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Abstract: In this paper, we construct the twisted surfaces according to the supporting plane and type of rotations in pseudo-Galilean
spaceG1

3. Also, we find the Gaussian curvatures and mean curvatures ofthe different types of these twisted surfaces and draw some
figures for these twisted surfaces.
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1 Introduction

Many types of surfaces, for example surfaces of revolution,ruled surfaces, helical surfaces and etc., have been studied in

Euclidean and pseudo-Euclidean spaces recently ([1],[4],[5],[11]-[13] and etc). Also in [3], Cervone has investigated

tight polyhedral immersion of the twisted surface of Euler characteristic−3. After this, Goemans and Woestyne have

examined twisted surfaces which are generated by synchronized rotations of a planar curve in its supporting plane and of

this supporting plane about some axis in Euclidean 3-space and Minkowski 3-space ([8]-[10]). The resulting surfaces can

be seen as generalizations of surfaces of revolution. In those articles, they have obtained classifications of flat, constant

Gaussian curvature and constant mean curvature (regular) twisted surfaces. They also have showed that, there exists no

minimal (regular) twisted surface in Euclidean or in Minkowski 3-space when excluding the surfaces of revolution.

Here, our aim to investigate twisted surfaces in pseudo-Galilean spaceG1
3 which is one of the model of Cayley-Klein

geometries. About the geometries of curves and surfaces in Galilean and pseudo-Galilean spaces, there are lots of studies

in the literature ([2],[16],[17] and etc).

In this study, we will construct the twisted surfaces according to the supporting plane and type of rotations in

pseudo-Galilean spaceG1
3. Also, we will find the Gaussian curvatures and mean curvatures of the different types of these

twisted surfaces and draw some figures for these twisted surfaces with the aid of Wolfram Mathematica.

2 Preliminaries

Here, firstly we will recall some notations about pseudo-Galilean space.

The pseudo-Galilean spaceG1
3 is a Cayley-Klein space with absolute figure consisting of the ordered triple{w, f , I},

wherew is the ideal (absolute) plane in the three dimensional real projective spaceRP3, f the line (the absolute line) in

w andI the fixed hyperbolic involution of points off .
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In affine coordinates defined by(x0 : x1 : x2 : x3) = (1 : x : y : z), the distance between the pointsPi = (xi,yi,zi) (i = 1,2)

is defined by [7]

d(P1,P2) =

{

|x2− x1| , if x1 6= x2,
√

|(y2− y1)2− (z2− z1)2|, if x1 = x2.
(1)

In affine coordinates, the group motions ofG1
3 is a six-parameter group given by

x̄ = a+ x,

ȳ = b+ cx+ ycoshϕ + zsinhϕ , (2)

z̄ = d+ ex+ ysinhϕ + zcoshϕ .

The pseudo-Galilean scalar product can be written as

〈v1,v2〉=

{

x1x2, if x1 6= 0∨ x2 6= 0,

y1y2− z1z2, if x1 = 0∧ x2 = 0,
(3)

wherev1 = (x1,y1,z1) andv2 = (x2,y2,z2) [6].

A vectorv = (x,y,z) is said to be non-isotropic ifx 6= 0. All unit non-isotropic vectors are the form(1,y,z). For isotropic

vectorsx = 0 holds. There are four types of isotropic vectors: spacelike (y2 − z2 > 0), timelike (y2 − z2 < 0) and two

types of lightlike (y =±z) vectors. A non-lightlike isotropic vector is a unit vectorif y2− z2 =±1.

The pseudo-Galilean cross product× of v1 andv2 on G1
3 is defined by

v1× v2 =

∣

∣

∣

∣

∣

∣

∣

0 −e2 e3

x1 y1 z1

x2 y2 z2

∣

∣

∣

∣

∣

∣

∣

, (4)

wheree2 = (0,1,0) ande3 = (0,0,1) (for detail, see [6], [7], [15] and etc.).

