

(1+BO)CTY(X) + B(CTPY(X))*— (M2 - $4Qy) {1 CTPy (1) +CTPy(X)}

24
fSH{lfCTPL,U(l)+CTP1,U(X)}2+SHQ:R(X,cl,cz, ..... ,Cn) @)

On expanding Eq. (21), we have

[14B{1—-CTP2y (1) +CTP2y (X)}] CTy (X) + B{CTPY (X)}?
— (M2 —$4Qy) {1—-CTP?y (1) +CTP2y (X)} — Su {1—CTPy (1) + CTPy (X)}? (25)
+$1Q=R(X,c1,Cy,.....,Cn)

Choosingn collocation pointsi.ex, i =1,2,3,...,nin the interval (0,1), at which residuB(X, ¢) equal to zero. The number
of such points gives the number of coefficienti=1,2,3,..,n.

C=lc1,0,¢,1,.....,c,M—1,60,1, ..., C0, M — 1, Cope1, 1, .., Co 1, M — 1] T
Thus, we geR(X, ¢1,C2,C3,...,Cn)=0, i =1,2,3,...,n. The above Eq. (22) gives system of nonlinear equations wéieh

solved simultaneously using Newton-Raphson method andatues of C are obtained. Substituting the values of C in
Eqg. (20), the approximate solution 6fX) is found.
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Fig. 2: Dimensionless temperature distribution in the fin paramsdte varying thermo-geometric parameter when
(@) M=035,=0,Q=04,y=02 (b) M=03%5,=010=04,y=0.2
(c) $,=05M=030Q=04y=02 (d M=085,=01Q=04,y=0..

Figs. 2a-2d show effects of nonlinear thermal conductipayameters on the dimensionless temperature distribatidn

by extension on the rate of heat transfer. From the figurisssitown that as the non-linear thermal conductivity patame
increases, the dimensionless temperature distributitimeifin decreases. The effects of porous parameter or ppsit

the temperature distribution in the porous fin are showng3ai-d. From the figures, as the porosity parameter increases
the temperature decreases rapidly and the rate of heatdrdtisee convective heat transfer) through the fin increases
the temperature in the fin drops faster (becomes steepeastiefidigh base heat flow rates) as depicted in the figures. The
rapid decrease in fin temperature due to increase in the ipopasameter is because as porosity param&g@rcreases

and in consequent, the Darcy and Raleigh number increasgethmeability of the porous fin increases and therefore
the ability of the working fluid to penetrate through the firrg®increases, the effect of buoyancy force increases and
thus the fin convects more heat, the rate of heat transfertierfin is enhanced and the thermal performance of the fin

(© 2017 BISKA Bilisim Technology


 ntmsci.com/cmma 

(_/
23 PBISK A M. G. Sobamowo: Heat transfer study in porous fin with temjpreadependent thermal conductivity...

is increased. Therefore, increase in the porosity of thenfiproves fin efficiency due to increasing in convection heat

transfer.
1 T 1
0.995F B
@ @
g 5 7
2 ]
3 2
g 0.99F N g
aQ 2 4
5 5
g 3 |
S 0.985 B g
@ k7]
< i=4
£ £ S,=1.0
a a —0— §,=2.0
0.98
Sh:3.0
—— Sh=4.0
Sh=0.10 S Sh=5.0
0.975 I . . . . . I I I I . I .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Dimensionless lenght, X Dimensionless lenght, X
@ (b)
1 1
0.95 B
0.995¢ B
09r B
@ @
[03 -
El 0.85- b g 0.99 |
g g
@ =
g o8| . g
2 3
@ < 0.985 B
8075 4 3
5 5
§ o7f . 2 0.081
aé Sh: 1.0 g . — Sh: 0.02
a _ E 3
0.65 o 5720 a ——5,20.04
4 $,=3.0 0.9751€ S,,=0.06
0.6 —F— S§,=4.0 —+—S,=0.08
S Sh=5.0 & Sh=0. 10
0.55 I I I I I I I 0.97 . . I . I I I
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Dimensionless lenght, X Dimensionless lenght, X
(© ()

