
NTMSCI 2, No. 2, 1-19 (2017) 1

Journal of Abstract and Computational Mathematics
http://www.ntmsci.com/jacm

Numerical solutions to two-dimensional integration
problems
Alexander Carstairs and Valerie Miller

Mathematics and Statistics, Georgia State University Atlanta, Ga, United States of America

Received: 4 February 2017, Accepted: 10 June 2017
Published online: 3 December 2017.

Abstract: This paper presents numerical solutions to integration problems with bivariate integrands. Using equally spaced nodes in
Adaptive Simpson’s Rule as a base case, we look at two ways of sampling the domain over which the integration will take place.
Drawing from Ouellette and Fiume, we first look at Voronoi sampling along both axes of integration and use the corresponding points
as nodes for an unequally spaced Simpson’s Rule. Then we lookat triangulating the domain of integration and use the Triangular Prism
Rules discussed by Limaye. Finally, we take all of these techniques and run simulations over heavily oscillatory and monomial (up to
degree five) functions over polygonal regions.

Keywords: Delaunay Triangulation, Voronoi Sampling, Simpson Rule, Adaptive Simpson Rule, Quadrature.

1 Introduction

This paper presents two ways in which the one-dimensional Voronoi diagram-based sampling technique described by

Fiume and Ouellette [9] can be expanded to solve two-dimensional integration problems. The first method is to perform

the one-dimensional Voronoi sampling described in [9] along each axis of integration to get two sets of n points. Then

the artesian product of those two sets is taken to create ann× n grid of nodes, which is then used in a quadrature

rule. The second method will be to triangulate the domain of integration using a Delaunay triangulation. Both of these

methods will be described in greater detail along with some relevant background theory of each in Section 1 and Section

2, respectively. The Voronoi sampling will be implemented in an adaptive Newton-Cotes method of degree two, and the

Delaunay triangulation will be implemented in the midpoint, trapezoidal and Simpson’s rules described in [3]. These

methods, along with adaptive Simpson’s rule and Monte Carlointegration, will be used to integrate a variety of test

functions described in [14] and the set of monomials given in[8]. The results of these numerical simulations will be

discussed in Section 3.

1.1 Voronoi sampling

In this section, the reader is introduced to the basics of Voronoi diagrams, and the following definitions are consistentwith

those given in [2] and [9].

Definition 1. Let S⊂ R
2 be a set of points x1,x2, . . . ,xn for n≥ 3 and p∈ R

2 with d(xi , p) given as some metric. For any

xi ,x j ∈ S and i6= j, let

B(xi ,x j) = {p | d(xi , p) = d(x j , p)}

∗ Corresponding author e-mail:alex.carstairs@gmail.com; vmiller@gsu.edu c© 2017 BISKA Bilisim Technology

 http://www.ntmsci.com/jacm

2 A. Carstairs and V. Miller: Numerical solutions to two-dimensional integration problems

be the bisector of xi and xj , i.e. B(xi ,x j) is the perpendicular line through the center of the line segment connecting xi and

x j . Thus, the bisector separates the halfplane

D(xi ,x j) = {p | d(xi , p)< d(x j , p)}

containing xi from the halfplane D(x j ,xi) containing xj .

Using the halfplane described above, we now define the Voronoi diagram.

Definition 2. Let the Voronoi region of xi be given as

Vi =V(xi ,S) =
⋂

xj∈S,i 6= j

D(xi ,x j)

with respect to S where Vi is an open set in the topological sense. Then the Voronoi Diagram of S is defined as

V(S) =
⋃

xi ,xj∈S,i 6= j

Vi ∩Vj

whereV is the closure of set V , i.e. the open set V unioned with its boundary.

Scaling the above definitions down to a one-dimensional diagram, we can create a sampling method that will iteratively

select points on an interval[a,b]. First, letx1 = a andx2 = b and havex3 be a randomly chosen number from the uniform

distribution over(a,b). Then we can determine the nextn points by constructing the Voronoi cells corresponding to the

location of the sample points that already exist in the sequence. LetVi represent the Voronoi cell ofxi and be defined as

Vi = {x∈ [a,b] | |x− x j | ≤ |x− xi|, for all j ∈ [1,n+3]}

for i ∈ [1,n+3]. Let VM be the longest line segment as defined above with ties being broken randomly. The next sample

point in the sequence would the midpoint of the line segment corresponding toVM. The abbreviationVm is used to denote

a Voronoi sampling sequence ofn additional points wherem= n+3.

1.2 One-Dimensional Newton-cotes quadrature

We now derive a generic one-dimensional quadrature method for integration over[a,b]. Given three arbitrary pointsa, m

andb, wherea< m< b, Lagrange interpolation is used to find a degree two polynomial, p(x), to approximate our function

f (x).
∫ b

a
f (x)dx≈

∫ b

a
p(x)dx=

3

∑
j=1

wj f (x j) (1)

where

wj =

∫ b

a
L j(x)dx.

Instead of completing the derivation of Simpson’s rule by exploiting the equal spacing of the points, we set up a general

spacing of points as follows:

b−a= α +αc= α(1+ c)

b−m= α

a−m=−cα,

c© 2017 BISKA Bilisim Technology

NTMSCI 2, No. 2, 1-19 (2017) /http://www.ntmsci.com/jacm 3

which simplifies the right hand side of Equation (1) to get

3

∑
j=1

f (xi)L j(x) =
α(1+ c)

6c

[

(2c−1) f (a)+ (1+ c)2 f (m)+ c(2− c) f (b)
]

.

This in turn gives us our quadrature formula

I(f) =
∫ b

a
f (x)dx≈ α(1+ c)

6c

[

(2c−1) f (a)+ (1+ c)2 f (m)+ c(2− c) f (b)
]

= I(p).

For the error, the equation

R(x) = I(f)− I(p) =
∫ b

a

f ′′′(α)

3!
(x−a)(x−m)(x−b)dx

is examined, which yields the total errorR(x) to be

R(x) =
f ′′′(α1)

6
(m−a)3

12
[2b−m−a]+

f ′′′(α2)

6
(b−m)3

12
[2a−m−b].

Assuming thatf ′′′ is essentially constant on[a,b], then

R(x)≈ A
72

(b−a)3 [2m−b−a],

soR(x) = 0 if f (x) is a polynomial of degree≤ 2. This is to be expected since quadratic interpolation is only guaranteed

to be exact iff (x) is of degree≤ 2.

1.3 Delaunay triangulation

According to Aurenhammer and Klein [2], Voronoi was the firstto consider thedual of the Voronoi diagram, but it was

later determined by Delaunay as follows:

Definition 3. Two point sites are connected if and only if the two sites lie on a circle whose interior contains no point in

S where S is the set defined in definition1.

Using the definitions below, a given triangulation can be checked to see if it is Delaunay.

Definition 4. A circumcircle is the circle that passes through the endpoints xi and xj for the edge xix j and endpoints xi , xj

and xk of triangle xix jxk for all combinations of i, j and k.

Definition 5. Let T be a triangulation with m triangles and a set of n points Swhere each element of S is a vertex of a

triangle ti ∈ T for i= 1, . . . ,m. T is considered Delaunay if and only if the circumcircle ofevery ti contains no other vertex

in S.

Both definitions3 and5 are known as the Delaunay criterion or empty circle propertyfor edges (3) and triangles (5),

and are implemented in several algorithms used for creatingDelaunay triangulations. The advantage of using a Delaunay

triangulation is that it maximizes the minimum angle of all of the triangles within the triangulation of a given set of points,

which helps avoid skinny triangles. As the number of triangles increases, the triangles appear more uniform in size. This

reduces the risk of peaks of functions from being cut off by large skinny triangles, which improves the stability of the

calculations performed on the mesh.

c© 2017 BISKA Bilisim Technology

http://www.ntmsci.com/jacm

4 A. Carstairs and V. Miller: Numerical solutions to two-dimensional integration problems

2 Algorithms

There are three types of algorithms used in the constructionof Delaunay triangulations: incremental insertion algorithms,

divide-and-conquer techniques, and a sweepline techniques. The simplest are the incremental insertion algorithms, and

they can be expanded to be used in higher dimensions easily. The algorithms that use the divide-and-conquer or sweepline

techniques are faster than the incremental insertion techniques in two dimensions but are difficult to generalize (if atall)

to higher dimensions. To construct the Delaunay triangulation in this paper, two algorithms are combined: the method

dtris2 from the GEOMPACK package and the Bowyer-Watson algorithm.Both algorithms are incremental insertion

algorithms, which means they maintain a Delaunay triangulation into which points are inserted [5]. First,dtris2 is

used to triangulate the set of initial points including the vertices along the boundary of integration and a randomly chosen

point within the boundary. The centroid of the largest triangle is then inserted using the Bowyer-Watson algorithm. In the

following sections, each algorithm is examined and shown how they are implemented into our integration problem.

