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Abstract: An incompressible viscous flow in a non-uniform wavy chanmi¢h slowly varying cross section with absorbing walls is
numerically studied. The governing equations are solvawjuite difference method by transforming the irregulaubdary of the
region of the problem to rectangular region. The effect &fedént parameters on the transverse velocity and the mesasyre drop
is analyzed. The results obtained using this method is inoal gogument with results obtained by other numerical methuaithout
transforming the wavy channel to rectangular channel. €helts are presented by using tables and graphs.
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1 Introduction

Kidneys are important organs with many functions in the haugluding producing hormones, absorbing minerals, and
filtering blood and producing urine. The actual filtering vecin tiny units inside the kidneys called nephrons. Every
kidney has a million nephrons. In the nephron, tiny bloodseés called capillaries intertwine with tiny urine carrgin
tubes called tubules. A complicated chemical exchangestplece as waste materials and water leave the blood and
enter in to unitary system.

Researchers have been realized that to understand the msnhaf kidney it is sufficient to study the function of
nephron. Many researchers are devoted on the study of tieidarof nephron using mathematical models.

Ludwig, 1861 developed a theory of urine formation which sieted of filtration through the walls of glomerular
capillaries and reabsorption, which takes place in thelremales. According to Babsky et al., 1970, this theory has
been confirmed by many experiments. The hydrodynamicallgmolin the renal tubule has been studied by several
researchers such as Wesson, 1954, Kelman, 1962, Macey, M3y, 1965 considering different models for
reabsorption in the tubules. Wesson, 1954 discussed ravigltheoretically assuming a constant rate of reabsarptio
Macey, 1963 was the first who studied the flow of an incompbéssiiscous fluid through a renal tubule using
mathematical model. He obtained exact solution using alleirdube with linear rate of reabsorption. Kelman, 1962
proposed the bulk flow in the proximal tubule decays expdakytvith the axial distance. Later, Macey, 1965 used the
condition of Kelman, 1962 and solved the transport equatitm find velocity components and pressure drop.
Radhakrishnamacharya et al., 1981 considered a non-tmgeometry to model renal tubule. They made an attempt to
understand the flow through the renal tubule by studding yldeddynamical aspect of an incompressible viscous fluid in
a circular tube of varying cross section with reabsorptibtha wall. With similar approach Chandra and Prasad, 1992
analyzed fluid flow in rigid tube of slowly varying cross section different geometries. Chaturani and Ranganatha,
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1991 studied fluid flow through a diverging /converging tubithwariable wall permeability. They obtained approximate
analytical solution for the case that flux at the wall depeadswall permeability and transboundary pressure drop.
Muthu and Tesfahun, 2011 have studied a mathematical mddkli@ flow in a non- uniform rigid wavy channel of
varying cross section and presented the effects of slogeer, reabsorption coefficient on the transverse vglaai
mean pressure drop. The governing equations are solvedrimatheby using the finite difference technique related to
the method of Takabatake Ayukawe, 1982. Sinha and Geta@®®8, Getachew and Sinha, 2011, Getachew and Sinha,
2012, numerically analyzed the combined effect of thermdlsurface roughness on the performance of a slider bearing
using finite difference method by transforming the irregdlemain of the bearing to rectangular domain.

As per the knowledge of the authors there is no a numericalysti a fluid flow in a non-uniform channel by
transforming the irregular region to regular region of th@hdem. In this paper, the governing equations of an
incompressible viscous fluid through a wavy non-uniforrmpegible channel are solved numerically by transforming the
wavy non —uniform channel to a rectangular channel. Thesfoamation made the numerical computation simple, and
the finite difference method to give a better approximation.

NomenclatureA amplitude
d half width of the channel at the inlet
k slope parameter

Re Reynolds numbe®, Flux across the cross sectionxat 0
pressure

fluid velocity in the direction of x-axis
fluid velocity in the direction of y -axis
wave number

amplitude ratio

stream function

vorticity function

kinmatic viscosity

density of the lubricant

VD <<EEe ™" o< c T

2 Governing equations

The schematic diagram of a channel with slowly varying ceesgion is shown in Figure 1.

Fig. 1: Geometry of the problem
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The boundary of the channel walls are assumed to be symrmabwigx axis described by the function

n(x) =d+kix+ asin(zTnX> Q)
where d is the half width of the channel at the inlet, x = fika constant whose magnitude depends on the length of the
channel exit and inlet dimensions, a is the amplitude andhésvtave length. To model the slowly varying slope is
assumed very small positive numligr< < 1).

An incompressible viscous fluid flow through a channel wittwdy varying cross section is considered. The motion of
the fluid is assumed to be laminar, steady and symmetric. Maarel is assumed to be long enough so that the initial
and the end effects are neglected.

