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Abstract: In this paper, heat transfer study of porous fin with temperature-dependent thermal conductivity and internal heat generation
is analyzed numerically using Legendre wavelet collocation method. The numerical solutions are used effects of nonlinear thermal
conductivity, convective and porosity parameters on the thermal conductivity of the fin. The Legendre wavelet collocation method is
verified with the results of numerical method using Runge-Kutta method and good agreements are established.
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1 Introduction

The thermal performance of heat transfer equipment has beensignificantly enhanced in recent times through the use of

porous fin. The importance and applications of such fins has aroused many research interests to analyze the thermal

performance of porous fins under various conditions. In suchquest, a pioneer work on the heat transfer enhancement

through the use of porous was carried out by Kiwan and Al-Nimr[1] who applied numerical method to investigate the

thermal analysis of porous fin while Kiwan [2-4] developed a simple method to study the performance of porous fins in

natural convection environment. Also, the same author investigated the effects of radiative losses on the heat transfer

from porous fins. Gorla and Bakier [5] numerically carried out the thermal analysis of natural convection and radiation in

a rectangular porous fin. Kundu and Bhanja [6] presented analytical model for the analysis of performance and

optimization of porous fins. Kunduet al. [7] proposed a model for computing maximum heat transfer in porous fins.

Taklifi et al. [8] investigated the effects of magnetohydrodynamics (MHD) on the performance of a rectangular porous

fin. In the work, that by imposing MHD in system except near thefin tip, heat transfer rate from the porous fin decreases.

Bhanja and Kundu [9] analytically investigated thermal analysis of a constructal T-shape porous fin with radiation

effects. An increase in heat transfer is found by choosing porous medium condition in the fin. Recently, Kunduet al. [10]

applied Adomian decomposition method on the performance and optimum design analysis of porous fin of various

profiles operating in convection environment transient heat transfer analysis of variable section pin fins. Saedodin and

Sadeghi [11] analyzed the heat transfer in a cylindrical porous fin while Saedodin and Olank [12]. Darvishiet al. [13]

studied the thermal performance of a porous radial fin with natural convection and radiative heat losses while Hatami and

Ganji [14] investigated the thermal performance of circular convective-radiative porous fins with different section shapes
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and materials. Hatamiet al. [15 -18] presented various heat transfer studies in both dryand wet porous fins. All the

studies on porous fin cited above were based on constant thermal conductivity. Such assumption might be correct

because, for ordinary fins problem, the thermal conductivity of the fin might be taken to be constant. However, if large

temperature difference exists within the fin, typically, between tip and the base of the fin, the thermal conductivity is not

constant but temperature-dependent. Also, in their work onporous fins, Gorlaet al. [19] and Moradiet al. [20] pointed

out that for most materials, the effective thermal conductivity increases with temperature. Therefore, while analyzing the

fin, effects of the temperature-dependent thermal conductivity must be taken into consideration. In carrying out such

analysis, the thermal conductivity may be modelled for suchand other many engineering applications by linear

dependency on temperature. Such dependency of thermal conductivity on temperature renders the problem highly

non-linear and difficult to solve exactly. It is also very realistic to consider the temperature-dependent internal heat

generation in the fin (electric-current carrying conductor, nuclear rods or any other heat generating components of

thermal systems). In solving the heat transfer problem in porous fin, Kundu [6-7, 10] applied Adomian decomposition

method (ADM) on the performance and optimum design analysisof the fins while Saedodin and Sadeghi [11], Kiwan

[1-5] applied Runge-Kutta for the thermal analysis in porous fin. Golar and Baker [5] and Gorlaet al. [19] applied

Spectral collocation method (SCM) to study the effects of variable thermal conductivity on the natural convection and

radiation in porous fin. Saedodin and Shahababaei [21] adopted Homotopoy perturbation method (HPM) to analyse heat

transfer in longitudinal porous fins while Darvishiet al. [13] and Moradiet al. [20] and Haet al. [22] adopted Homotopy

analysis method (HAM) to provide solution to the natural convection and radiation in a porous and porous moving fins

while Hoshyaret al. [23] used Homotopy perturbation method and collocation method for Thermal performance analysis

of porous fins with temperature-dependent heat generation.Hatami and Ganji [14] applied least square method (LSM) to

study the thermal behaviour of convective-radiative in porous fin with different sections and ceramic materials. Also,