2.1 Incremental insertion algorithms

The earliest incremental insertion algorithm was developed by Lawson [11] and is based on edge flips. When a vertex

is inserted, the triangle that contains the new point is found, and the point is connected to the vertices of the containing

triangle by inserting three new edges (if the new point fallson the edge of an existing triangle, the edge is deleted, and

the point is connected to the four vertices of the containingquadrilateral by inserting four new edges). The edges are

placed into a stack and are tested to determine if they pass the Delaunay criterion. If not, then an edge flip is performed

to remove the non-Delaunay edge. With each flip two new edges are added to the stack, and the algorithm ends when the

stack is empty yielding a globally Delaunay triangulation.In 1981, A. Bowyer and D. Watson simultaneously presented an

algorithm that does not depend on the use of edge flips and can easily be generalized to arbitrary dimensionality [11]. Our

implementation of the Bowyer-Watson algorithm is given below and starts with already having a Delaunay triangulation

of n points with a new point,xn+1, to be added.

(1) Determine which triangle containsxn+1. Delete this triangle and add its neighbors to a stack.

(2) Pop a triangle off the stack and determine if the new pointis within the circumcircle of the triangle. If yes, delete the

triangle and add the neighboring triangles to the stack.

(3) Repeat 2 until stack is empty.

(4) Triangulate the deleted region (We use the methoddtris2, which is discussed in the next section and our

implementation is discussed in Section3.).

(5) Inserting the triangulation from 4 into the space that was voided by the deleted triangles provides the new Delaunay

triangulation.

The Bowyer-Watson algorithm can also be implemented from scratch with no preexisting triangulation. First, three

points are chosen that create a bounding triangle that encloses all of the points that need to be triangulated. The algorithm

as outlined above then follows. Once all of the points have been inserted, the bounding triangle is then deleted along with

all of its connections to the inner triangulation.

As stated above, this algorithm easily generalizes to higher dimensions by replacing the triangles and circumcircles for

tetrahedron and circumspheres, respectively [11].

In its simplest form, this algorithm is not robust against roundoff error, though. A degenerate case can develop in which

two triangles have the same circumcircle, but only one of them is deleted due to roundoff error, and the triangle that is

not deleted is between the new vertex and the triangle that was not deleted. This gives a cavity that is not empty, and the

resulting triangulation of the cavity would be a “nonsensical” [11] triangulation. This problem can be avoided by using

c© 2017 BISKA Bilisim Technology

NTMSCI 2, No. 2, 1-19 (2017) /http://www.ntmsci.com/jacm 5

Lawson’s algorithm instead. Lawson’s algorithm is not absolutely robust to roundoff error, but failures occur much more

sparingly compared to the simplest Bowyer-Watson algorithm. The Bowyer-Watson algorithm can be implemented with

a depth-first search of the containing triangle and will perform equally as robust as Lawson’s algorithm. Another

advantage of Lawson’s is that it is slightly easier to implement due in part because the topological structure maintained

throughout the process stays a triangulation [11]. The Bowyer-Watson was chosen due to the nice pairing that it has with

the methoddtris2 given below. The method keeps track of a neighbor matrix, which virtually negates the search time

for the triangles that are effected by the new insertion point. The time complexity is discussed in further detail in Section

2.3.

There are other methods that can be used to create Delaunay triangulations such as divide-and-conquer and sweepline

techniques. Both can be implemented inO(nlogn), and can be more robust than Bowyer-Watson in two dimensions, but

given our application, they each have two limitations. First, they required a set of predetermined set of points, which

would mean the entire set of points would be triangulated after every new point. A possible solution would be to use one

of the techniques to triangulate the subset of affected triangles after the new point is inserted. Given that this subsetis

always relatively small, there was no added benefit to using either of the approaches given their intricacy. Second, both

also suffer from thecurse of dimensionality. Given these two limitations, Bowyer-Watson was chosen.

2.2 Incremental Delaunay triangulation algorithm with edge flips

The methoddtris2 as described by Joe [5] is a variation of the algorithm given by Sloan [12]. Sloan’s algorithm

combines the techniques from the Bowyer-Watson and Lawson algorithms. First, a super triangle is created that

encompasses all of the points to be triangulated. Then a point P is inserted into the triangulation. The triangle that

containsP is found, andP is connected to the three vertices of the containing triangle to create three new triangles. The

Lawson flip algorithm is then used to make sure the triangulation is still Delaunay. This process is repeated until all

points have been inserted [12]. Joe uses the same outline fordtris2 but disregards the initial bounding triangle and

initially sorts the points lexicographically [5]. The algorithm indtris2 is outlined below by starting with a set of points

S that needs to be triangulated.

(1) SortSusing an ascending indexed heap sort to obtain the sorted setof indicesSs.

(2) Take the first three points according toSs and create the first triangle.

(3) Add the next point according toSs and connect the new vertex to the vertices that are “visible”to the new point.

(4) Check to make sure the new triangles are Delaunay. If not,perform edge swaps until all triangles are Delaunay.

(5) Repeat steps 3 and 4 until all points have been added to thetriangulation.

A crucial component of this algorithm is that edge swapping guarantees the new triangles created are both Delaunay. Welzl

[13] provides the following proposition and proof that guarantees any four points that are not cocircular have exactly one

Delaunay triangulation.

Proposition 1. Given a set P⊂ R
2 of four points that are in convex position but not cocircular. Then P has exactly one

Delaunay triangulation.

Proof. Let P= pqrsbe a convex polygon. There are two triangulations ofP: a triangulationT1 using the edgepr and a

triangulationT2 using edgeqs. Now consider the familyC1 of circles through the edgepr, which contains the

circumcirclesC1 = pqr andC′
1 = rsp of the triangles inT1. By assumptions is not onC1. If s is outside ofC1, thenq is

outside ofC′
1. Consider the process of continuously moving fromC1 toC′

1 in C1 then pointq is “left behind” immediately

when going beyondC1 and only the final circleC′
1 “grabs” the points.

Similarly, consider the familyC2 of circles throughpq, which contains the circumcirclesC1 = pqr andC2 = spq, the

c© 2017 BISKA Bilisim Technology

http://www.ntmsci.com/jacm

6 A. Carstairs and V. Miller: Numerical solutions to two-dimensional integration problems

latter belonging to a triangle inT2. As s is outside ofC1, it follows that r is insideC2. Consider the process of

continuously moving fromC1 to C2 in C2 (right image in Figure??). The pointr is onC1 and remains within the circle

all the way up toC2. This shows thatT1 is Delaunay, where asT2 is not.

The case thats is located insideC1 is symmetric; just cyclically shift the roles ofpqrsto qrsp.

2.3 Complexity

Now the time complexity of thedtris2 method and the Bowyer-Watson algorithm are analyzed. LetT be the time it

takes to triangulate a set ofn additional points be given as

T =
n

∑
k=1

Tk+Sk

whereTk is the amount of time it takes to find the triangle that contains the new point andSk the time it takes to find all of

the triangles in the cavity. Since the neighbor relations are given indtris2, Sk = O(1) because it is proportional to the

number of triangles in the cavity not the number of points. The reason for this is that the search for the neighboring

triangle becomes obsolete as the number of points in the triangulation increases. Experimentally, the number of triangles

in the cavity per iteration is less than ten, so as n increasesthe number of triangles affected stays essentially constant;

thus, makingTk the dominating factor. In the worst case, the complexity ofTk is O(1), which gives usO(n2) [1]. This

worst case scenario happens when all existing triangles’ circumcircles contain the new point at every point insertion.

However, in the typical case, the number of triangles to be deleted at each point insertion does not depend on the number

of existing triangles as described above. Combining anO(nlogn) multidimensional search for the triangle that contains

the new point and the saved information of the neighbor relations between triangles, the Bowyer-Watson algorithm

computes the Delaunay triangulation ofn points inO(nlogn).

