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1 Introduction

The linear and nonlinear problems , that are appear in many areas of scientific research such as solid state physics,

wave equation, telegraph equation, plasma physics, fluid mechanics, which are modeled by linear and nonlinear partial

differential equations. Also the double Laplace transformand some of its application are used to solve general linear

telegraph equation and wave equation with initial and boundary conditions see [3]. Also double Laplace transform applied

by Eltayeb and Kilicman [4] and [5] to solved non-homogeneous wave equation with variable coefficients. In this work

we use the double Laplace decomposition methods to solve nonlinear partial differential equation. In special cases four

examples are given. We are recalling the following definitions which are given by [2]. the double Laplace transform

defined as

LxLt [ f (x,s)] = F(p,s) =
∫ ∞

0
e−px

∫ ∞

0
e−st f (x, t)dt dx (1)

wherex, t > 0 andp,s complex value and further double Laplace transform of the first order partial derivatives are given

by

LxLt

[

∂ f (x, t)
∂x

]

= pF(p,s)−F(0,s).

Similarly the double Laplace transform for second partial derivative with respect tox andt are defined as follows

Lxx

[

∂ 2 f (x, t)
∂ 2x

]

= p2F(p,s)− pF(0,s)−
∂F(0,s)

∂x

Ltt

[

∂ 2 f (x, t)
∂ 2t

]

= s2F(p,s)− sF(p,0)−
∂F(p,0)

∂ t
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Theorem 1. Let f (x, t) and g(x, t) be having double Laplace transform. Then double Laplace transform of the double

convolution of the f (x, t) and g(x, t),

f (x, t)∗ ∗g(x, t) =
∫ t

0

∫ x

0
f (x−η , t − ζ )g(η ,ζ )dηdζ

is given by

LxLt [ f (x,s)∗ ∗g(x, t); p,s] = F(p,s)G(p,s)

Proof. By applying the definition of double Laplace transform and double convolutions, we get

LxLt [ f (x,s)∗ ∗g(x, t); p,s] =
∫ ∞

0

∫ ∞

0
e−px−st ( f (x, t)∗ ∗g(x, t))dt dx

=
∫ ∞

0

∫ ∞

0
e−px−st

(

∫ t

0

∫ x

0
f (x−η , t − ζ )g(η ,ζ )dηdζ

)

dxdt,

let α = x−η andβ = t − ζ , and the region of integration becomes asη ≥ 0, ζ ≥ 0 andα ≥ 0, β ≥ 0, we obtain

LxLt [ f (x,s)∗ ∗g(x, t); p,s] =

(

∫ ∞

0

∫ ∞

0
e−pη−sζ f (η ,ζ )dηdζ

)(

∫ ∞

0

∫ ∞

0
e−pα−sβ g(α,β )dαdβ

)

.

Then, one can see that

LxLt [ f (x,s)∗ ∗g(x, t); p,s] = F(p,s)G(p,s)

In the next theorem we study the nonlinear partial differential equation with convolution operator by using double Laplace

decomposition methods

Theorem 2. Consider the nonlinear partial differential equation with convolution term as follows

∂ 2u(x, t)
∂ 2x

+Ru(x, t)+Ku(x, t) = g(x, t)∗ ∗h(x, t) (2)

u(0, t) = f1 (t) ,
∂u(0, t)

∂x
= f2 (t) (3)

R represents a linear operator and K denoted by nonlinear differential operator with convolution as follows

Ku(x, t) = (u(x, t))n
∗ ∗

(

∂ 2u(x, t)
∂ 2t

)m

,

then the solution of Eq(2) given by

(

∞

∑
n=0

un (x, t)

)

= f1(t)+ x f2(t)−L−1
p L−1

s

[

1
p2 LxLt

[

R
∞

∑
n=0

un (x, t)+
∞

∑
n=0

An

]]

+L−1
p L−1

s

[

1
p2 LxLt [g(x, t)∗ ∗h(x, t)]

]

(4)

where
∞
∑

n=0
An = Ku(x, t).

Proof. By taking double Laplace transform for both sides of Eq(2) and single Laplace transform for Eq(3) we obtain

U(p,s) =
F1(s)

p
+

F2(s)
p2 −

1
p2 LxLt [Ru(x, t)+Ku(x, t)]+

1
p2 LxLt [[g(x, t)∗ ∗h(x, t)]] . (5)
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On using double inverse Laplace transform for Eq(5) we have

u(x, t) = f1(t)+ x f2(t)−L−1
p L−1

s

[

1
p2 LxLt [Ru(x, t)+Ku(x, t)]

]

+L−1
p L−1

s

[

1
p2 LxLt [g(x, t)∗ ∗h(x, t)]

]

, (6)

applying the decomposition method , then we consider the solution as an infinite series given as follows

u(x, t) =
∞

∑
n=0

un (x, t) , (7)

The nonlinear operator is decompose as follows

Ku(x, t) =
∞

∑
n=0

An (8)

WhereAn are Adomian polynomials given by

An =
1
n!

dn

dλ n

[

N

(

∞

∑
i=0

λ iui

)]

λ=0

, n = 0,1,2, .... (9)

By subsitituting Eq(7) and Eq(8) into Eq(6) we complete the proof.

