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Abstract: In this paper, we construct the twisted surfaces accordirige supporting plane and type of rotations in pseudo-&Gaiil
spaceG%. Also, we find the Gaussian curvatures and mean curvaturée afifferent types of these twisted surfaces and draw some
figures for these twisted surfaces.
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1 Introduction

Many types of surfaces, for example surfaces of revolutioled surfaces, helical surfaces and etc., have been dtindie
Euclidean and pseudo-Euclidean spaces recerit)y{4[,[5],[11]-[13] and etc). Also in B], Cervone has investigated
tight polyhedral immersion of the twisted surface of Eulba@cteristic—3. After this, Goemans and Woestyne have
examined twisted surfaces which are generated by syndednotations of a planar curve in its supporting plane and of
this supporting plane about some axis in Euclidean 3-spat@&nkowski 3-space §]-[ 10]). The resulting surfaces can

be seen as generalizations of surfaces of revolution. Isetlagticles, they have obtained classifications of flat, teois
Gaussian curvature and constant mean curvature (regwiatet surfaces. They also have showed that, there exists no
minimal (regular) twisted surface in Euclidean or in Minkgkiv3-space when excluding the surfaces of revolution.

Here, our aim to investigate twisted surfaces in pseuddeaal spaceG% which is one of the model of Cayley-Klein
geometries. About the geometries of curves and surfacealite@ and pseudo-Galilean spaces, there are lots okestudi
in the literature (],[16],[17] and etc).

In this study, we will construct the twisted surfaces acewgdto the supporting plane and type of rotations in
pseudo-Galilean spa&%. Also, we will find the Gaussian curvatures and mean cureataf the different types of these
twisted surfaces and draw some figures for these twistedsfwith the aid of Wolfram Mathematica.

2 Preliminaries

Here, firstly we will recall some notations about pseudoi€ah space.

The pseudo-Galilean spaéé is a Cayley-Klein space with absolute figure consisting ef éindered triple{w, f,1},

wherew is the ideal (absolute) plane in the three dimensional regéptive spac&P3, f the line (the absolute line) in
w andl the fixed hyperbolic involution of points df.
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In affine coordinates defined lyo : X1 : X2 : X3) = (1 :X:y: 2), the distance between the poifts= (x,Vi,z) (i=1,2)
is defined by 7]

X2 — X, if X1 # X2,
d(P,P) = . 1)
(PP { VI2—y1)2 = (22— 2)?], if 1 =%
In affine coordinates, the group motions@¥ is a six-parameter group given by
X=a+X,
y = b+ cx+ ycoshp + zsinhg, (2)
z=d+ex+ysinh¢ +zcosh.
The pseudo-Galilean scalar product can be written as
X1X2, if X1 £0Vx2#0,
<V17V2> _ 1A2 - 1 7é 2 7& (3)
Y1¥2 — 212p, if X; =0AX =0,

wherevy = (x1,Y¥1,21) andvz = (x2,Y2,22) [6].

A vectorv = (x,Y,2) is said to be non-isotropic ¥ # 0. All unit non-isotropic vectors are the forft, y, z). For isotropic
vectorsx = 0 holds. There are four types of isotropic vectors: spaeelik — 22 > 0), timelike ¢ — 22 < 0) and two
types of lightlike § = +2) vectors. A non-lightlike isotropic vector is a unit vectby? — 2 = +1.

The pseudo-Galilean cross producbf v; andv, on G% is defined by

0 —ee3
ViXVo=|X1 Y1 7|, (4)
X2 Y2 2

wheree, = (0,1,0) ande; = (0,0, 1) (for detall, see@], [7], [15 and etc.).
In a tangent plane of a surface parametrized by

I_(U,V) = (X(U,V),y(U,V),Z(U,V)) ()

in a pointP,, there is a unique isotropic direction defined by the coadi,du+ x,dv = 0, wherex, = %, Xy = g—\f. A

side tangential vectar = Viv (xulv —xvIy) is @ unit isotropic vector in a tangent plane. The funcWén- 0, defined by