In [5], Joe discusses the time complexity ofdtris2 and determines it to beO(mlogm). Since the method is only used

for the initial set of points and the vertices along the hull of the cavity along with the new point, then asn increases,m

stays relatively constant and is significantly smaller thann. Thus, the time complexity ofdtris2 and Bowyer-Watson

together is stillO(nlogn).

Whenever implementing a geometric algorithm, two problemsalways need to be addressed: geometric degeneracies and

numerical errors. For the Delaunay triangulation, four or more cocircular points will result in a non-unique triangulation

[6]. In such a case,dtris2 will produ ce the triangulation that comes first lexicographically. Another geometric

degeneracy that needs to be considered is if three or more points are too close to being co-linear. In this case,dtris2

checks for a “healthy” triangle when inserting a new point. It determines this by checking if the third point is to the left

or right of a directed ray between the initial two points of the triangle. If the third point is within a certain tolerance of

the directed ray, the method will break and return a fatal error.

Numerical errors are more difficult to handle. As discussed in Section2.1, there is a degenerate case for roundoff error in

the Bowyer-Watson algorithm. Mavriplis also discusses this issue with round-off error in [7]. In general, the nature ofthe

problem will determine the accuracy requirements of the inputs and outputs. For our implementation, double-precision

arithmetic is used, and it proves to be very robust. An occasional error occurs when inserting several thousand points in

dtris2 that appears to happen when two points are too close to each other, which illustrates the round-off error

problems described in Section2.1. Since the error rarely occurred, the iteration was simply skipped but noted during the

simulation process using a try/catch block.

c© 2017 BISKA Bilisim Technology

NTMSCI 2, No. 2, 1-19 (2017) /http://www.ntmsci.com/jacm 7

2.4 Delaunay integration

Now the triangulation of the integral domain is implementedin the triangular prism rules described in [3] to approximate

the integral
∫∫

D
f (x,y)dxdy, (2)

whereD is the domain of integration that has been triangulated inton triangles. First, replace the functionf (x,y) above

with a two variable polynomial functionp2 of total degree 2 that interpolatesf (x,y) at p1 = (x1+x2
2 ,

y1+y2
2),

p2 = (x2+x3
2 ,

y2+y3
2), and p3 = (x3+x1

2 ,
y3+y1

2). Then the “signed volume” under the surface given byp2(x,y) is the

“volume” of the paraboloidal triangular prism with its baseDi , the lengths of the 3 parallel edges equal tof (x1,y1),

f (x2,y2), f (x3,y3), and the heights at the midpoints of the sides are equal to thevalues off (x,y) at those midpoints. This

gives us a “cubature”[3] rule in two variables that is analogous to Simpson’s rule in one-variable and is given by

∫∫

Di

f (x,y)dxdy≈ Area(Di)

3
[f (p1)+ f (p2)+ f (p3)] (3)

whereDi ∈ D for all i = 1,2, . . . ,n. Although the 2D Simpson’s rule is the main method in which our triangulation is

implemented, the midpoint and trapezoidal equivalents described in [3] are also used for added performance comparison.

For the midpoint rule, let(s, t) be the centroid ofDi and replace the functionf (x,y) from Equation2 with the constant

functionp0(s, t). The “signed volume” under the surface given byp0 is the “volume” of the triangular prism with the base

Di and heightf (s, t). This gives the “cubature” rule as

∫∫

Di

f (x,y)dxdy≈ Area(Di) [f (x1,y1)+ f (x2,y2)+ f (x3,y3)] ,

whereDi ∈ D for all i = 1,2, . . . ,n [3].

2.5 Monte Carlo integration

Monte Carlo methods are numerical methods that depend on taking random samples to approximate their results. Monte

Carlo integration applies this process to the numerical estimation of integrals. The following estimator is given by Jarosz

[4], but can be found in most sources discussing Monte Carlo methods. Supposef (x) is to be integrated over[a,b]:

F =

∫ b

a
f (x)dx.

and given a set of n uniform random variablesXi ∈ [a,b) with corresponding PDF of1b−a, then the Monte Carlo estimator

for F is

〈Fn〉= (b−a)
1

n−1

n

∑
i=0

f (Xi). (4)

Using fundamental properties of random variables, it is easy to show that the expected value of the estimator isF . The

proof can be found in [4]. For the one-dimensional case, the convergence rate is determined by looking at the convergence

rate of the estimator’s variance:

σ [〈Fn〉] ∝
1√
n
.

Even though the convergence rate is slow compared to other one-dimensional techniques, it does not suffer from thecurse

of dimensionality. The estimator,[〈Fn〉], can easily be extended to multiple dimensions with the convergence remaining

the same as above [4].

c© 2017 BISKA Bilisim Technology

http://www.ntmsci.com/jacm

8 A. Carstairs and V. Miller: Numerical solutions to two-dimensional integration problems

3 Implementation and numerical results

In this section the implementation of the algorithms and theory that was presented in the previous sections is given. Then

test functions are defined, and the numerical results given by testing our implementations versus other known techniques

discussed in Section2 are also discussed. First, the adaptive Newton-Cotes quadrature discussed in Section1.2 is tested

against AS. Then AS is compared to Simpson’s rule over the Delaunay triangulation described in equation (3). Finally,

the performance of all of the techniques are compared to eachother simultaneously.

3.1 Implementation

In Sections2.1and2.2, the Bowyer-Watson algorithm and the methoddtris2 were investigated. These methods were

combined to create a hybrid method that is based mainly on theBowyer-Watson algorithm. Starting with an array,P, that

contains the four points representing the vertices of the rectangular integration domain and one randomly chosen point

within the rectangle, the initial triangulation is constructed using thedtris2 method. From this initial triangulation,

dtris2 produces three outputs: the number of triangles, a matrix containing the vertices of each triangle, and another

matrix containing the neighbor relations of the triangles.The columns of each matrix refers to a triangle in the

triangulation, i.e. column one refers to triangleT1, column two refers to triangleT2, etc.

The centroid of the largest triangle is found, and the affected region is found by determining which triangles’

circumcircles contain the new point. The boundary of the affected region is then stored in a temporary matrix with the

newly inserted point. The region is then triangulated usingdtris2. If the region is concave then the triangles that are

created from bridging the concave vertices are deleted. If the region is convex then the triangulation is correct, and there

is no need to delete any triangles.

Now that the affected region is triangulated, it needs to inserted back into the main triangulation. To do this, the

referencing between the neighbor and vertex matrices of theaffected region need to be inserted into the neighbor and

vertex matrix for the main triangulation. First the point references in the vertex matrix are corrected. When triangulating

the affected region with m points,dtris2 labels the points 1,2, . . . ,m so the references need to be changed to their

original numbering fromP that consists ofn points. Similar to the vertex matrix for the affected region, the neighbor

matrix is also updated to reflect the numbering of the whole triangulation. While correcting the numbering for the overall

neighbor matrix, the entries that are boundary edges for theaffected region are set to 0 if they are not a boundary edge

for the entire triangulation. If they are a boundary edge forboth the affected region and larger triangulation, then the

entry remains the same. Then the vertex and neighbor matrices for the affected region are merged with vertex and

neighbor matrices corresponding to the overall triangulation. This is done by first noticing that ifm triangles were

affected, then the new triangulation consists ofm+ 2 triangles, so each column in the overall neighbor matrix isfilled

with one from the affected region’s triangulation, and the two extra triangles are placed onto the end. The corresponding

columns in the vertex matrix for the affected region are added in the same manner to the over all vertex matrix. The

vertex matrix is now complete and describes the triangulation with the new point added. Lastly, all of the zeros in the

overall neighbor matrix are changed to their correct triangle references, and all of the negative entries are updated as

well. The triangulation is now complete with correct vertexand neighbor matrices.