Rostamiyaanet al. [24] applied variational iterative method (VIM) to provide analytical solution for heat transfer in

porous fin. Ghasemiet al. [25] used differential transformation method (DTM) for heat transfer analysis in porous and

solid fin. The approximate analytical methods as applied by past researchers solve the differential equations without

linearization, discretization or no approximation, linearization restrictive assumptions or perturbation, complexity of

expansion of derivatives and computation of derivatives symbolically. However, the search for a particular value thatwill

satisfy second the boundary condition or the determinationof auxiliary parameters necessitated the use of software and

such could result in additional computational cost in the generation of solution to the problem. Also, most of the

approximate methods give accurate predictions only when the nonlinearities are weak or for small values of the fin

thermo-geometric parameter, they fail to predict accuratesolutions for strong nonlinear models. Also, the methods often

involved complex mathematical analysis leading to analytic expression involving a large number terms and when they

are routinely implemented, they can sometimes lead to erroneous results [26, 27]. Moreover, in practice, approximate

analytical solutions with large number of terms are not convenient for use by designers and engineers. Inevitably, simple

yet accurate expressions are required to determine the fin temperature distribution, efficiency, effectiveness and the

optimum parameter. In other to reduce the computation cost and time in the analysis of nonlinear problems, different

wavelet collocation methods such as Legendre, Haar, Chebyshev, Leibnitz-Haar, cubic B-spline, sympletic,

multi-sympletic, adaptive, multi-level, interpolating,rational, spectral, ultraspherical, first split-step, sine-cosine and

semiorthogonal B-spline wavelet collocation methods haveadopted to solve different nonlinear equations. The ease of

use, simplicity and fast rate of convergence have in recent times made these methods gain popularity in nonlinear

analysis of systems and they have been applied to nonlinear problems in heat transfer analysis of fins [28-32]. Also, the

ability of these wavelet collocation methods to solve the nonlinear differential equations directly without simplification,
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linearization, perturbation, Taylor’s series expansion,mesh independent study, determination of auxiliary parameters,

functions, Lagrange multiplier, Adomian polynomials and recursive relations as carried out HAM, VIM, ADM, VIM,

DTM etc. Therefore, in this paper, Legendre wavelet collocation method is applied to analyze heat transfer in porous fin

with temperature-dependent thermal conductivity and internal heat generation. The numerical solutions are used effects

of nonlinear thermal conductivity, convective and porosity parameters on the thermal conductivity of the fin. The results

of obtained by LWCM are in excellent agreements with exact analytical solutions (for the linear model) and the direct

numerical solutions (for the nonlinear model).

2 Problem formula

Consider a straight porous fin of length L and thicknesst exposed on both faces to a convective environment at temperature

T∞ as shown in Fig.1.The dimensionx pertains to the height coordinate which has its origin at thefin tip and has a positive

orientation from fin tip to fin base. Assuming that the porous medium is homogeneous, isotropic and saturated with a

single phase fluid, the physical properties of solid as well as fluid are constant except density variation of liquid, the fluid

and porous mediums are locally thermodynamic equilibrium in the domain, surface radiative transfers and non-Darcian

effects are negligible and there is no thermal contact resistance at the fin base and the fin tip is adiabatic type.
 

 

Fig. 1: Schematic of the longitudinal porous fin geometry with the internal heat generation.

Based on Darcy’s model and the above assumptions, the governing equation for one-dimensional steady state heat transfer

in the fin is given as
d
dx

[

ke f f (T )
dT
dx

]

− hP(T −T∞)

A
− ρcpgβ ′

KP(T −T∞)
2

Aν f
+ qa(T ) = 0 (1)

The boundary conditions are

x = 0, dT
dx = 0

x = L, T = Tb
(2)

For many engineering applications, the thermal conductivity and the coefficient of heat transfer are

temperature-dependent. Therefore, the temperature-dependent thermal properties and internal heat generation are given
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by

ke f f (T ) = φk f +(1−φ)ks = ke f f ,a[1+λ (T −T∞)] (3)

qint(T ) = qa[1+ψ(T −T∞)] (4)

Substituting Eqs. (3) and (4) into Eq. (1), we have

d
dx

[

[1+λ (T −T∞)]
dT
dx

]