The purpose of this parts is to study the use of modified doubleLaplace transform algorithm for the nonlinear partial

differential equations. We consider the general form of second order nonhomogeneous nonlinear partial differential

equations with initial conditions is given below

Lu(x, t)+Ru(x, t)+Nu(x, t) = h(x, t) (10)

with initial condition

u(0, t) = f (t), ux(0, t) = g(t), (11)

whereL denoted by differential operatorL= ∂ 2

∂x2 , R is called linear operator,Nu represents a general non-linear differential

operator andh(x, t) is source term. The methodology consists of applying doubleLaplace transform on both sides of

Eq(10)

LxLt [Lu(x, t)+Ru(x, t)+Nu(x, t) = h(x, t)] (12)

The frist step we applying the differentiation property of double and single Laplace transform we get

U(p,s) =
F(s)

p
+

G(s)
p2 −

1
p2 LxLt [Ru(x, t)+Nu(x, t)]+

1
p2 LxLt [h(x, t)] (13)

The second step in Laplace decomposition method is that we represent solution as an infinite series given below

u(x, t) =
∞

∑
n=0

un (x, t) , (14)

The nonlinear operator is decompose as follows

Nu =
∞

∑
n=0

An (15)
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whereAn are Adomian polynomials given by Eq(9). By subsitituting Eq(14) and Eq(15) into Eq(13) we obtain

LxLt

(

∞

∑
n=0

un (x, t)

)

=
F(s)

p
+

G(s)
p2 −

1
p2 LxLt

[

R
∞

∑
n=0

un (x, t)+
∞

∑
n=0

An

]

+
1
p2 LxLt [h(x, t)] . (16)

Now, applying the inverse double Laplace transform on both sides of Eq(16), we get

(

∞

∑
n=0

un (x, t)

)

= f (t)+ xg(t)−L−1
p L−1

s

[

1
p2 LxLt

[

R
∞

∑
n=0

un (x, t)+
∞

∑
n=0

An

]]

+L−1
p L−1

s

[

1
p2 LxLt [h(x, t)]

]

. (17)

On comparing both sides of the Eq(17) we have

u0 (x, t) = f (t)+ xg(t)+L−1
p L−1

s

[

1
p2 LxLt [h(x, t)]

]

(18)

u1 (x, t) = L−1
p L−1

s

[

1
p2 LxLt

[

Ru0 (x, t)+A0
]

]

(19)

u2 (x, t) = L−1
p L−1

s

[

1
p2 LxLt [Ru1 (x, t)+A1]

]

. (20)

In general the recursive relation is given by

un+1(x, t) =−L−1
p L−1

s

[

1
p2 LxLt [Run (x, t)+An]

]

, n ≥ 0. (21)

Now first of all we applying double Laplace transform of the terms on the right hand side of Eq(21) then applying inverse

double Laplace transform we get the values ofu1,u2, . . . ,un respectively

2 Applications

To demonstrate the applicability of the above-presented method, for nonlinear partial differential equations, we now

consider some examples.

Example 1.We Consider the nonlinear partial differential equation

uxx +(ut)
2+ u− u2 =−xe−t (22)

with initial conditions

u(0, t) = 0, ux (0, t) = e−t
. (23)

On using double and single laplace transform method we obtain

U (p,s) =
1

p2 (s+1)
+

1
p4 (s+1)

−
1
p2 LxLt

[

(ut)
2
]

+
1
p2 LxLt

[

u2]
−

1
p2 LxLt [u] . (24)

By taking double inverse Laplace transform, we have

u(x, t) = xe−t +
x3e−t

6
−L−1

p L−1
s

(

1
p2 LxLt

[

(ut)
2
]

)

+L−1
p L−1

s

(

1
p2 LxLt

[

u2]
)

−L−1
p L−1

s

(

1
p2 LxLt [u]

)

. (25)
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Applying Eq(17) we get

∞

∑
n=0

un (x, t) = xe−t
−

x3e−t

6
−L−1

p L−1
s

[

1
p2 LxLt

[

∞

∑
n=0

An

]]

+L−1
p L−1

s

[

1
p2 LxLt

[

∞

∑
n=0

Bn

]]