Fig. 3: Dimensionless temperature distribution in the fin paramsdtg varying thermo-geometric parameter when
(& pB=05M=05Q=02y=04, (b) B,=05M=10,Q=0.2y=0.4,
(c) B=05M=20;Q=0.2,y=04, (d) LB=05M=10Q=02y=04

The effects of the internal heat generation on the thernadlilgly of the fin is shown in Fig. 4a-d and Fig. 5a-b. It is
obvious that as porous parametgy,increases to a certain value, the dimensionless temperdistribution decreases.
The effects of the internal heat generation on the thernadiilgy of the fin is shown in Fig. 4a-b, it is obvious that
as porous parametes, increases to a certain value, the dimensionless temperdisiribution at the fin tip results in
negative value (which shows thermal instability)xatO, contradicting the assumption made in the analysis. Howeve
value of porosity parameter for the thermal stability irees with increase in internal heat generation parant@(&ig.

4c) and thermal conductivity parametefs,This fact was not established in the Kiwan [3] numericalgsia of the same

problem for the large values &,.
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X Exact LWCM X NM LWCM
[The Present study) [The Present study)
0.0 0.6481 0.6481 0.0 09581 0.9581
0.1 0.6513 0.6513 0.1 0.9585 0.9585
0.2 0.6611 0.6611 0.2 0.5557 0.9597
0.3 0.6774 0.6774 0.3 0.5618 0.9618
0.4 0.7006 0.7006 0.4 0.5647 0.5647
0.5 0.7308 0.7308 0.5 0.5685 0.9685
0.6 0.7682 0.7682 0.6 0.5730 0.9730
0.7 0.8134 0.8134 0.7 0.9785 0.5785
0.8 0.8667 0.8667 0.8 0.5846 0.5846
0.% 0.5287 0.9287 0.9 0.5915 0.551%
1.0 1.0000 1.0000 1.0 1.0000 1.0000

Fig. 6: Table of comparison of results

4 Conclusion

In this work, heat transfer study of porous fin with tempemtdependent thermal conductivity and internal heat
generation has been analyzed numerically using Legendrel@aollocation method. The numerical solutions are used
effects of nonlinear thermal conductivity, convective giudosity parameters on the thermal conductivity of the fime T
Legendre wavelet collocation method is verified with theulssof numerical method using Runge-Kutta method and
good agreements are established.

Nomenclature

A cross sectional area of the fins?m

Ay porous fin base area

As porous fin surface area

h heat transfer coefficient, WPk 1

hy, heat transfer coefficient at the base of the fin, Wik 1

Cp specific heat of the fluid passing through porougdifkg — K)
Da Darcy number

(© 2017 BISKA Bilisim Technology
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g gravity constantm/s%)

h heat transfer coefficient over the fin surf&¢é/mPK)

H dimensionless heat transfer coefficient at the base ofrh/fin—2k 1
k thermal conductivity of the fin materialym1k—1

kp thermal conductivity of the fin material at the base of theWitm—1k—*
ket ¢ effective thermal conductivity ratio

K permeability of the porous fifr?)

L Length of the fin, m

M dimensionless thermo-geometric parameter

m mass flow rate of fluid passing through porougkiy's)

P perimeter of the fin(m)

Q dimensionless heat transfer rate per unit area

0p heat transfer rate per unit area at the bsgn?)

Qp dimensionless heat transfer rate the base in porous fin
Qs dimensionless heat transfer rate the base in solid fin
Ra Rayleigh number

S, Porosity parameter

t thickness of the fin

Ty, base temperature(K)

T fin temperature (K)

T, ambient temperature, K

T, Temperature at the base of the fin, K

v average velocity of fluid passing through porousrfifis)

x axial length measured from fin tip (m)

X dimensionless length of the fin

w width of the fin

g internal heat generation W /m?

Greek Symbols

B thermal conductivity parameter or non-linear parameter
d thickness of the fin, m

&, fin thickness at its base.

y dimensionless internal heat generation parameter
6 dimensionless temperature

6, dimensionless temperature at the base of the fin
n efficiency of the fin

¢ effectiveness of the fin

B’ coefficient of thermal expansidqiK 1)

£ porosity or void ratio

v kinematic viscosityn?/s)

p density of the fluidkg/m®)
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Subscripts s solid properties
f fluid properties
eff effective porous properties
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