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Abstract: An incompressible viscous flow in a non-uniform wavy channelwith slowly varying cross section with absorbing walls is
numerically studied. The governing equations are solved using finite difference method by transforming the irregular boundary of the
region of the problem to rectangular region. The effect of different parameters on the transverse velocity and the mean pressure drop
is analyzed. The results obtained using this method is in a good argument with results obtained by other numerical methods without
transforming the wavy channel to rectangular channel. The results are presented by using tables and graphs.
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1 Introduction

Kidneys are important organs with many functions in the body, including producing hormones, absorbing minerals, and

filtering blood and producing urine. The actual filtering occurs in tiny units inside the kidneys called nephrons. Every

kidney has a million nephrons. In the nephron, tiny blood vessels called capillaries intertwine with tiny urine carrying

tubes called tubules. A complicated chemical exchange takes place as waste materials and water leave the blood and

enter in to unitary system.

Researchers have been realized that to understand the mechanism of kidney it is sufficient to study the function of

nephron. Many researchers are devoted on the study of the function of nephron using mathematical models.

Ludwig, 1861 developed a theory of urine formation which consisted of filtration through the walls of glomerular

capillaries and reabsorption, which takes place in the renal tubules. According to Babsky et al., 1970, this theory has

been confirmed by many experiments. The hydrodynamical problem in the renal tubule has been studied by several

researchers such as Wesson, 1954, Kelman, 1962, Macey, 1963, Macey, 1965 considering different models for

reabsorption in the tubules. Wesson, 1954 discussed renal model theoretically assuming a constant rate of reabsorption.

Macey, 1963 was the first who studied the flow of an incompressible viscous fluid through a renal tubule using

mathematical model. He obtained exact solution using a circular tube with linear rate of reabsorption. Kelman, 1962

proposed the bulk flow in the proximal tubule decays exponentially with the axial distance. Later, Macey, 1965 used the

condition of Kelman, 1962 and solved the transport equations to find velocity components and pressure drop.

Radhakrishnamacharya et al., 1981 considered a non-uniform geometry to model renal tubule. They made an attempt to

understand the flow through the renal tubule by studding the hydrodynamical aspect of an incompressible viscous fluid in

a circular tube of varying cross section with reabsorption at the wall. With similar approach Chandra and Prasad, 1992

analyzed fluid flow in rigid tube of slowly varying cross section on different geometries. Chaturani and Ranganatha,
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1991 studied fluid flow through a diverging /converging tube with variable wall permeability. They obtained approximate

analytical solution for the case that flux at the wall dependson wall permeability and transboundary pressure drop.

Muthu and Tesfahun, 2011 have studied a mathematical model of fluid flow in a non- uniform rigid wavy channel of

varying cross section and presented the effects of slope parameter, reabsorption coefficient on the transverse velocity and

mean pressure drop. The governing equations are solved numerically by using the finite difference technique related to

the method of Takabatake Ayukawe, 1982. Sinha and Getachew,2009, Getachew and Sinha, 2011, Getachew and Sinha,

2012, numerically analyzed the combined effect of thermal and surface roughness on the performance of a slider bearing

using finite difference method by transforming the irregular domain of the bearing to rectangular domain.

As per the knowledge of the authors there is no a numerical study of a fluid flow in a non-uniform channel by

transforming the irregular region to regular region of the problem. In this paper, the governing equations of an

incompressible viscous fluid through a wavy non-uniform permeable channel are solved numerically by transforming the

wavy non –uniform channel to a rectangular channel. The transformation made the numerical computation simple, and

the finite difference method to give a better approximation.

Nomenclature A amplitude

d half width of the channel at the inlet

k slope parameter

Re Reynolds numberQo Flux across the cross section atx = 0

P pressure

u fluid velocity in the direction of x-axis

v fluid velocity in the direction of y -axis

δ wave number

ε amplitude ratio

ψ stream function

ψ vorticity function

ν kinmatic viscosity

ρ density of the lubricant

2 Governing equations

The schematic diagram of a channel with slowly varying crosssection is shown in Figure 1.