The algorithm described above is used in the cubature rules described in Section2.4. The implementation of each of the

cubature rules follows the same general outline with the only difference being at what points the function is being

evaluated as given by each rule. First, an initial triangulation is found usingdtris2 along with the areas of each

triangle. The areas are then placed in an array in increasingorder, and a matrix containing the boundary edge information

is also created. Then the functions is “integrated” using one of the three cubature rules described in [3] (Simpson’s,

c© 2017 BISKA Bilisim Technology

NTMSCI 2, No. 2, 1-19 (2017) /http://www.ntmsci.com/jacm 9

midpoint and trapezoid). The error is then calculated to seeif it is within the given tolerance. If the volume is not within

the given tolerance then the triangle with largest area is selected for refinement, and its centroid is computed. This point

becomes the new point to be inserted and the algorithm above is run to determine the new triangulation. After

triangulating, the areas of the triangles affected during the triangulation are deleted, and the new ones are calculated and

sorted in ascending order. The two arrays of areas are then merged together. This process repeats until the volume is

within the given tolerance or a maximum number of iterationsis reached. This method involving the cubature rules is not

implemented adaptively, so the error at each step is compared to the previous step. However, the Voronoi Newton-Cotes

(VNC) method is implemented adaptively similar to our base case of the two-dimensional adaptive Simpson’s (AS) Rule.

3.2 Integrands

In [14], Yu and Sheu examine solving the following double integral using the Mean-Value theorem for integrals:

∫ 2π

0

∫ R

0
f (r,θ ,s,φ ,n)drdθ ,

wheres,φ ,R∈ R, R> 0, n∈ Z
+ and f (r,θ ,s,φ ,n) is one of the following functions:

A(r,θ ,s,φ ,n) = r exp

[

n

∑
k=0

(

n
k

)

sn−krk cos[(n− k)φ + kθ]

]

cos

[

n

∑
k=0

(

n
k

)

sn−krk sin[(n− k)φ + kθ]

]

(5)

B(r,θ ,s,φ ,n) = r exp

[

n

∑
k=0

(

n
k

)

sn−krk cos[(n− k)φ + kθ]

]

sin

[

n

∑
k=0

(

n
k

)

sn−krk sin[(n− k)φ + kθ]

]

(6)

C(r,θ ,s,φ ,n) = r sin

[

n

∑
k=0

(

n
k

)

sn−krk cos[(n− k)φ + kθ]

]

cosh

[

n

∑
k=0

(

n
k

)

sn−krk sin[(n− k)φ + kθ]

]

(7)

D(r,θ ,s,φ ,n) = r cos

[

n

∑
k=0

(

n
k

)

sn−krk cos[(n− k)φ + kθ]

]

sinh

[

n

∑
k=0

(

n
k

)

sn−krk sin[(n− k)φ + kθ]

]

(8)

E(r,θ ,s,φ ,n) = r cos

[

n

∑
k=0

(

n
k

)

sn−krk cos[(n− k)φ + kθ]

]

cosh

[

n

∑
k=0

(

n
k

)

sn−krk sin[(n− k)φ + kθ]

]

(9)

F(r,θ ,s,φ ,n) = r sin

[

n

∑
k=0

(

n
k

)

sn−krk cos[(n− k)φ + kθ]

]

sinh

[

n

∑
k=0

(

n
k

)

sn−krk sin[(n− k)φ + kθ]

]

. (10)

Even thoughn can be an any integer such thatn≥ 1, it is only chosen to be between 1 and 3. Whenn is increased, the

results would become quite large (≥ 106) most of the time, which made it more difficult to get a good graph and harder

to determine what could be causing the inaccuracies. The methods were also tested on functions of the form

∫ d

c

∫ b

a
xiy jdxdy

wherea,b,c,d∈R, i, j ∈Z andi+ j ≤ 5. An analytical solution for eachf (r,θ ,s,φ ,n) is provided by Yu and Sheu, so the

relative errors of each trial could easily be calculated. Similarly, the analytical solutions for the monomials can be found,

so the relative error could easily be calculated.

c© 2017 BISKA Bilisim Technology

http://www.ntmsci.com/jacm

10 A. Carstairs and V. Miller: Numerical solutions to two-dimensional integration problems

3.3 Results

The VNC method is initially tested against AS on the set of monomials described above. During the first several runs,

the Voronoi sampling only chose 3 additional points betweenour boundaries at each step similar to how Simpson’s rule

finds the three midpoints (quartiles) between the boundaries. For all of the simulations shown in the table, a tolerance of

ε = 0.0001 is used, and the function is integrated over four randomly chosen points to create a rectangle with vertices

a = −0.00884120840760527,b = 2.71855632151155,c = 2.88900981641759, andd = 3.44868288240732. The full

results of one of the simulations are given in Table11 in AppendixA. From Table1, it is obvious that the VNC method is

exact (within machine epsilon) for polynomials of degree two or less but is not always exact for the polynomials of degree

three. As given in Equation 1.2, this is expected since the interpolating polynomial is only exact through degree two, and

there is no additional degrees of accuracy since the error term is only proportional tof (3). Also, it is clear that AS is exact

through degree three as expected as illustrated Table1. For the higher degree (≥ 4) polynomials shown in Table11, the

Table 1: Condensed Voronoi Newton-Cotes (VNC) v. Adaptive Simpson’s Rule (AS) on Monomials witha =
−0.00884120840760527,b= 2.71855632151155,= 2.88900981641759,d = 3.44868288240732 andε = 0.0001.

i j AS Time AS Rel. Error VNC Time VNC Rel. Error
0 0 0.008355225 1.45465E-16 0.007077289 0
0 1 0.000445179 1.83618E-16 0.000605689 1.83618E-16
0 2 0.000444923 1.15589E-16 0.000636664 1.15589E-16
0 3 0.000717303 1.45154E-16 0.028169894 4.20143E-08
1 0 0.000505850 0 0.000657144 0
1 1 0.000572153 1.35526E-16 0.000752119 2.71052E-16
1 2 0.000714487 3.41259E-16 0.000930037 3.41259E-16
2 0 0.000655608 1.18479E-16 0.000882165 1.18479E-16
2 1 0.000450042 4.48665E-16 0.000632312 1.49555E-16
3 0 0.000457722 1.16218E-16 0.498908685 8.96198E-08

VNC method performs adequately giving four additional orders of accuracy for the given epsilon in many cases. However,

there are three cases that stand out:f (x,y) = x3y2, f (x,y) = x4y1 and f (x,y) = x5, which are examined further in Table2.

Originally the maximum number of iterations was set to 5000,and all three of those cases reached the maximum number,

so the maximum iterations was increased to see how many it would take to achieve a desirable accuracy. When increasing

the maximum iterations to 15000, the following results werefound and are shown in Table2. The relative errors again

give us an additional four or five digits of accuracy and even outperform AS on one of the runs. Unfortunately, the amount

of time taken spiked drastically. Since the desired accuracy was finally achieved, the next step was to try to improve the

speed of the method.

Table 2: 15000 Max Iteration Voronoi Newton-Cotes (VNC) v. AdaptiveSimpson’s Rule (AS) on Monomials witha =
−0.00884120840760527,b= 2.71855632151155,c= 2.88900981641759,d = 3.44868288240732 andε = 0.0001.

i j AS Time AS Rel. Error VNC Time VNC Rel. Error Iterations
3 2 0.000457210 0 3.063991277 1.30530E-08 6497
4 1 0.116197996 4.03868E-08 4.288516134 2.32547E-09 9069
5 0 0.211611352 7.10947E-08 7.329204530 3.50050E-08 14869

As stated above, the trials were initially run using the adaptive VNC with the Voronoi sampling only being used for

three additional points along each axis. When examining theintermediate steps of both methods, the VNC had very long

streaks of not adding any values to the total volume. This meant it was spending a lot of time finding an accurate enough

approximation to be able to move on to the next quadrant. Whenlooking at how the points were generally distributed

c© 2017 BISKA Bilisim Technology

NTMSCI 2, No. 2, 1-19 (2017) /http://www.ntmsci.com/jacm 11

between the two values, there were large gaps on the tails of the interval giving large areas to approximate over on the

ends, which would then need more refinement. Since AS uses themidpoints of each cell at every step, the empty space is

filled much more evenly than with the Voronoi sampling; therefore, AS was always using significantly fewer iterations.

In an effort to correct this, more points were sampled at eachstep (19 additional for a total of 21 with the endpoints)

but would only use the first, second and third quartiles of thesampling. As shown in Table3, the guaranteed accuracy

through degree two for VNC and degree three for AS remains unchanged. In Table12, the times for the larger degree

polynomials did end up improving with the accuracy remaining roughly the same as before. Since increasing the number

of points helped the speed of the algorithm and also gave us similar accuracy, the Voronoi sampling of 19 points over the

three point method is used in the rest of the trials describedin this paper. Even with the additional increase in speed, AS

provides both better accuracy and speed on these simple functions overall, though. Now both methods are tested on more

complicated functions.