W = /10— )2 — (42— %,20)?] (6)
is equal to the pseudo-Galilean norm of the side tangergiztbvo. Also, a unit surface normal field is defined by
1
N= w (0, Xuzy — XvZu, XuYv — XYu)- (7)

Since(N,N) = +1 = ¢, we distinguish between two types of admissible surfageacalike surfaces having timelike
surface normals and timelike surfaces having spacelikenals:
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The second fundamental forthis given by

11 = L13du? 4 2L1odudv + Loodv?, (8)
wherel; j, i, = 1,2, are the normal componentsfof;, I, v, respectively and it holds
1, - b~ 1, - -
Lj=¢e< X—(Xurij —Xijlu),N>=¢< X—(X\/rij —X%ijlv),N>. 9)
U \

By ~ above, the projection of a vector on the pseudo-Eucligegane is denoted.

The Gaussian and mean curvatures of a surface defined by wighescoefficients of the second fundamental form are

defined by
Lislop—L2,

K=-¢ W2 (20)
and 5 5 5
g _SXVLll - 2XuXv|2-12+ xgLo2 (11)
2w ’
respectively T].

Furthermore, a twisted surface &P or E? is obtained by rotating a planar cureein its supporting plane while this
plane itself is rotated about some containing straight[ige

3 Twisted surfaces inG3

With the same construction of a twisted surface in Euclid@apaceE® and Minkowski 3—spacEf, the planar curver
rotates in its supporting plane while this plane itself tesaabout some containing straight line in the pseudo-€zalil
spaceGi.

Since a straight line can be either spacelike, timelike ghtlike in G% we have to consider several possibilities.
Therefore, we need to know how a rotation about an ax@3iis described.

In the pseudo-Galilean spaG%, there are two types of rotations.

Pseudo-Euclidean rotations given by the normal form

X=X,
y = ycosh + zsinht, (12)

z=ysinht + zcosh

and isotropic rotations with the normal form

X(t) = X+ bt,
2

§It) = y+xt+ b, (13)

at) -z
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wheret € R andb = const > 0 [14].

In the pseudo-Galilean spaﬁé, the x-axis and thegy-axis are spacelike while theaxis is timelike. So, they-plane is
spacelike whilexz-plane and the/z-plane are timelike. Here, we will construct the twistedfaces according to the
supporting plane and type of rotations in pseudo-Galilgats.

(1) Let the profile curve lies in a timelike plane.
Let we assume that the profile curadies in theyz-plane. So, it can be parametrizedo@) = (0, f(u),g(u)).

(a) A pseudo-Euclidean rotation and an isotropic rotation.
If we rotatea about the straight line through the po(i® a, 0) parallel with thex-axis, then we obtain

0 1 0 0 0 0
a| + | 0 cosHcv) sinh(cv) f(u) | = | a+ f(u)coshev) + g(u)sinh(cv) | . (14)
0 0 sinh(cv) coshcv) | | g(u) f(u) sinh(cv) + g(u) coshcv)

Now, applying an isotropic rotation td.4), i.e. by rotating {4) about thez-axis, we have the following twisted surface in
GL.

100 0 v bv
v10| | a+ f(u)coshcv)+g(u)sinhcv) | +b % = | a+ f(u)coshcv) +g(u)sinh(cv) + bg ,abceR.
001 f(u) sinh(cv) + g(u) costcv) 0 f(u) sinh(cv) + g(u) coshcv)
So, a parametrization of the twisted surface in this situnais
: V2 :
I (u,v) = (bv,a—+ f(u)coshcv) +g(u) sinh(cv) + bE, f(u) sinh(cv) + g(u) cosHcv)). (15)

(Here, the presence of the factoe R allows for differences in the rotation speed of both rotasiy

Figure 1 shows the twisted surfackbs| with profile curve the Lemniscates of Bernoubi(u)
for constantsy =4,a=3,b=2,c=1.

( aj cosu alsinucosu>
> 1+4sirfu’  14sirfu 7’

Here, let us find the Gaussian and mean curvature of the théstdace 15).