 

 

Fig. 1: Geometry of the problem
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The boundary of the channel walls are assumed to be symmetricaboutx axis described by the function

η(x) = d+ k1x+ asin

(

2πx
λ

)

(1)

where d is the half width of the channel at the inlet, x = 0. k1 is a constant whose magnitude depends on the length of the

channel exit and inlet dimensions, a is the amplitude and is the wave length. To model the slowly varying slope is

assumed very small positive number(k << 1).

An incompressible viscous fluid flow through a channel with slowly varying cross section is considered. The motion of

the fluid is assumed to be laminar, steady and symmetric. The channel is assumed to be long enough so that the initial

and the end effects are neglected.

In view of the above assumptions and the usual lubrication approximations, the Navier Stoke’s equation is reduced to

∂u
∂x

+
∂v
∂y

= 0 (2)

u
∂u
∂x

+ v
∂u
∂y

=−
1
ρ

∂ p
∂x

+ν
(

∂ 2u
∂x2 +

∂ 2u
∂y2

)

(3)

u
∂v
∂x

+ v
∂v
∂y

=−
1
ρ

∂ p
∂y

+ν
(

∂ 2v
∂x2 +

∂ 2v
∂y2

)

(4)

where u and v are the velocity of the fluid along the x axis and the y axis respectively, p is the pressure,ρdensity of the

fluid andν = µ
ρ is kinematic viscosity.

According to [11] the following boundary conditions are considered.

(i) The tangential velocity at the wall is zero.

u+
∂η
∂x

v = 0 at y = η(x) (5)

(ii) The regularity condition requires

v = 0 and
∂u
∂y

= 0 at y = 0 (6)

(iii) The reabsorption has been accounted for by considering the bulk flow as a decreasing function ofx. That is, the flux

across a cross-section is given as

Q(x) =
∫ η(x)

0
u(x,y)dy = QoF(αx) (7)

where whenα = 0 and decreases withx, α ≥ 0 is the reabsorption coefficient and is a constant, andQois the flux

across the cross sectionx = 0.

Introducing stream functionψ and the vorticityω by u = ∂ψ
∂y

u =
∂ψ
∂y

,v =
∂ψ
∂x

and ω =
∂v
∂x

−
∂u
∂y

(8)
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and the following non dimensional quantities

x′ =
x
λ
,y′ =

y
d
,η ′ =

η
d
,ψ ′ =

ψ
Qo

, p′ =
d2

µQo
p,ω ′ =

d2

Qo
ω

the above governing equations in dimensionless form are reduced (after dropping the primes) to the following.

δ 2 ∂ 2ψ
∂x2 +

∂ 2ψ
∂y2 =−ω (9)

δ 2 ∂ 2ω
∂x2 +

∂ 2ω
∂y2 = δRe

(

∂ψ
∂y

∂ω
∂x

−
∂ψ
∂x

∂ω
∂y

)

(10)

and the boundary conditions are reduced to the following form.

∂ψ
∂y

= δ (k1+Acos2πx)
∂ψ
∂x

at y = η(x) = 1+ kx+ ε sin2πx (11)

ψ = 0 and
∂ 2ψ
∂y2 = 0 at y = 0 (12)

and

ψ = F(αx) at y = η(x) = 1+ kx+ ε sin2πx (13)

u =
Qo

d
∂ψ
∂y

,v =−
Qo

λ
∂ψ
∂x

(14)

where

δ =
d
λ
,A =

2πa
λ

,ε =
a
d
,k =

k1λ
d

.

The parameterRe is the Reynolds number andδ is the wave number (the ratio of inlet width to the wavelength). ε is

the ratio of the amplitude to the inlet width and k is slope parameter. In this paper, exponentially decaying bulk flow is

considered similar to [11]. That is, in equation 13)F is taken to be

F(αx) = e−αx
. (15)

Using equation (3) and equation (8) the non-dimensional pressurep(x,y) is given by

p(x,y) = δ
∂u
∂x

+
1
δ

∫ ∂ 2u
∂y2dx

−Re

∫

u
∂u
∂x

dx+
∫

v
∂u
∂y

dx (16)

and the mean pressure is obtained by ¯p(x) =
∫

p(x,y)dy.

Further, the mean pressure drop betweenx = 0 andx = xo is obtained by

∆ p(xo) =
−
p(0)−

−
p(xo)
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3 Formulation of the problem

 

 

 

Fig. 2: Region of the problem.