−L−1
p L−1

s

[

1
p2 LxLt

[

∞

∑
n=0

un

]]

(26)

whereAn andBn are Adomian polynomials that represent by

(ut)
2 =

∞

∑
n=0

An, u2 =
∞

∑
n=0

Bn. (27)

The beginning terms of Adomian polynomials, which is given by

A0 = (u0)
2
t ,A1 = 2(u0)t (u1)t ,A2 = (u1)

2
t +2(u0)t (u2)t

B0 = u2
0,B1 = 2u0u1B2 = u2

1+2u0u2. (28)

By using Eq(18),Eq(21) and Eq(26) we get

u0 (x, t) = xe−t +
x3e−t

6

un+1(x, t) =−L−1
p L−1

s

[

1
p2 LxLt

[

∞

∑
n=0

An

]]

+L−1
p L−1

s

[

1
p2 LxLt

[

∞

∑
n=0

Bn

]]

−L−1
p L−1

s

[

1
p2 LxLt

[

∞

∑
n=0

un

]]

(29)

Applying above recursive relation, we obtain

u1 (x, t) =−L−1
p L−1

s

[

1
p2 LxLt

[

xe−t +
x3e−t

6

]]

=−L−1
p L−1

s

[

1
p4 (s+1)

+
1

p6 (s+1)

]

=−
x3e−t

6
−

1
5!

x5e−t (30)

and

u2 (x, t) =−L−1
p L−1

s

[

1
p2 LxLt

[

−
x3e−t

6
−

1
5!

x5e−t
]]

=−L−1
p L−1

s

[

−
1

p6(s+1)
−

1
p8 (s+1)

]

=
1
5!

x5e−t +
1
7!

x7e−t
. (31)

We see that the second term inu0 and the first terms inu1 becomes zero, keeping the non noise terms inu0 obtain the

exact solution of Eq(22) as follow

u(x, t) = xe−t

Example 2. Consider the following nonlinear partial differential equation [6]

uxx − uutt =−x2e−2t (32)

with initial conditions

u(0, t) = 0, ux (0, t) = e−t
. (33)
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By applying the aforesaid method subject to the initial condition, we have

U(p,s) =
1

p2 (s+1)
−

2
p5(s+2)

+
1
p2 LxLt [uutt ] (34)

On using inverse double Laplace transform

u(x, t) = xe−t
−

x4e−2t

12
+L−1

p L−1
s

[

1
p2 LxLt [uutt ]

]

(35)

by using Eq(17) we get
∞

∑
n=0

un (x, t) = xe−t
−

x4e−2t

12
+L−1

p L−1
s

[

1
p2 LxLt

[

∞

∑
n=0

An

]]

(36)

whereAn are Adomian polynomials that represent

uutt =
∞

∑
n=0

An.

The first few components of Adomian polynomials, are given by

A0 = (u0)(u0)tt

A1 = (u0)(u1)tt +(u1)(u0)tt

A2 = (u0)(u2)tt +(u1)(u1)tt +(u2)(u0)tt

The recursive relation is given below

u0 (x, t) = xe−t
−

1
12

x4e−2t

un+1(x, t) = L−1
p L−1

s

[

1
p2 LxLt

[

∞

∑
n=0

An

]]

(37)

The other components of the solution can easily found by using above recursive relation

u1 (x, t) = L−1
p L−1

s

[

1
p2 LxLt

[

∞

∑
n=0

A0

]]

= L−1
p L−1

s

[

1
p2 LxLt

[

x2e−2t
−

5
12

x5e−3t +
1
36

x8e−4t
]]

=
1
12

x4e−2t
−

5
12×42

x7e−3t +
1

36×90
x10e−4t (38)

It is obvious that the self-canceling “noise” terms appear between various components. Canceling the second term inu0

and the first terms inu1 , keeping the non noise terms inu0 yields the exact solution of Eq(32) given by

u(x, t) = xe−t

Example 3. Consider nonlinear partial differential equation [7]

uxx − uxutt =−x+ u (39)
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with initial conditions

u(0, t) = sint, ux (0, t) = 1

Applying the double and single Laplace transform we get

U (p,s) =
1

p(s2+1)
+

1
p2s

−
1

p4s
+

1
p2 LxLt [uxutt + u] (40)

The inverse of double Laplace transform implies that

u(x, t) = sint + x−
x3

3!
+L−1

p L−1
s

[

1
p2 LxLt [uxutt + u]

]

(41)

We decompose the solution as an infinite sum given below

∞

∑
n=0

un (x, t) = sint + x−
x3

3!
+L−1

p L−1
s

[

1
p2 LxLt

[

∞

∑
n=0

An +
∞

∑
n=0

un (x, t)

]]

(42)

