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Abstract: We investigate the problem of pointwise convergence of dnglf of non-linear integral operators:
b N
A(f,x):/ S (K mx Dt x € (ab),
=1

whereN > 1 s a finite natural numbed is a non-negative real parameti§s, ,(x,t) is a non-negative kernel arfdis the function in
L1(a,b). We consider two cases such tifatb) denotes finite interval dR and(a, b) denotes the whole real axis.

Keywords: Pointwise convergence, non-linear integral operatobgdgue point.

1 Introduction

n [6] the concept of singularity was studied by including the ads®nlinear integral operators such that
Tuf( /Kwt—sf())dtseG

and the assumption of linearity of the operators was regldgean assumption of Lipschitz condition f&&, with
respect to the second variable. Later on, Swiderski and Welkih[9] investigated the pointwise convergence of the
operatorsly f in Ly(—1, 1) andLp(R) at a point of continuity and a Lebesgue pointfof

In [3], Karsli studied both the pointwise convergence angl tthte of pointwise convergence of above operators at a
u — generalizedLebesgue point off € Ly (a,b) as (x,A) — (Xo,A0). In [4], the rate of convergence for the same
operators is studied at a poitwhere the being approximated functibias a discontinuity of the first kind, as— Ao.

For general analysis on non-linear integral operatorsfierdint spaces and settings the boaki§ recommended. Also,

for some recent works, we refer the reader to see [2,5] @hdRecently, Esen Almali investigated the problem of
pointwise convergence at lebesgue points of functionsifamily of singular integrals involving infinitive sum i8]

The aim of this article is to obtain pointwise convergensiltes for a family of non-linear operators of the form:

N b
:z/fm JKam(x,t)dt, x € (a,b), 1)
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whereK) n(x,t) is a family of kernels depending ohWe study convergence of the family (1) at every Lebesguetpoin
of the functionf in the spaces df;(a,b) andL;(—, »). Here, the numbeX > 1 is finite arbitrary natural number.

Now, we give the following definition:

Definition 1. (Class A Let m=1,2,...,N. We take a familyK, ), of functions K (x,t) : R x R — R. We will say
that the function K(x,t) belongs the class A, if the following conditions are satisfie

(a) Foreverym, K, m(x,t) is a non-negative function defined for albn (a,b) andA € A.
(b) For everym, as function of, K, (x,t) is non-decreasing dja, x| and non-increasing o, b] for any fixedx.

b
(c) For everymand for any fixed, }!im J Ky m(X,t)dt = Cm, whereCy, are finite non-negative real numbers.
— g

(d) Foreverym and/\lim Ky m(X,y) = 0 whenevey # x.
—»00

2 Main results

We are going to prove the family of non-linear integral opersi(1) with the positive kernel convergence to the fundio
fe Ll(a, b)

Theorem 1. Suppose that £ Li(a,b) and f is bounded oita,b). If K, , belongs to Class A then, for the operator
L, (f,x) which is defined in (1) the relation

N
B _ m
/\IanmL,\ (f,x) = rrglcmf (X)

holds at every Lebesgue poinexa, b) of f.

Proof. For integral (1), we can write

N N D N b
(0= 3 Cuf™00 = 5 [ 1710) = (70K xdt+ 5 1700 | (K x)et—Co

and in view of (a), we may write

b

S N
< nZl'a/ |fM(t) — fm(x)'K/\’m(x’t)dt—i—ngl'fm(xﬂ

=11(X,A) +12(x,A).

(10~ 3 Cnf"00

m=1

b
/ Ky m(x t)dt —cm‘
a

It is sufficient to show that terms on right hand side of the lasquality tend to zero a& — «.By property (c) ,it is
clear that2(x,A) tends to zero a3 — .

Now, we considels(x,A). For any fixedd > 0, we can writd1(x,A) as follows:

X X+d b

|1(x,/\):§ [X/(S+/+/+/] £7(t) — £7(x)| Ky (X E)clt )

™lla s X xié

= Ill(xv/\vm)+ IlZ(Xv/\vm)+ |13(X,)\,m)+|14(x,)\,m).
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Firstly, we shall calculaté 1(x,A,m), that is

N x—0
|11XA m z /|fm |K)\ m(Xt)dt
m=1 9
By the condition (b), we have

X—0 X—

I11(X/\m<ZKAmxx 6{/|f |dt+x/|f

and

N
< 3 Kam(ex=8) {1l o+ |70] (b2

In the same way, we can estimaig(x, A, m). From property (b)

X+0

IN

N
14062, < 5 K nxx+) /|f |dt+/|f
m=1
N
2,

o

.

(% x+ 8) {1y + 1Fm09 (D) }.

(3)

(2)

On the other hand, Sinoceis a Lebesgue point df, for everye > 0O, there exists & > 0 such that

x+h

/|f(t)—f(x)|dt<£h
and

/|f(t)—f(x)|dt<£h
x—h

for all 0 < h< d. Now let us define a new function as follows

Then from (5), fott —x < & we have
F(t) <et—x).