Muthu and Tesfahun, 2011 solved the governing equations ( 9)and (10) together with boundary conditions (11)-(13) in

the region of Fig. 2 which is nonrectangular.

The following boundary conditions are used for the numerical computation similar to [11],

ψ = 0,
∂ 2ψ
∂y2 = 0 on AB (17)

ψ = f (y),
∂ψ
∂x

= 0 on AD (18)

∂ψ
∂y

= δ (k1+Acos2πx)
∂ψ
∂x

on CD (19)

ψ = g(y),
∂ψ
∂x

= 0 on BC, (20)

Where f (y) andg(y) are prescribed functions such thatu is parabolic atAD andBC. These functions are also assumed to

satisfy the boundary conditions so that the solution is freefrom discontinuities.

However, it is well known that finite difference approximation method is easy and effective if the region of the problem

is rectangular. In this paper, the region is transformed to rectangular region so that the numerical computation becomes

simple and effective.

The following transformation is used to transform the region (Figure 2) to a rectangular region (Figure 3).

y = y∗η(x), 0≤ y∗ ≤ 1

x = x∗
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The new coordinate system consists of two spatial variablesx* andy*. Under these transformations, the lower boundary

of the region is mapped onto y*=0 and the upper boundary of theregiony = η(x)is transformed ontoy∗= 1

 

 

 

Fig. 3: The region of the problem after the transformation.

Using these transformations equations (9-10) have the following form:

δ 2





∂ 2ψ
∂x∗2 +

(

y∗η ′

(x)
η(x)

)2
∂ 2ψ
∂y∗2 +

(

2y∗ (η ′(x))2

(η(x))2 −
y∗η(x)η ′′(x)

(η(x))2

)

∂ψ
∂y∗

−
2y∗η ′(x)

η(x)
∂ 2ψ

∂y∗ ∂x



+
1

η(x)
∂ 2ψ
∂y∗2 =−ω

(21)

δ 2

(

∂ 2ω
∂x2 +

(

y∗η ′
(x)

η(x)

)2
∂ 2ω
∂y∗2 +

(

2y∗(η ′(x))
2

(η(x))2
−

y∗η(x)η ′′(x)

(η(x))2

)

∂ω
∂y∗ −

2y∗η ′(x)
η(x)

∂ 2ω
∂y∗∂x

)

+

1
η(x)

∂ 2ω
∂y∗2 = δRe

(

1
η(x)

∂ψ
∂y∗

(

∂ω
∂x −

y∗η ′(x)
η(x)

∂ω
∂y∗

)

−

(

∂ψ
∂x −

y∗η ′(x)
η(x)

∂ψ
∂y∗

)

1
η(x)

∂ω
∂y∗

)

(22)

The corresponding boundary conditions with respect to the new coordinate system have the following form

ψ = 0,
∂ 2ψ
∂y∗2 = 0 on y∗= 0 (23)

∂ψ
∂x

−
y∗η ′(x)

η(x)
∂ψ
∂y∗

= 0 on x = 0 (24)

ψ = Qoe−αx
,

1
η(x)

∂ψ
∂y∗

= δ (k1+Acos2πx)

(

∂ψ
∂x

−
y∗η ′(x)

η(x)
∂ψ
∂y∗

)

on y∗= 1 (25)

ψ = g(y∗η(x)), on BC (26)

with respect to the new coordinate system theu andv−velocities are given by

u =
Qo

d
1

η(x)
∂ψ
∂y∗

, v =−
Q0

λ
1

η(x)

(

∂ψ
∂x

−
y∗η ′

(x)
η(x)

∂ψ
∂y∗

)

(27)
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and the pressure is given as

p(x,y) = δ
(

∂u
∂x

−
y∗η ′(x)

η(x)
∂u
∂y∗

)

+
1
δ

∫

1

(η(x))2

∂ 2u
∂y∗2 dx−Re

∫

u

(

∂u
∂x

−
y∗η ′(x)

η(x)
∂u
∂y∗

)

dx+
∫

v
1

η(x)
∂u
∂y∗

dx (28)

4 Treatment of the solution

The system of equations was discretized and solved simultaneously using finite difference representations. All the

derivatives are represented by central differences and a direct iterative approach is used to obtain the distributionsof the

variables.