Table 3: Condensed Voronoi Newton-Cotes (VNC) v. Adaptive Simpson’s Rule (AS) on Monomials with additional
sampling anda = −0.00884120840760527,b = 2.71855632151155,c = 2.88900981641759,d = 3.44868288240732
andε = 0.0001.

i j AS Time AS Rel. Error VNC Time VNC Rel. Error
0 0 0.001667055 0 0.005648840 1.45465E-16
0 1 0.000532987 0 0.001388274 3.67237E-16
0 2 0.000424188 2.31179E-16 0.001337843 0
0 3 0.000500475 1.45154E-16 0.022388000 4.90503E-08
1 0 0.000477947 0 0.001335283 4.29461E-16
1 1 0.000468731 1.35526E-16 0.001387250 0
1 2 0.000577018 0 0.001409522 1.70629E-16
2 0 0.000573178 2.36958E-16 0.001332467 4.73917E-16
2 1 0.000468475 2.99110E-16 0.001327091 1.49555E-16
3 0 0.000555770 1.16218E-16 0.432514594 4.00847E-08

Next tests were run on the functions described above from [14] using VNC and AS. For all of the simulations shown

in Table4, again a tolerance ofε = 0.0001 is used, and the function is integrated over the rectangle given bya = 0,

R= 5.480255137,c = 0, d = 2π with R being a randomly chosen point. We also randomly chooses= 2.444171059,

φ = 5.69125859039527 andn= 1. It is clear to see from Table4 that neither AS nor the VNC method performs well on

the six functions. These functions have fairly sharp high and low peaks and are also oscillatory. Simpson’s rule is known

to break down with oscillatory functions, e.g. integrating|sin(x)| from [0,2π] using Simpson’s rule arrives at an area of 0

when the true area should be 4. Considering most of the functions appear to have equally high and low peaks, a similar

cancellation could be affecting the results. It is easy to see that the VNC method could also run into a similar problem

given an appropriate function and “midpoint.”

Table 4: Voronoi Newton-Cotes (VNC) v. Adaptive Simpson’s Rule (AS)on Functions A-F witha= 0,R= 5.480255137,
c= 0, d = 2π , s= 2.444171059,φ = 5.69125859039527,n= 1 andε = 0.0001.

f Type AS Time AS Rel. Error VNC Time VNC Rel. Error
A 11.8374406 2.729767377 16.11166813 1.182096082
B 12.04885046 1.418534859 16.38065796 0.842777814
C 12.13505427 1.611736343 16.61918614 1.067504856
D 13.03777242 2.358085297 17.13948942 0.634025761
E 12.37735201 2.191400672 18.07931543 0.806867337
F 12.78167719 1.697312935 17.24927674 0.899201229

c© 2017 BISKA Bilisim Technology

http://www.ntmsci.com/jacm

12 A. Carstairs and V. Miller: Numerical solutions to two-dimensional integration problems

Similar to our simulations comparing the methods on monomials, the results displayed in Table4 have a maximum

number of iterations of 5000. As before, the maximum number of iterations was increased, this time all the way to

20000, but this did not improve the accuracy by a significant amount (rarely getting even one additional order of

accuracy). Ignoring the accuracy and looking at the times ittook to complete the simulation, AS still trumps the

Newton-Cotes method. Since both of the simulations are now executing the same number of iterations (5000), it is highly

likely the time difference is attributed to the extra work the VNC has to do to perform the extra sampling.

Now that the VNC method and AS have been compared against eachother, AS is now compared against the Simpson’s

rule analog using the Delaunay triangulation, which will becalled Simpson’s cubature (SC) rule, that was discussed in

Section2.4. Similar to the analysis performed above for the VNC and AS, the performances of AS and SC will first be

compared over the monomials to make sure the expected guaranteed accuracies hold. Then they will be tested on the

higher degree monomials. Both methods use a tolerance ofε = 0.0001 over the rectanglea = −1.62110966800282,b =

−1.37432067059289,c= −3.3239379751915,d = −1.72003265166653. The full results of this simulation are given in

Table13 in AppendixA. Looking at Table5, both AS and SC perform well through degree three and two polynomials,

respectively. SC does not give us the extra third order of accuracy as shown earlier when comparing the VNC and AS,

but it does yield an additional two to three extra orders of accuracy, which is still quite adequate. When looking at their

differences in speed, SC is quite slow, even for functions for which it is exact, compared to AS. Similar to the VNC

method, SC has to take the extra time to triangulate. The triangulation is slightly more time consuming than the Voronoi

sampling, so this is why there is a larger gap on average between SC and AS than the gap between VNC and AS.

Table 5: Simpson’s Cubature Rule (SC) v. Adaptive Simpson’s Rule (AS) on Monomials witha= −1.62110966800282,
b= −1.37432067059289,c = −3.3239379751915,d = −1.72003265166653 andε = 0.0001.

i j SC Time SC Rel. Error AS Time AS Rel. Error
0 0 0.016313693 2.80482E-16 0.000848376 2.80482E-16
0 1 0.005531337 7.78505E-16 0.000447996 6.67290E-16
0 2 0.006637502 5.11924E-16 0.000467707 5.11924E-16
0 3 0.025780223 2.19831E-05 0.000461051 2.54077E-16
1 0 0.005419978 1.87274E-16 0.000468731 1.87274E-16
1 1 0.005155789 1.48513E-16 0.000481531 1.48513E-16
1 2 0.009143973 3.05773E-06 0.000441084 6.83606E-16
2 0 0.005003726 4.99029E-16 0.000488443 7.48543E-16
2 1 0.005474249 2.78244E-06 0.000503547 3.95743E-16
3 0 0.004566226 1.31798E-07 0.000488187 0

Looking at the higher degree (≥ 4) polynomials in Table13, SC performs about the same as it did for degree three in

terms of accuracy. In the majority of cases, it gives at leastone additional order of accuracy but does not perform as well

as AS. There are a couple exceptions where they perform equally as well or the SC performs better such as

f (x,y) = x4 and f (x,y) = x5. Since SC is always slower or the same speed as AS, it is easy tosee that it does an adequate

job, but AS outperforms it in all categories for the simple functions, which is to be expected. SC and AS are now

compared on the functions A-F. Table6 shows that even though AS gives much better accuracy, SC is either quicker or

the same speed as AS. The graphs still have peaks and valleys like the previous example, but they are much less steep

(only reaching as high as ten as opposed to several thousand in the previous example) and do not seem to be as

oscillatory as the previous example. This definitely helps the accuracy of each method, but mainly helps AS. Over the

many simulations run, it was noticed that the convergence for these functions is quite slow. Since SC is not implemented

adaptively, the method will stop when the current iterationand the previous iteration are withinε of each other. These

two facts combined lead to the method terminating too early,which also explains its performance in speed.

c© 2017 BISKA Bilisim Technology

NTMSCI 2, No. 2, 1-19 (2017) /http://www.ntmsci.com/jacm 13

For the lower degree (≤ 3) polynomials given in Table14, AS still remains the superior choice in both time and

Table 6: Simpson’s Cubature Rule (SC) v. Adaptive Simpson’s Rule (AS) on Functions A-F witha = 0, R= 1, c = 0,
d = 2π , s= 1.83468664481796,φ = 5.71912370455419,n= 1 andε = 0.0001.

f Type SC Time SC Rel. Error AS Time AS Rel. Error
A 0.181542123 0.008030536 2.271972965 3.01322E-08
B 0.162510249 0.009020936 2.453636943 2.98341E-08
C 0.091698284 0.000826563 1.233137896 3.37518E-07
D 0.263396794 0.125639992 1.315914670 1.77746E-05
E 0.447086736 0.054360408 1.355982622 2.10402E-06
F 0.071517238 0.025073541 1.362870489 5.59632E-08

accuracy. The VNC method and SC perform giving several digits of accuracy and occasionally matching AS. As shown

in Table15, both still lag behind in speed, which is consistent with theanalysis provided above. Now the methods are

compared on monomials with degree≥ 4. Two interesting cases are examined further with their results presented in

Table7 and Table8 as well. Whenf (x,y) = x2y2, the VNC method and AS provide exact solutions with MC and SC

performing respectably giving three digits of accuracy. Even though AS and the VNC provide the same level of accuracy,

AS is roughly three times faster than the VNC, so AS is still a superior choice. On the other hand, VNC still provides

better accuracy and speed than the other four methods. Whenf (x,y) = x5, it is clear that with respect to accuracy AS, SC

and MC perform the best with MDT and TDT performing about the same and VNC performing the worst. However,

when reviewing each method’s performance with respect to time, AS is the second worst performer with SC and MC

performing the best. As discussed earlier with both AS and the VNC method, additional iterations can be expensive with

respect to time. The VNC and AS methods are still capped at only 5000 iterations, but in this case, that amount is still too

expensive. If needed, the iterations could be increased to gain more accuracy with AS, but given its performance on this

example, the added digits of accuracy could be extremely expensive with time. The VNC method performs the worst in

both accuracy and speed, which could be improved by increasing the number of sampled points to greater than 19, but

based on previous results, this could marginally increase the accuracy but not improve the speed at all.