Also, sincef is bounded, there exiskg > 0 such that
[E7(t) — £7(0] < M (1) — F(x)].
is satisfied. Therefore, we can estimhtgx, A ,m) as follows

X+0 X+0

l13(X A, m) < MZ/H t) — F(x |KAmxtdt<MZ/K,\mxtdF

(5)

(6)
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We apply integration by parts, then we obtain the followiaguit

X+0

/ F()d (K m(x.1)) } .

X

N
Iz A, M| <M 5 §F(X+8,)Ky m(X+8,X) +
m=1
SinceK, n is decreasing ofx, b], itis clear that-K) , is increasing. Therefore, we can write

X+0
||13(X7A7m)| <M % {£6K)\,m(x+6ax)+£ / (t—X)d (_KA,m(Xat))}'
m=1

Using integration by parts again, we have the following ureddy

N X+0
lisx A m)l <&M Y /K,\mxt)dt<£MZ/KAmxt)dt

Now, we can use similar method for evaluatigs(x, A ,m). Let

= [t~ 1oy

dG(t) = —|f(t) — f(x)|dt.

Then, the statement

is satisfied. Fok—t < 9§, by using (6), it can be written as follows:
G(t) <egl|x—t|.

Hence, we get

N X
2 A m) <M /|f X)| Ky m(x,t)dl.
m=1

X—

Then, we shall write

N X
26 A, M) <M S { /Km(x,t)de(t)].

X—0

By using integration by parts, we have

N X
2 A m) <M {G(x—ém,m(x—a,xw / G(t)ddKA,m(x,t))}-
m=1
From (6), we obtain

N
|I12(x,)\,m)| <M z
m=

(© 2017 BISKA Bilisim Technology



NTMSCI 5, No. 4, 123-129 (2017)www.ntmsci.com BISKA 127

By using integration by parts again, we see that

N
2 A m <eM S [ Ky m(xt)ct ®)
m:la

Combining (7) and (8), we get

l12(% A, M) + [l1a(X, A, m)| < 26M z /KA ot )
Hence from (3), (4) and (9), the terms on right hand side cdehirequalities tend to 0 ds— . That is

lim L, (f,x) = ZCm

A —o0
Thus, the proof is completed.
In this theorem, specifically we talee= —c andb = . In this case, we can give the following theorem:

Theorem 2.Let f € Ly(—o,) and f is bounded oR. IfK, ., belongs to Class A and satisfy also the following properties
foreverym=1,...,N:

X—0
lim Ky m(t,x)dt =0, (10)
A—oo ’
and
lim / Ky m(t,x)dt = 0. (11)
A—oo ’
x+6
Then,
N
lim Ly (f,x) = ¥ Cnf™(x
fm Ly(f.) = 5 Cnf"()
holds at every Lebesgue poinexR of f.
Proof. Easily, we can write
N
Ly (F,%) — /|f |KAm(xtdt+Z|f KAmxt)dt—Cm
m:l

:Al(X7A)+A2(XaA)'
Itis clear thatAz(x,A) — 0 asA — oo,

For a fixedd > 0, we divide the integraf (x,A ) such that

N X x+0 o
Ad(x,A) = [/ / / /]|f M%) Ky m(X,t)dlt

X X+0
= A11(X, A, m) 4+ Ag2(X, A, m) 4+ Arz(X, A, m) + Ag4(x, A, m).

(© 2017 BISKA Bilisim Technology
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The integralshi2(x, A, m) andAq3(x, A, m) are calculated as in the previous proof. For the remaingiate, we have to
to show thatd;1(x, A, m) andAq4(x, A, m) tend to zero ad — o.

Firstly, we consideA;1(x,A,m). Sincef is bounded and by the property (b), the following expreskiolds:

Asi(x,A,m) < MZ/H £) — £(%)] Ky m(% t)d

N N X9
) f(t M |f Kxm(x,t)d
M S Knxx- {/| }+ '(X)'n;/ AUl

N X—0
< flly mMzmmxx 8)+MIf(] 5 /K/\th)dt

| /\

In addition, we obtain the following inequality:

N
Ag4(X,A,m) Z (X)| Ky m(x,t)dt
m:

m\s

<flly MMZKAmxx+6>+M|f /KAth
x+6

According to the conditions (d), (10) and (11), we find tAgt(x, A, m) + Ag4(X,A,m) — 0 asA — . This completes the
proof.

3 Conclusions

In this paper, we obtained the pointwise convergence fosgieeifically chosen family of non-linear integral operator
For this aim, we defined a class of kernel functions caltéass A For eachm= 1,2, ...,N, the functions from this class
satisfies the properties similar to classical approxinggatities. From another point of view, the operators deftme()
are of type summation-integral type operators, since thelude powers of. Under the hypotheses of Theorem 1 and
Theorem 2, we saw that the convergence is obtained at evessgee off € L; (a,b) andf € L (—o, ), respectively.
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