In a tangent plane of a surface parametrized by

Γ (u,v) = (x(u,v),y(u,v),z(u,v)) (5)

in a pointP0, there is a unique isotropic direction defined by the condition xudu+ xvdv = 0, wherexu =
∂x
∂u , xv =

∂x
∂v . A

side tangential vectorσ = 1
W (xuΓv − xvΓu) is a unit isotropic vector in a tangent plane. The functionW > 0, defined by

W =
√

|(xuyv − xvyu)2− (xuzv − xvzu)2| (6)

is equal to the pseudo-Galilean norm of the side tangential vectorσ . Also, a unit surface normal field is defined by

N =
1

W
(0,xuzv − xvzu,xuyv − xvyu). (7)

Since〈N,N〉 = ±1 = ε, we distinguish between two types of admissible surfaces: spacelike surfaces having timelike

surface normals and timelike surfaces having spacelike normals.
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The second fundamental formII is given by

II = L11du2+2L12dudv+L22dv2
, (8)

whereLi, j , i, j = 1,2, are the normal components ofΓuu, Γuv, Γvv, respectively and it holds

Li j = ε <
1
xu
(xuΓ̃i j − xi jΓ̃u), Ñ >= ε <

1
xv
(xvΓ̃i j − xi jΓ̃v), Ñ > . (9)

By ∼ above, the projection of a vector on the pseudo-Euclideanyz-plane is denoted.

The Gaussian and mean curvatures of a surface defined by meansof the coefficients of the second fundamental form are

defined by

K =−ε
L11L22−L2

12

W 2 (10)

and

H =−ε
x2

vL11−2xuxvL2
12+ x2

uL22

2W 2 , (11)

respectively [7].

Furthermore, a twisted surface inE3 or E3
1 is obtained by rotating a planar curveα in its supporting plane while this

plane itself is rotated about some containing straight line[8].

3 Twisted surfaces inG1
3

With the same construction of a twisted surface in Euclidean3-spaceE3 and Minkowski 3-spaceE3
1, the planar curveα

rotates in its supporting plane while this plane itself rotates about some containing straight line in the pseudo-Galilean

spaceG1
3.

Since a straight line can be either spacelike, timelike or lightlike in G1
3 we have to consider several possibilities.

Therefore, we need to know how a rotation about an axis inG1
3 is described.

In the pseudo-Galilean spaceG1
3, there are two types of rotations.

Pseudo-Euclidean rotations given by the normal form

x̄ = x,

ȳ = ycosht + zsinht, (12)

z̄ = ysinht + zcosht

and isotropic rotations with the normal form

x̄(t) = x+ bt,

ȳ(t) = y+ xt+ b
t2

2
, (13)

z̄(t) = z,
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wheret ∈R andb = const > 0 [14].

In the pseudo-Galilean spaceG1
3, thex-axis and they-axis are spacelike while thez-axis is timelike. So, thexy-plane is

spacelike whilexz-plane and theyz-plane are timelike. Here, we will construct the twisted surfaces according to the

supporting plane and type of rotations in pseudo-Galilean space.

(1) Let the profile curve lies in a timelike plane.
Let we assume that the profile curveα lies in theyz-plane. So, it can be parametrized asα(u) = (0, f (u),g(u)).

(a) A pseudo-Euclidean rotation and an isotropic rotation.
If we rotateα about the straight line through the point(0,a,0) parallel with thex-axis, then we obtain







0

a

0






+







1 0 0

0 cosh(cv) sinh(cv)

0 sinh(cv) cosh(cv)













0

f (u)

g(u)






=







0

a+ f (u)cosh(cv)+ g(u)sinh(cv)

f (u)sinh(cv)+ g(u)cosh(cv)






. (14)

Now, applying an isotropic rotation to (14), i.e. by rotating (14) about thez-axis, we have the following twisted surface in

G1
3.






1 0 0

v 1 0

0 0 1













0

a+ f (u)cosh(cv)+ g(u)sinh(cv)

f (u)sinh(cv)+ g(u)cosh(cv)






+ b







v
v2

2

0






=







bv

a+ f (u)cosh(cv)+ g(u)sinh(cv)+ b v2

2

f (u)sinh(cv)+ g(u)cosh(cv)






, a,b,c ∈ R.

So, a parametrization of the twisted surface in this situation is

Γ (u,v) = (bv,a+ f (u)cosh(cv)+ g(u)sinh(cv)+ b
v2

2
, f (u)sinh(cv)+ g(u)cosh(cv)). (15)

(Here, the presence of the factorc ∈ R allows for differences in the rotation speed of both rotations.)

Figure 1 shows the twisted surface (15) with profile curve the Lemniscates of Bernoulli,α(u) = (0, a1 cosu
1+sin2 u

,
a1sinucosu

1+sin2u
),

for constantsa1 = 4, a = 3, b = 2, c = 1.