Lastly, all of the methods presented in the previous sections including Monte Carlo (MC) integration, midpoint rule, and

Table 7: Condensed accuracy only for Midpoint Delaunay triangulation (MDT), Trapezoid Delaunay triangulation (TDT),
Simpson’s cubature (SC), Adaptive Simpson’s (AS), VoronoiNewton-Cotes (VNC) and Monte Carlo (MC) on Monomials
with a= 2.51778949114543,b= 5.67194769326589,c=−2.98410546965195,d= 5.22175955533465andε = 0.0001.

i j MDT Rel. Error TDT Rel. Error SC Rel. Error AS Rel. Error VNC Rel. Error MC Rel. Error
0 0 1.37263E-16 1.37263E-16 0 1.37263E-16 2.74525E-16 0
0 1 1.22684E-16 1.22684E-16 1.22684E-16 0 1.22684E-16 0.005362692
1 0 1.34083E-16 0 1.34083E-16 0 0 0.001456460
2 2 0.041796026 0.391609471 0.003020576 2.90959E-16 2.90959E-16 0.006233964
5 0 0.022003814 0.087866804 0.001089610 0.009776169 0.888547317 0.004548625

trapezoid rule are compared against one another. Tables14 and15 in AppendixA contain the accuracy and run times for

each method. Table7 confirms that the midpoint Delaunay triangulation (MDT) is accurate through constant functions

(with a bonus of accuracy through degree one), and the trapezoidal Delaunay triangulation (TDT) method is accurate

through degree one, but both of their accuracies dip significantly as the polynomials have higher degree.

c© 2017 BISKA Bilisim Technology

http://www.ntmsci.com/jacm

14 A. Carstairs and V. Miller: Numerical solutions to two-dimensional integration problems

The MC method is also shown in Table7 and was run for 50000 iterations. This number proved to be large enough to

give a competitive accuracy without taking a significant amount of time. Since the MC method is not a deterministic

quadrature like the other methods, there is no guaranteed exactness for a specific degree (except whenf (x,y) is

constant), so it does not perform as well with regards to accuracy for the lower degree polynomials when the other

methods are exact. However, Table7 illustrates that it still does a good job of approximating the functions and

consistently provides three digits of accuracy.

For the lower degree (≤ 3) polynomials given in Table14, AS still remains the superior choice in both time and

Table 8: Condensed time only for Midpoint Delaunay triangulation (MDT), Trapezoid Delaunay triangulation (TDT),
Simpson’s cubature (SC), Adaptive Simpson’s (AS), Vorono Newton-Cotes (VNC) and Monte Carlo (MC) on Monomials
with a= 2.51778949114543,b= 5.67194769326589,c=−2.98410546965195,d= 5.22175955533465andε = 0.0001.

i j MDT Time TDT Time SC Time AS Time VNC Time MC Time
0 0 0.264221362 0.048522268 0.021801254 0.006768572 0.017867854 0.352805694
0 1 0.010175386 0.009185188 0.005659591 0.000578810 0.004228822 0.308191995
1 0 0.005873861 0.00499195 0.005412554 0.000433404 0.001324019 0.305286168
2 2 0.172706884 0.024697353 0.053885158 0.000398588 0.001289971 0.303935782
5 0 0.159462088 0.113784976 0.038072452 1.719201267 6.147717949 0.30707687

accuracy. The VNC method and SC perform giving several digits of accuracy and occasionally matching AS. As shown

in Table15, both still lag behind in speed, which is consistent with theanalysis provided above. Now the methods are

compared on monomials with degree≥ 4. Two interesting cases are examined further with their results presented in

Table7 and Table8 as well. Whenf (x,y) = x2y2, the VNC method and AS provide exact solutions with MC and SC

performing respectably giving three digits of accuracy. Even though AS and the VNC provide the same level of accuracy,

AS is roughly three times faster than the VNC, so AS is still a superior choice. On the other hand, VNC still provides

better accuracy and speed than the other four methods. Whenf (x,y) = x5, it is clear that with respect to accuracy AS, SC

and MC perform the best with MDT and TDT performing about the same and VNC performing the worst. However,

when reviewing each method’s performance with respect to time, AS is the second worst performer with SC and MC

performing the best. As discussed earlier with both AS and the VNC method, additional iterations can be expensive with

respect to time. The VNC and AS methods are still capped at only 5000 iterations, but in this case, that amount is still too

expensive. If needed, the iterations could be increased to gain more accuracy with AS, but given its performance on this

example, the added digits of accuracy could be extremely expensive with time. The VNC method performs the worst in

both accuracy and speed, which could be improved by increasing the number of sampled points to greater than 19, but

based on previous results, this could marginally increase the accuracy but not improve the speed at all.

Lastly, each of the methods is compared over the functions A-F. As seen previously and now in Table9, none of the

methods provide much accuracy on the oscillatory functions. MC is a little bit of an exception since it provides two to

three digits of accuracy for all but functionA. From Table9, AS and the VNC both perform extremely poorly with regards

to accuracy and time. The functions again have fairly steep peaks and valleys with a couple of graphs maxing out in the

low thousands. As discussed earlier, the high peaks and valleys that appear in all of the graphs could cause issues with

the Newton-Cotes based methods.The maximum iterations could also be increased to greater than 5000, but this would

only increase the run times of AS and VNC, which are already extremely long compared to the other methods as shown

in Table10.

c© 2017 BISKA Bilisim Technology

NTMSCI 2, No. 2, 1-19 (2017) /http://www.ntmsci.com/jacm 15

Table 9: Accuracy only for Midpoint Delaunay triangulation (MDT), Trapezoid Delaunay triangulation (TDT), Simpson’s
cubature (SC), Adaptive Simpson’s (AS), Vorono Newton-Cotes (VNC) and Monte Carlo (MC) on functionsA-F with
a= 0,R= 4.310689426030381,c= 0,d = 2π , s= 2.35651382285138,φ = 0.387434275655817,n= 1 andε = 0.0001.

f Type MDT Rel. Error TDT Rel. Error SC Rel. Error AS Rel. Error VNC Rel. Error MC Rel. Error
A 0.683714451 10.03800011 0.352786127 1.554339606 1.061044439 0.132485128
B 0.6990499 8.567750035 0.471139253 1.418966123 1.049486153 0.020218433
C 0.607982921 2.107507132 0.437277931 1.263018939 0.72749257 0.081858071
D 0.620570225 0.185445349 0.026569987 2.142429562 1.288711192 0.009542655
E 0.017144236 2.145806657 3.902967839 1.81321621 1.228863182 0.002194894
F 4.43223692 2.388462115 3.178847867 1.369362554 1.176581187 0.03489333

Table 10: Time only for Midpoint Delaunay triangulation (MDT), Trapezoid Delaunay triangulation (TDT), Simpson’s
cubature (SC), Adaptive Simpson’s (AS), Vorono Newton-Cotes (VNC) and Monte Carlo (MC) on functionsA-F with
a= 0,R= 4.310689426030381,c= 0,d = 2π , s= 2.35651382285138,φ = 0.387434275655817,n= 1 andε = 0.0001.

f Type MDT Time TDT Time SC Time AS Time VNC Time MC Time
A 0.155683822 0.160757179 0.173916472 12.23576955 17.99852238 2.672148681
B 0.240922523 0.183981267 0.16088441 12.23258725 17.25799038 2.696071642
C 0.268317065 0.204237321 0.124068137 12.82676935 17.25403164 2.747159004
D 0.476965478 0.105453539 0.230742016 12.74109161 17.56966932 2.702983829
E 0.296183923 0.241752978 0.029039326 12.81275861 17.46210201 2.725147064
F 0.085615529 0.193632883 0.052914928 12.95576287 17.38970056 2.761395790

4 Conclusions and future work

This paper presents two methods for solving a numerical integration problem: a second degree Newton-Cotes method

combined with a Voronoi sampling technique and using a Delaunay triangulation to divide the integration domain into

triangles to integrate over. These two methods are comparedto a midpoint and trapezoid rule over triangles, adaptive

Simpson’s rule and Monte Carlo integration. In 3 the resultsare presented and show that the Voronoi Newton-Cotes

method and Delaunay triangulation Simpson’s rule perform adequately on simple functions such as monomials, but

neither performs nearly as well as adaptive Simpson’s with regards to accuracy and speed. When comparing their

performances over more complicated functions such as thosefound in the first part of Section3.2, all of the methods

perform poorly in accuracy and run time and are not viable methods for solving these problems. In the end, the Voronoi

Newton-Cotes and Delaunay triangulation methods can provide adequately accurate results most of the time, but

adaptive Simpson’s is still more reliable in both accuracy and speed.