In view of the above assumptions and the usual lubricatipm@pmations, the Navier Stoke’s equation is reduced to

Ju ov

e T 2

0x+0y @)
ox dy  pox ox2  gy?
ud_\/_f_va_\/—_l@ V@—Fﬁ/ (4)
ox 9y  pay ox2  0y?

where u and v are the velocity of the fluid along the x axis amrdytlaxis respectively, p is the pressupelensity of the
fluid andv = % is kinematic viscosity.

According to [11] the following boundary conditions are satered.

(i) The tangential velocity at the wall is zero.

on
u+ﬁvf0 at y=n(x) (5)
(iiy The regularity condition requires
ou
v=0 and d—yfo at y=0 (6)

(iii) The reabsorption has been accounted for by consideha bulk flow as a decreasing functiorofhat is, the flux
across a cross-section is given as

n(x)
QM = [ ulxy)dy = QoF (@) )

where whero = 0 and decreases with a > 0 is the reabsorption coefficient and is a constant,@gid the flux
across the cross sectian-= 0.

Introducing stream functiogy and the vorticityw by u = o

_ow, v v
u= ay"’* Ix and widx dy (8)
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and the following non dimensional quantities

v 2 d?

X/: ) = aw:_
oL

YN
a)/_dan _daw Qow

the above governing equations in dimensionless form anecesti(after dropping the primes) to the following.

X
A

o’y 9y _
2 —
o 2 + == 2 W 9)
(320) ’w oYow dPow
2 _yRr.[ ¥ CW I¥IW
0 s 9y 6Re(dy ox  0x dy) (10)
and the boundary conditions are reduced to the followinmfor
‘;—Lf/’:é(k1+Ac0521x)%—il at y=n(x) = 1+ kx+ esin2nx (11)
%y
=0 and a_yZ*O at y=0 (12)
and
Y =F(ax) at y=n(x)=1+kx+ esin2mnx (13)
_ QoY QY
U= oy T T ax (14)
where
s—da_2m 23, ki

A’ A d’ d
The parameteR. is the Reynolds number andlis the wave number (the ratio of inlet width to the wavelengthis
the ratio of the amplitude to the inlet width and k is slopegpmaeter. In this paper, exponentially decaying bulk flow is
considered similar to [11]. That s, in equation Bis taken to be

F(ax) =e X (15)

Using equation (3) and equation (8) the non-dimensionagunep(x,y) is given by

Ju 1
p(xy) = 85+ ay-?dx Re/ —dx+/v—dx (16)

and the mean pressure is obtainediy) = | p(x,y)dy.

Further, the mean pressure drop between0 andx = X, is obtained by
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3 Formulation of the problem
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Fig. 2: Region of the problem.

Muthu and Tesfahun, 2011 solved the governing equationg08)10) together with boundary conditions (11)-(13) in
the region of Fig. 2 which is nonrectangular.

The following boundary conditions are used for the numédoaputation similar to [11],

0 %% _
w_O,a—yz_O on AB a7
_ A
Y= f(y),WfO on AD (18)
oy oy
oy 0 (kg + Acos 21x) x O" CD (19)
v (20)

Y =9(y), OX—O on BC,

Wheref (y) andg(y) are prescribed functions such thes parabolic aAD andBC. These functions are also assumed to
satisfy the boundary conditions so that the solution is free discontinuities.

However, it is well known that finite difference approxintatimethod is easy and effective if the region of the problem
is rectangular. In this paper, the region is transformecttangular region so that the numerical computation besome

simple and effective.

The following transformation is used to transform the regiBigure 2) to a rectangular region (Figure 3).

y=ynx,0<y <1
X = Xx
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The new coordinate system consists of two spatial varialesdy*. Under these transformations, the lower boundary
of the region is mapped onto y*=0 and the upper boundary oféb®ny = n(x)is transformed ontgx = 1

L 4

Fig. 3: The region of the problem after the transformation.

Using these transformations equations (9-10) have theviiollg form:

5z<02w (y*n%x))ZaZw+<2y*<n’<x>>2_y*n<x>n”<x>)aw 2y’ (x) a%u) 1 Py

+ =-w
Ox2 n(x) dyx2? (r](x))2 (r](x))2 ayx* n(x) dyxadx n(x) dy*2
(21)
! 2 !
52 (20 (v ) 2w (2(0)  ynn'®) so 200 oo |,
0x2 ne) ) oys2 (n(x))? (nx)> ) 9y« n() dyxdx (22)
1 %0 _ 1 9¢ (do _ yn'X) dw) _ (0w _ y=n'X) 9y 1 dw
nx) oy2 — ORe (W dy+ (ﬁx n( t?y*) (z?x n( 0y*) n(x) t?ya:f)
The corresponding boundary conditions with respect to dvecoordinate system have the following form
%Y
L[J—O,W—O on y*_O (23)
9y yxn'(x) oy _ _
ox N dyr 0 on x=0 (24)
o 1oy ay yxn'(x) oy
_ ax ¥ _ i v —
Y =Qoe "X dy 0 (k1 + Acos 2nx) ( X T dys on yx=1 (25)
Y=g(y=n(x), on BC (26)
with respect to the new coordinate systemutendv—velocities are given by
= Lov 1 (0 yn(xou )
d n(x) dyx Anx\ox n(x) dy
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and the pressure is given as