The nonlinear term is handled with the help of Adomian polynomials [7] as

uxutt =
∞

∑
n=0

An

The recursive relation is given below

u0 (x, t) = sint + x−
x3

3!

u1 (x, t) = L−1
p L−1

s

[

1
p2 LxLt

[

∞

∑
n=0

A0+
∞

∑
n=0

u0 (x, t)

]]

un+1(x, t) = L−1
p L−1

s

[

1
p2 LxLt

[

∞

∑
n=0

An +
∞

∑
n=0

un (x, t)

]]

(43)

The other components of the solutions can be easily found by using above recursive relation

u1 (x, t) = L−1
p L−1

s

[

1
p2 LxLt [(u0)x (u0)tt + u0(x, t)]

]

= L−1
p L−1

s

[

1
p2 LxLt

[

x2

2
sint + x−

x3

3!

]]

= L−1
p L−1

s

[

1
p5(s2+1)

+
1

p4s
−

1
p6s

]

=
x4

4!
sint +

x3

3!
−

x5

5!

It is important to recall here that the noise terms appear between the componentsu0(x, t) andu1(x, t), where the noise terms

are those pairs of terms that are identical but carrying opposite signs. More precisely, the noise terms± x3

3! between the

componentsu0(x, t) andu1(x, t) can be cancelled and the remaining terms ofu0(x, t) still satisfy the equation. Therefore,

the exact solution is given by

u(x, t) =
∞

∑
n=0

un (x, t) = sint + x
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Example 4. Consider one dimensional nonlinear wave-like equation [8]

utt = x2 ∂
∂x

(uxuxx)− x2(uxx)
2
− u, (44)

with the initial conditions

u(x,0) = 0, ut (x,0) = x2 (45)

Taking the double Laplace transform there is ( denoted byL2) on both sides of Eq(44) we obtain

s2U(p,s)− sU(p,0)−
∂U(p,0)

∂ t
= LxLt

(

x2 ∂
∂x

(uxuxx)− x2(uxx)
2
− u

)

. (46)

Applying the initial conditions given in Eq(45) , we have

U(p,s) =
2

p3s2 +
1
s2 LxLt

(

x2 ∂
∂x

(uxuxx)− x2(uxx)
2
− u

)

. (47)

Operating the inverse double Laplace transform on both sides of Eq(47) , we have

u(x, t) = x2t +L−1
2

(

1
s2 LxLt

(

x2 ∂
∂x

(Nu)− x2(Mu)− u

))

, (48)

where

Nu = uxuxx =
∞

∑
n=0

An, Mu = (uxx)
2 =

∞

∑
n=0

Bn (49)

Using Eq(49) we obtain Adomian’s polynomials as follows

A0 = (u0)x (u0)xx

A1 = (u0)x (u1)xx +(u1)x (u0)xx

A2 = (u0)x (u2)xx +(u1)x (u1)xx +(u2)x (u0)xx

and

B0 = (u0)
2
xx ,B1 = 2(u0)xx (u1)xx ,B2 = (u1)

2
xx +2(u0)xx (u2)xx

Starting withu0(x, t) = x2t and using

un+1(x, t) = L−1
p L−1

s

(

1
s2 LxLt

(

x2 ∂
∂x

∞

∑
n=0

An

))

−L−1
p L−1

s

(

1
s2 LxLt

(

x2
∞

∑
n=0

Bn

))

−L−1
p L−1

s

(

1
s2 LxLt

∞

∑
n=0

(un)

)

. (50)

We can obtain

u1(x, t) = L−1
p L−1

s

(

1
s2 LxLt

(

x2 ∂
∂x

(A0)

))

−L−1
p L−1

s

(

1
s2 LxLt

(

x2 (B0)
)

)

−L−1
p L−1

s

(

1
s2 LxLt (u0)

)

=−L−1
p L−1

s

(

1
s2 LxLt

(

x2t
)

)

=−L−1
p L−1

s

(

2
p3s4

)

=−
x2t3

3!
(51)
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u2(x, t) = L−1
p L−1

s

(

1
s2 LxLt

(

x2 ∂
∂x

(A1)

))

−L−1
p L−1

s

(

1
s2 LxLt

(

x2 (B1)
)

)

−L−1
p L−1

s

(

1
s2 LxLt (u1)

)

=−L−1
p L−1

s

(

1
s2 LxLt

(

−
x2t3

3!

))

= L−1
p L−1

s

(

2
p3s6

)

=
x2t5

5!
(52)

u3(x, t) =−
x2t7

7!

On using Eq(14), we have

u(x, t) =
∞

∑
n=0

un (x, t) = x2
(

t −
t3

3!
+

t5

5!
−

t7

7!
+ ...

)

The exact solution isu(x, t) = x2sint.
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