There are a couple improvements that could be made to the Simpson’s rule with Delaunay triangulation. To improve the

accuracy of the Delaunay cubature rule, it could be implemented adaptively by comparing locally instead of globally

after each step. In the hybrid algorithm thedtris2 method and the Bowyer-Watson algorithm are combined. Sincethe

triangulation puts the method at a disadvantage compared toadaptive Simpson’s rule, the algorithm could be improved to

attempt to reduce the time taken to triangulate. To do this, the Bowyer-Watson algorithm could be implemented using an

object-oriented language such as Java and create a data structure that could hold all of the information for the triangle

such as its vertices, neighbors and centroid. This would eliminate the use of thedtris2 method entirely, which could

improve the run time of the triangulation. The next step would be to perform a similar analysis in higher dimensions to

see how our particular method handles thecurse of dimensionality.

c© 2017 BISKA Bilisim Technology

http://www.ntmsci.com/jacm

16 A. Carstairs and V. Miller: Numerical solutions to two-dimensional integration problems

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors have contributed to all parts of the article. Allauthors read and approved the final manuscript.

References

[1] C.A. Arens,The Bowyer-Watson Algorithm: An efficient implementation in a database environment, TU Delft, July 2002.

[2] F. Aurenhammer and R. Klein. “Voronoi Diagrams,”Handbook of Computational Geometry, Ed. J.R. Sack and J. Urrutia, North

Holland, 2000, pp. 203-292.

[3] S. R. Ghorpade and B. V. Limaye,A Course in Multivariable Calculus and Analyis, pp. 346-361, Springer, 2010.

[4] W. Jarosz,Efficient Monte Carlo Methods for Light Transport in Scattering Media, University of California, San Diego, 2008.

[5] B. Joe, GEOMPACK - A Software Package for the Generation of Meshes using Geometric Algorithms,Advanced Engineering

Software, Vol. 13, No. 5/6, pp. 325-331, 1991.

[6] D. Lischinski, Incremental Delaunay Triangulation,Graphics Gems IV, pp. 47-59, 1994.

[7] D.J. Mavriplis, Front Delaunay Triangulation Algorithm Designed for Robustness, Institute for Computer Applications in Science

and Engineering, ICASE Report No. 92-49, October 1992.

[8] S.E. Mousavi, H. Xiao and N. Sukumar, Generalized Gaussian Quadrature Rules on Arbitrary Polygons,International Journal for

Numerical Methods in Engineering, Vol. 82, Issue 1, pp. 99-113, 2010.

[9] M. J. Ouellette and E. Fiume, On Numerical Solutions to One-Dimensional Integration Problems with Applications to Linear Light

Sources,ACM Transactions on Graphics, Vol. 20, No. 4, pp. 232-279, 2001.

[10] S. Rebay, Efficient Unstructured Mesh Generation by Means of Delaunay Triangulation and Bowyer-Watson Algorithm,Journal

of Computational Physics, Vol. 106, pp. 125-138, 1993.

[11] J. R. Shewchuk, Lecture Notes on Delaunay Mesh Generation, Department of Electrical Engineering and Computer Science, UC

Berkeley, September 1999.

[12] S. W. Sloan, A fast algorithm for constructing Delaunaytriangulations in the plane,Adv. Eng. Software, Vol. 9, pp. 34-55, 1987.

[13] E. Welzl, Lecture Notes, Chapter 6: Delaunay Triangulations, Department of Computer Science, Swiss Federal Institute of

Technology Zurich 2013.

[14] C. Yu and S. Sheu, Using Mean Value Theorem to Solve Some Double Integrals,Turkish Journal of Analysis and Number Theory,

Vol. 2, No. 3, pp. 75-79, 2014.

[15] H. Zimmer, Voronoi and Delaunay Techniques,Proceedings of Lecture Notes, Computer Sciences, No. 8, 2005.

A Full results tables

c© 2017 BISKA Bilisim Technology

NTMSCI 2, No. 2, 1-19 (2017) /http://www.ntmsci.com/jacm 17

Table 11: Voronoi Newton-Cotes (VNC) v. Adaptive Simpson’s Rule (AS)on Monomials with a =
−0.00884120840760527,b= 2.71855632151155,c= 2.88900981641759,d = 3.44868288240732 andε = 0.0001.

i j AS Time AS Rel. Error VNC Time VNC Rel. Error
0 0 0.008355225 1.45465E-16 0.007077289 0
0 1 0.000445179 1.83618E-16 0.000605689 1.83618E-16
0 2 0.000444923 1.15589E-16 0.000636664 1.15589E-16
0 3 0.000717303 1.45154E-16 0.028169894 4.20143E-08
0 4 0.005256895 3.11878E-08 0.116979043 3.11815E-08
0 5 0.018198816 9.64697E-09 0.484475327 5.47195E-09
1 0 0.00050585 0 0.000657144 0
1 1 0.000572153 1.35526E-16 0.000752119 2.71052E-16
1 2 0.000714487 3.41259E-16 0.000930037 3.41259E-16
1 3 0.000505338 2.14273E-16 0.025437127 1.05478E-07
1 4 0.005495996 9.21119E-09 0.130504124 1.02836E-09
2 0 0.000655608 1.18479E-16 0.000882165 1.18479E-16
2 1 0.000450042 4.48665E-16 0.000632312 1.49555E-16
2 2 0.000574457 0 0.000780278 1.88292E-16
2 3 0.000786678 1.18226E-16 0.03968156 7.85136E-08
3 0 0.000457722 1.16218E-16 0.498908685 8.96198E-08
3 1 0.000620536 0 1.49217904 5.65809E-08
3 2 0.00045721 0 2.354864375 0.006500369
4 0 0.121101104 4.03868E-08 1.890572353 3.33763E-07
4 1 0.116197996 4.03868E-08 2.345452395 0.028265236
5 0 0.211611352 7.10947E-08 2.349108286 0.184686147

Table 12: Voronoi Newton-Cotes (VNC) v. Adaptive Simpson’s Rule (AS)on Monomials with a =
−0.00884120840760527,b= 2.71855632151155,c= 2.88900981641759,d = 3.44868288240732 andε = 0.0001.