The results have been obtained to an accuracy ofTol = 10−6, whereMax

(

ς new
j −ς old

j
ς new

j

)

≤ Tol,ς j, are the variables. The

iteration is carried out forTol = 10−5, Tol = 10−6, Tol = 10−7.

Algorithm

(Step 1) Initialization

(a) Input data:

(b) Set boundary conditions

(c) Set fictitious values for to the remaining grid points

(Step 2) Evaluateψnewusingψold ,ωold

(Step 3) Evaluateωnewusingψnew,ωold

(Step 4) Test for convergence.

(Step 5) Repeat steps 2-3 till convergence is obtained on allfield variables.

(Step 6) Evaluateu andvusing

(Step 7) Evaluatepusingu,v and equation (28)

(Step 8) Evaluate the pressure drop

5 Results and discussion

In the present study the non-uniform channel is transformedin to uniform channel which added complexity to the

governing equation. The resultingψ −ω form of the governing equation is solved by using finite difference method.

Therefore, for computation purpose we consider the following parameters constant in all the results.

As in the case of [11], the wave numberδ is taken as 0.1 in view that it is a small perturbation parameter. The Reynolds

number Re is taken as 1 to indicate that the flow considers a lowReynolds number as the flow is laminar.

Velocity Profile (u & v). It can be observed from figure 4 that the reabsorption coefficient has a significant effect on the

transversal velocity (v). That is, a rise in the reabsorption coefficient alpha increases the transverse velocity. This agrees

with the natural phenomenon that due to rise of alpha the pressure drops which in turn results an increase in the

transverse velocity. Figure 5 shows the behavior of the transverse velocity for different values ofx along the channel. It

can be seen that the velocity slows down as the fluid pass all the way from the entrance to the exit of the channel.
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Fig. 4: Transverse velocity (v) with y for alpha variation at the entrance of the channel.

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

v

y

x = 0.1

x = 0.2

x = 0.3

Fig. 5: Transverse velocity (v) with y along various points ofx through the channel.
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The effect of the reabsorption coefficient alpha on the longitudinal velocity (u) is shown in figure 6. The velocity is more

for low values of alpha than higher values of alpha. The reabsorption coefficient alpha has a reverse effect on the transverse

velocity (v) and longitudinal velocity (u). That is an increment in alpha increasesv whereas decreasesu. On the other hand,

Figure 7 shows the behavior of the longitudinal velocity fordifferent values ofx along the channel. It can be seen that the

velocity significantly decreases as the fluid pass all the wayfrom the entrance to the exit of the channel.
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Fig. 6: Longitudinal velocity(u) with y for alpha variation at the entrance of the channel.
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Fig. 7: Longitudinal velocity(u) with y along various points ofx through the channel.
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Mean Pressure Drop (mpd). The value of the mean pressure drop over the length of the channel is calculated for different

values of alpha. It can be noted from figure 8 that an increase in the reabsorption coefficient raises the value of the mean

pressure drop. Particularly at the exit the drop increases significantly. This is because the mean pressure decreases all the

way from entrance to exit which resulted in a rise of mean pressure drop. On the other hand it is worthwhile to mention

that this result is opposite to what has been reported on the paper by Muthu and Tesfahun, 2011 which corrects an incorrect

result reported.
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Fig. 8: Mean pressure dropmpd with x for alpha variation.

6 Conculusion

In the present analysis an incompressible viscous flow in a non-uniform wavy channel with slowly varying cross section

with absorbing walls is numerically studied. The governingequations are solved using finite difference method by

transforming the irregular boundary of the region of the problem to rectangular region. The main contribution of this

study is to make the numerical computation simple by transforming the wavy non –uniform channel to a rectangular

channel. It is observed that the reabsorption coefficient has a significant effect on the transversal velocity (v). That is, a

rise in the reabsorption coefficient alpha increases the transverse velocity. This agrees with the natural phenomenon that

due to rise of alpha the pressure drops which in turn results an increase in the transverse velocity. The reabsorption

coefficient alpha has a reverse effect on the transverse velocity (v) and longitudinal velocity (u). That is an increment in

alpha increasesv whereas decreasesu. Moreover an increase in the reabsorption coefficient raises the value of the mean

pressure drop. Particularly at the exit the drop increases significantly. This is because the mean pressure decreases all the

way from entrance to exit which resulted in a rise of mean pressure drop.
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