Fig. 1

Here, let us find the Gaussian and mean curvature of the twisted surface (15).
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Let us assume that the profile curveα is parametrized by the arc length, i.e.

f ′2(u)− g′2(u) =−ε, ε =±1. (16)

From (6), we have

W = b, (17)

and from (7) and (16), the normal field of the twisted surface (15) is

N =−(0, f ′(u)sinh(cv)+ g′(u)cosh(cv), f ′(u)cosh(cv)+ g′(u)sinh(cv)). (18)

Here, one can easily see that〈N,N〉= ε. Furthermore, from (9), (15) and (18), the components of the second fundamental

form can be found as

L11 =−ε{ f ′′g′− f ′g′′},

L12 =−c, (19)

L22 =−ε{c2 f g′− c2 f ′g+ b f ′sinh(cv)+ bg′cosh(cv)}.

So, we can state the following Theorem.

Theorem 1.The Gaussian and mean curvatures of the twisted surface (15) are

K = −ε{
c2

b2{ f f ′′g′2− f ′ f ′′gg′− f f ′g′g′′+ f ′2gg′′−1}

+
1
b
{( f ′ f ′′g′− f ′2g′′)sinh(cv)+ ( f ′′g′2− f ′g′g′′)cosh(cv)}} (20)

and

H =
1
2
{ f ′′g′− f ′g′′}, (21)

respectively.

Proof. From (10), (11) and (19), we obtain (20) and (21).

Corollary 1. If the twisted surface (15) is minimal, then we get

g(u) = c1u+ c2 and f (u) =
√

c2
1− ε.u+ c3; c1,c2,c3 ∈ R

and so, the minimal twisted surface (15) can be parametrized as

Γ (u,v) = (bv,a+(
√

c2
1− ε.u+ c3)cosh(cv)+ (c1u+ c2)sinh(cv)+ b

v2

2
,

(
√

c2
1− ε.u+ c3)sinh(cv)+ (c1u+ c2)cosh(cv)). (22)

Proof. The proof is obvious from (16) and (21).

(b) Twice pseudo-Euclidean rotations.
If we rotateα about the straight line through the point(0,0,a) parallel with thex-axis and again applying a pseudo-

Euclidean rotation to this surface, i.e. by rotating this surface about they-axis, we have the following twisted surface in

G1
3.

Γ (u,v) = (a+ f (u)sinh(cv)+ g(u)cosh(cv)).(sinhv,0,coshv)+ (0, f (u)cosh(cv)+ g(u)sinh(cv),0). (23)

Figure 2 shows the twisted surface (23) with profile curveα(u) = (0,cosu,sinu) for constantsa = 2, c = 3.
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Fig. 2

The Gaussian and mean curvature of the twisted surface (23) can be found as the above procedure after long calculations.

(2) Let the profile curve lies in a spacelike plane.
Let we assume that the profile curveα lies in thexy-plane. So, it can be parametrized asα(u) = ( f (u),g(u),0).

Here, if we apply an isotropic rotation toα about the straight line through the point(0,a,0) parallel with thez-axis

followed by a pseudo-Euclidean rotation aboutx-axis, then the obtain the following twisted surface inG1
3.

Γ (u,v) = (a+ c f (u)v+ g(u)+ b
c2v2

2
).(0,coshv,sinhv)+ ( f (u)+ bcv,0,0). (24)

If we assume that the profile curve is parametrized by arc length, then the twisted surface (24) can be parametrized as

Γ (u,v) = (u+ bcv,(a+ cuv+ g(u)+b
c2v2

2
).coshv,(a+ cuv+ g(u)+ b

c2v2

2
).sinhv). (25)

Therefore,

Theorem 2.The Gaussian and mean curvature of the twisted surface (25) are

K =
D2−C2

W 6 {g′′C.(bc2C−2BD+C2)− (cC−AD)2} (26)

and

H =−
(D2−C2)2

2W 7 {b2c2Cg′′− bc2C+2bcAD−2BD+C2}, (27)

respectively, where

A = cv+ g′, B = cu+ bc2v, C = a+ cuv+ g+ bc2v2

2
, D = cu− bcg′, W =

√

|D2−C2|. (28)

Proof. The proof is obvious from (9)-(11).

Figure 3 shows the twisted surface (24) with profile curveα(u) = (sinu+5,cosu−2,0) for constantsa = 4, b = 2, c = 3.
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Fig. 3
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