− h(T −T∞)

ke f f ,at
− ρcpgKβ ′

(T −T∞)
2

ke f f ,atν f
+

qa

ke f f ,a
[1+ψ(T −T∞)] = 0 (5)

On introducing the following dimensionless parameters in Eq. (6) into Eq. (5);

X =
x
L
, θ =

T −T∞

Tb −T∞
, Ra = Gr.Pr=

(

β ′
gTbt3

ν2
f

)

(

ρcpν f

ke f f ,a

)

, Da =
K
t2 , Q =

qv f t

ρcpβ ′gK(Tb −T∞)
2 , (6)

M2 =
hL2

ke f f ,at
,Sh =

(

β ′
g(Tb −T∞)t3

ν2
f

)

(

ρcpν f K

ke f f ,at2

)

(L/t)2

ke f f ,a
=

RaDa(L/t)2

ke f f ,a
, γ = ψ(Tb −T∞), β = λ (Tb −T∞)

We arrived at the dimensionless governing differential Eq.(7) and the boundary conditions

d
dX

[

(1+β θ ]
dθ
dX

]

−M2θ − SHθ 2+ SHQγθ + SHQ = 0 (7)

If we expand Eq. (7), we have;

d2θ
dX2 +β θ

d2θ
dX2 +β

(

dθ
dX

)2

−M2θ − SHθ 2+ SHQγθ + SHQ = 0 (8)

The boundary conditions are

X = 0, dθ
dX = 0

X = 1, θ = 1
(9)

3 Method of solution: Legendre wavelet collocation method

There is a difficulty in developing an explicit exact analytical/closed-form solution for the above non-linear Eq. (8).

Therefore, in this work, we apply Legendre wavelet collocation method. The wavelet algorithm is based on collocation

method and the procedures for applications are described asfollows.

Wavelets: Continuous wavelet are defined by the following formula

ψa,b (X) = |a|
−1
2 ψ

(

X − b
a

)

,a,b ∈ R,a 6= 0 (10)

where a and b are dilation and translation parameters, respectively. The Legendre wavelets defined on the interval[0,1] is

given by

ψn,m (X) =

{

√

(m+ 1/2)2
k/2pm

(

2kX − n̂
)

, n̂−1
2k ≤ n̂−1

2k

0 otherwise
(11)
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where m=0,1,. . . ,M-1 and n=1,2,...2k−1. Pm(x) is the Legendre polynomial of orderm

P0(X) = 1,P1(X) = X ,

Pm+1(X) = 2m+1
m+1 XPm (X)− m

m+1Pm−1 (X)

m = 1,2,3......,M−1.

(12)

A function f (x) defined in domain[0,1] can be expressed as

f (X) =
∞

∑
n=1

∞

∑
m=0

cn,mψn,m (X) (13)

wherecn,m =< f (X),ψn,m (X)> in which<. . .> denotes the inner product. Taking some terms in infinite series, we can

write Eq. (10) as

f (X) =
2k−1

∑
n=1

M−1

∑
m=0

cn,mψn,m (X) =CT ψ (X) (14)

where C andψ (X) areM x1 matrices given by

C = [c1,0,c1,1, .....,c1,M −1,c2,1, ......,c2,M−1,c2k−1,1, ...,c2k−1,M−1]T

ψ (X) =

[

ψ1,0 (X) ,ψ1,1 (X) , ...,ψ1,M−1 (X) ,ψ2,0 (X) , ......,

ψ2,M−1 (X) , ........,ψ2k−1,0 (X)ψ2k−1,1 (X) , ....,ψ2k−1,M−1 (X)

]T
(15)

(i) Property of the product of two Legendre wavelets. If E is agiven wavelets vector, then we have the property

ET ψψT = ψT Ê (16)

(ii) Operational matrix of integration: The integration ofwaveletsψ (X) which is defined in Eq. (8) can be obtained as

X
∫

0

ψ (s)ds = Pψ (X) ,X ∈ [0,1]

whereP is 2k−1Mx2k−1M, the operational matrix of integration is given by

P =
1
2









































1 1
3 0 · · · · · · · · · · · · 0

−1√
3

0 1√
15

· · · · · · · · · · · · 0

0 −1√
15

0 · · · · · · · · · · · · 0
...

...
...

. . .
...

...
...

...
. . .

...
...

...
...

. . .
...