_ @_V*n’wﬂ) 1p 1t oduy (@_V*n’wﬂ) 1 o
p(x,y)_6(ax n(x) dyx +6/(n(x))20y*2dx Re/u ox  n(x) dyx dx+/vn(x)dy*dx (28)

4 Treatment of the solution

The system of equations was discretized and solved sinadtasty using finite difference representations. All the
derivatives are represented by central differences anceatdierative approach is used to obtain the distributimiithe
variables.

new__ ~old
The results have been obtained to an accuracjobf= 106, whereMax (CJ—Cm\;‘—) < Tol, gj, are the variables. The
]

iteration is carried out fofol = 107>, Tol = 1075, Tol = 10~".
Algorithm

(Step 1) Initialization
(a) Input data:
(b) Set boundary conditions
(c) Set fictitious values for to the remaining grid points
(Step 2) Evaluatg/™usingy°'d, w'd
(Step 3) Evaluate™usingp"¥,
(Step 4) Test for convergence.
(Step 5) Repeat steps 2-3 till convergence is obtained diellvariables.
(Step 6) Evaluate andwusing
(Step 7) Evaluatpusingu,v and equation (28)
(Step 8) Evaluate the pressure drop

5 Results and discussion

In the present study the non-uniform channel is transforine uniform channel which added complexity to the
governing equation. The resulting— w form of the governing equation is solved by using finite difece method.
Therefore, for computation purpose we consider the folhgwiarameters constant in all the results.

As in the case of [11], the wave numbd&s taken as 0.1 in view that it is a small perturbation par@mé&the Reynolds
number Re is taken as 1 to indicate that the flow considers &kymolds number as the flow is laminar.

Velocity Profile (u & v). It can be observed from figure 4 that the reabsorption casffitias a significant effect on the
transversal velocityM). That is, a rise in the reabsorption coefficient alpha iases the transverse velocity. This agrees
with the natural phenomenon that due to rise of alpha thespresdrops which in turn results an increase in the
transverse velocity. Figure 5 shows the behavior of thestrarse velocity for different values &falong the channel. It
can be seen that the velocity slows down as the fluid passeall#ty from the entrance to the exit of the channel.
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alpha=2.0

3.5

Fig. 4: Transverse velocitwj with y for alpha variation at the entrance of the channel.
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Fig. 5: Transverse velocity with y along various points of through the channel.
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The effect of the reabsorption coefficient alpha on the lamtjinal velocity (1) is shown in figure 6. The velocity is more
for low values of alpha than higher values of alpha. The regdt®n coefficient alpha has a reverse effect on the transve
velocity (v) and longitudinal velocityd). That is an increment in alpha increaseghereas decreasasOn the other hand,
Figure 7 shows the behavior of the longitudinal velocityddferent values ok along the channel. It can be seen that the
velocity significantly decreases as the fluid pass all thefinay the entrance to the exit of the channel.
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Fig. 6: Longitudinal velocity(u) with y for alpha variation at the entrance of the channel.

Fig. 7: Longitudinal velocity(u) with y along various points of through the channel.
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Mean Pressure Drop (mpd)rhe value of the mean pressure drop over the length of thenehas calculated for different
values of alpha. It can be noted from figure 8 that an increatieei reabsorption coefficient raises the value of the mean
pressure drop. Particularly at the exit the drop increaiggsficantly. This is because the mean pressure decredsbs al
way from entrance to exit which resulted in a rise of meanguessdrop. On the other hand it is worthwhile to mention
that this result is opposite to what has been reported ordberfpy Muthu and Tesfahun, 2011 which corrects an incorrect
result reported.

x 10"

alpha £ 2.0

Fig. 8: Mean pressure drappd with x for alpha variation.

6 Conculusion

In the present analysis an incompressible viscous flow innaumiform wavy channel with slowly varying cross section
with absorbing walls is numerically studied. The governegguations are solved using finite difference method by
transforming the irregular boundary of the region of thelylem to rectangular region. The main contribution of this
study is to make the numerical computation simple by tramsifog the wavy non —uniform channel to a rectangular
channel. It is observed that the reabsorption coefficieatehsignificant effect on the transversal velocity. That is, a
rise in the reabsorption coefficient alpha increases tmswexrse velocity. This agrees with the natural phenomemean t
due to rise of alpha the pressure drops which in turn resultsmierease in the transverse velocity. The reabsorption
coefficient alpha has a reverse effect on the transverseitye(®) and longitudinal velocityy). That is an increment in
alpha increasegwhereas decreasasMoreover an increase in the reabsorption coefficient sdise value of the mean
pressure drop. Particularly at the exit the drop increaiggsficantly. This is because the mean pressure decredghbe al
way from entrance to exit which resulted in a rise of meanqresdrop.
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