i j AS Time AS Rel. Error VNC Time VNC Rel. Error
0 0 0.001667055 0 0.005648840 1.45465E-16
0 1 0.000532987 0 0.001388274 3.67237E-16
0 2 0.000424188 2.31179E-16 0.001337843 0
0 3 0.000500475 1.45154E-16 0.022388000 4.90503E-08
0 4 0.001801966 3.11878E-08 0.082919108 3.34052E-08
0 5 0.007804850 9.64697E-09 0.432353059 2.63289E-09
1 0 0.000477947 0 0.001335283 4.29461E-16
1 1 0.000468731 1.35526E-16 0.001387250 0
1 2 0.000577018 0 0.001409522 1.70629E-16
1 3 0.000557306 2.14273E-16 0.031654084 1.24042E-08
1 4 0.004736465 9.21119E-09 0.124463397 6.37093E-09
2 0 0.000573178 2.36958E-16 0.001332467 4.73917E-16
2 1 0.000468475 2.99110E-16 0.001327091 1.49555E-16
2 2 0.000460539 1.88292E-16 0.001327347 5.64876E-16
2 3 0.000472827 3.54679E-16 0.036043672 2.80358E-08
3 0 0.000555770 1.16218E-16 0.432514594 4.00847E-08
3 1 0.000464379 1.46700E-16 0.974934778 8.84301E-08
3 2 0.000470011 1.84698E-16 1.876273619 6.47114E-08
4 0 0.118157412 4.03868E-08 1.116981616 1.10403E-05
4 1 0.117699177 4.03868E-08 2.882673811 1.24821E-07
5 0 0.203343378 7.10947E-08 3.297244264 2.83738E-08

c© 2017 BISKA Bilisim Technology

http://www.ntmsci.com/jacm

18 A. Carstairs and V. Miller: Numerical solutions to two-dimensional integration problems

Table 13:Simpson’s Cubature Rule (SC) v. Adaptive Simpson’s Rule (AS) on Monomials witha=−1.62110966800282,
b= −1.37432067059289,c = −3.3239379751915,d = −1.72003265166653 andε = 0.0001.

i j SC Time SC Rel. Error AS Time AS Rel. Error
0 0 0.016313693 2.80482E-16 0.000848376 2.80482E-16
0 1 0.005531337 7.78505E-16 0.000447996 6.67290E-16
0 2 0.006637502 5.11924E-16 0.000467707 5.11924E-16
0 3 0.025780223 2.19831E-05 0.000461051 2.54077E-16
0 4 0.005628104 0.000980107 0.008406700 2.76362E-07
0 5 0.025711359 0.000504705 0.030613710 7.71966E-08
1 0 0.005419978 1.87274E-16 0.000468731 1.87274E-16
1 1 0.005155789 1.48513E-16 0.000481531 1.48513E-16
1 2 0.009143973 3.05773E-06 0.000441084 6.83606E-16
1 3 0.027169265 0.000164893 0.000472827 1.69643E-16
1 4 0.024940551 0.000247897 0.031728579 1.72726E-08
2 0 0.005003726 4.99029E-16 0.000488443 7.48543E-16
2 1 0.005474249 2.78244E-06 0.000503547 3.95743E-16
2 2 0.004514515 3.36712E-05 0.000525819 1.06261E-15
2 3 0.009087397 0.000268450 0.000467451 7.91086E-16
3 0 0.004566226 1.31798E-07 0.000488187 0
3 1 0.006894267 1.19500E-05 0.000463611 0
3 2 0.012163975 1.11948E-05 0.000596730 2.01799E-16
4 0 0.005361354 4.93102E-07 0.000466939 3.78813E-07
4 1 0.006172866 3.78024E-05 0.000483579 3.78813E-07
5 0 0.005350859 7.47998E-07 0.000449276 1.87723E-06

Table 14: Accuracy only for Midpoint Delaunay triangulation (MDT), Trapezoid Delaunay triangulation (TDT),
Simpson’s cubature (SC), Adaptive Simpson’s (AS), Vorono Newton-Cotes (VNC) and Monte Carlo (MC) on Monomials
with a= 2.51778949114543,b= 5.67194769326589,c=−2.98410546965195,d= 5.22175955533465andε = 0.0001.

i j MDT Rel. Error TDT Rel. Error SC Rel. Error AS Rel. Error VNC Rel. Error MC Rel. Error
0 0 1.37263E-16 1.37263E-16 0 1.37263E-16 2.74525E-16 0
0 1 1.22684E-16 1.22684E-16 1.22684E-16 0 1.22684E-16 0.005362692
0 2 0.031254337 0.312565299 3.20000E-16 3.20000E-16 0 0.001030788
0 3 0.079913262 0.071087959 0.000673081 0 0.288846650 0.000739701
0 4 0.085085066 0.349330409 0.000541126 0.000170947 0.832750855 0.005001589
0 5 0.164348054 0.250576017 0.005319045 0.482681292 0.929758393 0.003924581
1 0 1.34083E-16 0 1.34083E-16 0 0 0.001456460
1 1 0.000343677 0.001646319 0 1.19842E-16 1.19842E-16 0.002003265
1 2 0.030968972 0.071611407 0.000628227 1.56293E-16 1.56293E-16 0.001598617
1 3 0.046836029 0.097188218 0.003659738 0 0.552294340 0.007234298
1 4 0.087317344 0.247612927 0.004180156 0.439828056 0.910577689 0.011503918
2 0 0.004460387 0.012879597 1.24805E-16 2.49611E-16 3.74416E-16 0.001587096
2 1 0.002454287 0.019768922 4.02520E-05 1.11550E-16 3.34651E-16 0.002064355
2 2 0.041796026 0.391609471 0.003020576 2.90959E-16 2.90959E-16 0.006233964
2 3 0.052590909 0.075861068 0.000576465 0 0.764040384 0.014456091
3 0 0.013892921 0.024434128 0.000445991 1.11416E-16 5.39003E-09 0.001646359
3 1 0.005542517 0.016485043 0.001896887 1.99165E-16 2.22670E-08 0.002018411
3 2 0.055330400 0.135658417 0.002939728 0 0.299282761 0.005762480
4 0 0.020762319 0.083940060 0.000124715 1.34399E-10 0.594516070 0.004245154
4 1 0.016455419 0.021512025 0.001381476 1.15998E-10 0.367237377 0.005712344
5 0 0.022003814 0.087866804 0.001089610 0.009776169 0.888547317 0.004548625

c© 2017 BISKA Bilisim Technology

NTMSCI 2, No. 2, 1-19 (2017) /http://www.ntmsci.com/jacm 19

Table 15: Time only for Midpoint Delaunay triangulation (MDT), Trapezoid Delaunay triangulation (TDT), Simpson’s
cubature (SC), Adaptive Simpson’s (AS), Vorono Newton-Cotes (VNC) and Monte Carlo (MC) on Monomials witha =
2.51778949114543,b= 5.67194769326589,c= −2.98410546965195,d = 5.22175955533465 andε = 0.0001.

i j MDT Time TDT Time SC Time AS Time VNC Time MC Time
0 0 0.264221362 0.048522268 0.021801254 0.006768572 0.017867854 0.352805694
0 1 0.010175386 0.009185188 0.005659591 0.000578810 0.004228822 0.308191995
0 2 0.212448951 0.038722941 0.004221398 0.000389372 0.001326323 0.304616223
0 3 0.069382987 0.323772511 0.068109400 0.000453883 6.1294469 0.305803539
0 4 0.108419526 0.111599014 0.054363361 1.694423275 6.034388905 0.305586709
0 5 0.076242439 0.180678132 0.028078824 1.599314592 5.991035482 0.305959953
1 0 0.005873861 0.00499195 0.005412554 0.000433404 0.001324019 0.305286168
1 1 0.112953752 0.094920268 0.004018392 0.000424956 0.001363698 0.300387145
1 2 0.168781675 0.225280823 0.028803296 0.000450556 0.001321203 0.303793959
1 3 0.094807373 0.209948624 0.052410613 0.000420092 6.003799002 0.30607208
1 4 0.106156252 0.135796660 0.079992545 1.650970269 5.999080969 0.305938450
2 0 0.089998973 0.106370010 0.004385236 0.000401660 0.001311475 0.355044391
2 1 0.189325214 0.094818125 0.057345731 0.000575738 0.001439474 0.303675688
2 2 0.172706884 0.024697353 0.053885158 0.000398588 0.001289971 0.303935782
2 3 0.129739761 0.298044512 0.071032123 0.000481275 5.997509913 0.307859966
3 0 0.087928978 0.188436391 0.019048514 0.000416508 3.934356623 0.303384875
3 1 0.160555453 0.220046699 0.032886456 0.000463099 5.764459568 0.305458710
3 2 0.162005423 0.195561824 0.100761618 0.000406780 5.976562154 0.323290212
4 0 0.178353931 0.080940248 0.004267989 0.483936032 6.037025678 0.313836483
4 1 0.115505535 0.355869727 0.046673454 0.454968130 5.989358442 0.309507822
5 0 0.159462088 0.113784976 0.038072452 1.719201267 6.147717949 0.30707687

c© 2017 BISKA Bilisim Technology

http://www.ntmsci.com/jacm

	Introduction
	Algorithms
	Implementation and numerical results
	Conclusions and future work
	Full results tables