0 0 0 · · · · · · · · · . . .
√

2M−3
(2M−3)

√
2M−1

0 0 0 · · · · · · · · · · · · −
√

2M−3
(2M−3)

√
2M−1









































. (17)
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3.1 Legendre wavelet collation method

Let

θ ′′ (X) =CT ψ (X) (18)

Integrating Eq. (15) with respect tox from 0 tox, we have

θ ′ (X) = θ ′ (0)+CT Pψ (x) ⇒ θ ′ (X) =CT Pψ (x) since θ ′ (0) = 0. (19)

If we integrate Eq. (16) and use the boundary conditions, we arrived at

θ (X) = θ (0)+CT P2ψ (X) . (20)

PutX=1 in (16), we have

θ (0) = 1−CT P2ψ (1) , since θ (1) = 1, (21)

on substituting Eq. (18) into E.(17)

θ ′ (X) = 1−CT P2ψ (1)+CT P2ψ (X) . (22)

Again, integrating above equation, with respect to X from 0 to X, we obtain

θ (X) = 1−CT P2ψ (1)+CT P2ψ (X) (23)

Substituting,θ ′′ (X), θ ′′ (X)andθ ′′ (X) in Eq. (6), we arrived at

(1+β θ)CT ψ (X)+β
(

CT Pψ (X)
)2−

(

M2− SHQγ
){

1−CT Pψ (1)+CT Pψ (X)
}

−SH
{

1−CT Pψ (1)+CT Pψ (X)
}2

+ SHQ = R(X ,c1,c2, .....,cn)
(24)

On expanding Eq. (21), we have

[

1+β
{

1−CT P2ψ (1)+CT P2ψ (X)
}]

CT ψ (X)+β
{

CT Pψ (X)
}2

−
(

M2− SHQγ
){

1−CT P2ψ (1)+CT P2ψ (X)
}

− SH
{

1−CT Pψ (1)+CT Pψ (X)
}2

+SHQ = R(X ,c1,c2, .....,cn)

(25)

Choosingn collocation points i.e.xi, i =1,2,3,...,n in the interval (0,1), at which residualR(x, ci) equal to zero. The number

of such points gives the number of coefficientci, i=1,2,3,..,n.

C = [c1,0,c1,1, .....,c1,M −1,c2,1, ......,c2,M−1,c2k−1,1, ...,c2k−1,M−1]T

Thus, we getR(X, c1,c2,c3,...,cn)=0, i =1,2,3,...,n. The above Eq. (22) gives system of nonlinear equations whichare

solved simultaneously using Newton-Raphson method and thevalues of C are obtained. Substituting the values of C in

Eq. (20), the approximate solution ofθ (X) is found.
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Fig. 2: Dimensionless temperature distribution in the fin parameters for varying thermo-geometric parameter when
(a) M = 0.3,Sh,= 0,Q = 0.4,γ = 0.2, (b) M = 0.3,Sh,= 0.1,Q = 0.4,γ = 0.2,
(c) Sh,= 0.5,M = 0.3,Q = 0.4,γ = 0.2, (d) M = 0.8,Sh,= 0.1,Q = 0.4,γ = 0..

Figs. 2a-2d show effects of nonlinear thermal conductivityparameters on the dimensionless temperature distributionand

by extension on the rate of heat transfer. From the figures, itis shown that as the non-linear thermal conductivity parameter

increases, the dimensionless temperature distribution inthe fin decreases. The effects of porous parameter or porosity on

the temperature distribution in the porous fin are shown in Fig 3a-d. From the figures, as the porosity parameter increases,

the temperature decreases rapidly and the rate of heat transfer (the convective heat transfer) through the fin increasesas

the temperature in the fin drops faster (becomes steeper reflecting high base heat flow rates) as depicted in the figures. The

rapid decrease in fin temperature due to increase in the porosity parameter is because as porosity parameter,Shincreases

and in consequent, the Darcy and Raleigh number increase, the permeability of the porous fin increases and therefore

the ability of the working fluid to penetrate through the fin pores increases, the effect of buoyancy force increases and

thus the fin convects more heat, the rate of heat transfer fromthe fin is enhanced and the thermal performance of the fin
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is increased. Therefore, increase in the porosity of the fin improves fin efficiency due to increasing in convection heat

transfer.
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Fig. 3: Dimensionless temperature distribution in the fin parameters for varying thermo-geometric parameter when
(a) β = 0.5,M = 0.5,Q = 0.2,γ = 0.4, (b) β ,= 0.5,M = 1.0,Q = 0.2,γ = 0.4,
(c) β = 0.5,M = 2.0;Q = 0.2,γ = 0.4, (d) β = 0.5,M = 10,Q = 0.2,γ = 0.4.