(© 2017 BISKA Bilisim Technology



NTMSCI 5, No. 4, 72-79 (2017) www.ntmsci.com BISKA 76

Let us assume that the profile cureds parametrized by the arc length, i.e.
f2(u) — g?(u) = —¢, £ = +1. (16)
From (), we have
W = Db, (17)

and from {7) and (L6), the normal field of the twisted surfac&qj is
N = —(0, f'(u) sinh(cv) + ¢’ (u) cosHcv), f'(u) costcv) + ¢ (u) sinh(cv)). (18)

Here, one can easily see thaL, N) = €. Furthermore, from), (15) and (L8), the components of the second fundamental
form can be found as

Ly = 78{ f//g/ i f'g"},
L12 = —C, (19)
Lo = —e{c?fg — c?f'g+bf’sinh(cv) + bg coshcv)}.

So, we can state the following Theorem.

Theorem 1.The Gaussian and mean curvatures of the twisted surface (15) are
C2 1" 12 ¥ / !~ ~!! 12 /!
K:—e{@{ff g°—f'f"gy — ff'dg"+ f'“gg" — 1}

+ (1117 — 12g")sinh(cv) + (19° ~ 1'5'g") cost(ov)} } (20)

and 1
H=3{t"g-f'd"}, (21)

respectively.
Proof. From (L0), (11) and (L9), we obtain 20) and @1).

Corollary 1. If the twisted surface (15) is minimal, then we get

g(u) =cu+cyand f(u) = y/c —e.u+cs; €1,C2,c3 € R

and so, the minimal twisted surface (15) can be parametrized as
. V2
I (u,v) = (bv,a+ (1/c% — .u+ c3) coshcv) + (cru+ C2) sinh(cv) + b?’

(y/ €2 — €.u+cz) sinh(cv) + (cau+ ¢2) coshev)). (22)
Proof. The proof is obvious from1(6) and 1).

(b) Twice pseudo-Euclidean rotations.
If we rotatea about the straight line through the poi(t, 0,a) parallel with thex-axis and again applying a pseudo-
Euclidean rotation to this surface, i.e. by rotating thigfate about thg-axis, we have the following twisted surface in
GL.

I" (u,v) = (a+ f(u)sinh(cv) + g(u) coshcv)).(sinhv, 0, coshv) + (0, f (u) cosicv) + g(u) sinh(cv), 0). (23)

Figure 2 shows the twisted surfa@S) with profile curvea (u) = (0, cosu, sinu) for constante = 2,c¢c = 3.

(© 2017 BISKA Bilisim Technology
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The Gaussian and mean curvature of the twisted surZ8eaén be found as the above procedure after long calculations

(2) Let the profile curve lies in a spacelike plane.
Let we assume that the profile curadies in thexy-plane. So, it can be parametrizedog®l) = (f(u),g(u),0).

Here, if we apply an isotropic rotation t about the straight line through the poiftt, a,0) parallel with thez-axis
followed by a pseudo-Euclidean rotation abmiatxis, then the obtain the following twisted surfaceﬁﬁl

I (u,v) = (a+cf(u)v+g(u) + bczz—vz).(o, coshv, sinhv) + (f(u) 4 bey, 0,0). (24)

If we assume that the profile curve is parametrized by arclenigen the twisted surfac24) can be parametrized as

cA? A?
I (u,v) = (u+bev, (a+cuv+g(u) + bT).cosh/, (a+cuv+g(u) + bT).smhv). (25)

Therefore,

Theorem 2.The Gaussian and mean curvature of the twisted surface (25) are

D2_C2 /1 2 2 2
K = =6 ~{g'C.(bc°C ~2BD + C?) — (cC~ AD)?) (26)
and 2_ (22
D -C
H= _% {b?c?Cg" — bc®C + 2bcAD — 2BD + C?}, (27)
respectively, where
2
A=cv+d, B=cu+bc?, C= a+cuv+g+bc25, D =cu—becg, W=,/|D2—-C2|. (28)

Proof. The proof is obvious from9)-(11).

Figure 3 shows the twisted surfa@) with profile curvea (u) = (sinu+5,cosu—2,0) for constantea=4,b=2,c=3.

(© 2017 BISKA Bilisim Technology
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