The effects of the internal heat generation on the thermal stability of the fin is shown in Fig. 4a-d and Fig. 5a-b. It is

obvious that as porous parameter,Sh increases to a certain value, the dimensionless temperature distribution decreases.

The effects of the internal heat generation on the thermal stability of the fin is shown in Fig. 4a-b, it is obvious that

as porous parameter,Sh increases to a certain value, the dimensionless temperature distribution at the fin tip results in

negative value (which shows thermal instability) atx=0, contradicting the assumption made in the analysis. However,

value of porosity parameter for the thermal stability increases with increase in internal heat generation parameter,Q (Fig.

4c) and thermal conductivity parameters,β . This fact was not established in the Kiwan [3] numerical analysis of the same

problem for the large values ofSh.
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Fig. 4: Dimensionless temperature distribution in the fin parameters for varying thermo-geometric parameter when
(a) M = 0.5,Sh = 2.0,β = 0.5,γ = 0.2, (b) M = 0.5,Sh = 5.0,β ,= 0.5,γ = 0.2,
(c) M = 2.0,Sh = 5.0,β = 0.5,γ = 0.2, (d) M = 2.0,Sh = 5.0,β = 0.5,γ = 2.0.
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Fig. 5: Dimensionless temperature distribution in the fin parameters for varying thermo-geometric parameter when
(a) Sh = 5.0,M = 0.5,β = 0.5,Q = 0.4,γ = 0.2 (b) Sh = 5.0,β = 0.5,M = 0.5,Q = 0.4,γ = 0.2.
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Fig. 6: Table of comparison of results

4 Conclusion

In this work, heat transfer study of porous fin with temperature-dependent thermal conductivity and internal heat

generation has been analyzed numerically using Legendre wavelet collocation method. The numerical solutions are used

effects of nonlinear thermal conductivity, convective andporosity parameters on the thermal conductivity of the fin. The

Legendre wavelet collocation method is verified with the results of numerical method using Runge-Kutta method and

good agreements are established.

Nomenclature

A cross sectional area of the fins, m2

Ab porous fin base area

As porous fin surface area

h heat transfer coefficient, Wm−2k−1

hb heat transfer coefficient at the base of the fin, Wm−2k−1

cp specific heat of the fluid passing through porous fin(J/kg−K)

Da Darcy number
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g gravity constant(m/s2)

h heat transfer coefficient over the fin surface(W/m2K)

H dimensionless heat transfer coefficient at the base of the fin,Wm−2k−1

k thermal conductivity of the fin material,W m−1k−1

kb thermal conductivity of the fin material at the base of the fin,W m−1k−1

ke f f effective thermal conductivity ratio

K permeability of the porous fin(m2)

L Length of the fin, m

M dimensionless thermo-geometric parameter

m mass flow rate of fluid passing through porous fin(kg/s)

P perimeter of the fin(m)

Q dimensionless heat transfer rate per unit area

qb heat transfer rate per unit area at the base(W/m2)

Qb dimensionless heat transfer rate the base in porous fin

Qs dimensionless heat transfer rate the base in solid fin

Ra Rayleigh number

Sh Porosity parameter

t thickness of the fin

Tb base temperature(K)

T fin temperature (K)

Ta ambient temperature, K

Tb Temperature at the base of the fin, K

v average velocity of fluid passing through porous fin(m/s)

x axial length measured from fin tip (m)

X dimensionless length of the fin

w width of the fin

q internal heat generation inW/m3

Greek Symbols

β thermal conductivity parameter or non-linear parameter

δ thickness of the fin, m

δb fin thickness at its base.

γ dimensionless internal heat generation parameter

θ dimensionless temperature

θb dimensionless temperature at the base of the fin

η efficiency of the fin

ε effectiveness of the fin

β ′
coefficient of thermal expansion(K−1)

ε porosity or void ratio

υ kinematic viscosity(m2/s)

ρ density of the fluid(kg/m3)
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Subscripts s solid properties

f fluid properties

eff effective porous properties
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