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Abstract: This paper presents numerical solutions to integratioblpros with bivariate integrands. Using equally spaced sade
Adaptive Simpson’s Rule as a base case, we look at two wayarpling the domain over which the integration will take glac
Drawing from Ouellette and Fiume, we first look at Voronoi gdimg along both axes of integration and use the correspgnpdints
as nodes for an unequally spaced Simpson’s Rule. Then weatddkngulating the domain of integration and use the Tugar Prism
Rules discussed by Limaye. Finally, we take all of thesenples and run simulations over heavily oscillatory and amoial (up to
degree five) functions over polygonal regions.
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1 Introduction

This paper presents two ways in which the one-dimensionadndi diagram-based sampling technique described by
Fiume and Ouellette9d] can be expanded to solve two-dimensional integrationlprob. The first method is to perform
the one-dimensional Voronoi sampling describeddhdlong each axis of integration to get two sets of n pointerh
the artesian product of those two sets is taken to createan grid of nodes, which is then used in a quadrature
rule. The second method will be to triangulate the domaimtdgration using a Delaunay triangulation. Both of these
methods will be described in greater detail along with soefevant background theory of each in Section 1 and Section
2, respectively. The Voronoi sampling will be implementadn adaptive Newton-Cotes method of degree two, and the
Delaunay triangulation will be implemented in the midpoitnapezoidal and Simpson’s rules described3h These
methods, along with adaptive Simpson’s rule and Monte Catlegration, will be used to integrate a variety of test
functions described in [14] and the set of monomials givef8in The results of these numerical simulations will be
discussed in Section 3.

1.1 Voronoi sampling

In this section, the reader is introduced to the basics abMordiagrams, and the following definitions are consistdtit
those given in [2] and]].

Definition 1. Let SC R? be a set of pointsixxy, ..., X for n > 3 and pe R? with d(x;, p) given as some metric. For any
Xi,Xj € Sand i |, let
B(Xi,xj) = {p|d(x,p) =d(Xj,p)}
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be the bisector ofppand x, i.e. B(x, x;) is the perpendicular line through the center of the line segnconnectingxand
Xj. Thus, the bisector separates the halfplane

D(%,%j) = {p|d(x,p) <d(xj,p)}
containing x from the halfplane x;,x;) containing x.

Using the halfplane described above, we now define the Vodiagram.

Definition 2. Let the Voronoi region ofjpbe given as
Vi=V(x,5)= (] D(x,x)
Xj€Si#]
with respect to S wherg 6 an open set in the topological sense. Then the Voronoiaagf S is defined as
vig= J viny
Xi ,XjESi%j
whereV is the closure of set V, i.e. the open set V unioned with ilmbary.

Scaling the above definitions down to a one-dimensionalrdiagwe can create a sampling method that will iteratively
select points on an intervi, b|. First, letx; = a andx; = b and havexs be a randomly chosen number from the uniform
distribution over(a,b). Then we can determine the nexpoints by constructing the Voronoi cells corresponding® t
location of the sample points that already exist in the segeeletV; represent the Voronoi cell of and be defined as

Vi ={xe€[ab]||x—xj| < |x—x], forall j € [1,n+3]}

fori € [1,n+ 3]. LetVu be the longest line segment as defined above with ties begigbrandomly. The next sample
point in the sequence would the midpoint of the line segmernesponding t&y. The abbreviatioWy, is used to denote
a Voronoi sampling sequence madditional points wheren=n+ 3.

1.2 One-Dimensional Newton-cotes quadrature

We now derive a generic one-dimensional quadrature methrddtegration ovefa, b]. Given three arbitrary poines m
andb, wherea < m< b, Lagrange interpolation is used to find a degree two polyadmix), to approximate our function
f(x).

/bf(x)dx~/b Xdx= 3w (x) L)
; ~ p —j; jT(X
where )

Wi :/ Lj(x)dx

Instead of completing the derivation of Simpson’s rule bpleiting the equal spacing of the points, we set up a general
spacing of points as follows:
b—a=a+ac=a(l+c)

b—m=a

a—m= —ca,
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which simplifies the right hand side of Equatidl) (o get

i F(x)Lj(X) = “(g ) [(2e— 1) (@) + (1+ 0P (m) + c(2— ) F(B)].
=1

This in turn gives us our quadrature formula

a(l+c)
C

I(f):/:f(x)dxz o (2~ Df(a) + (1412 (m) +c2—0) ()] =1 ().

For the error, the equation X
R(X)=I(f)—1(p) :./a f S(!a)(x—a)(x—m)(x—b)dx

is examined, which yields the total erfg(x) to be

R(x) = 7'”";“1) (ml’zf”g 2b—m—a]+

f”l(az) (b _ m)3
6 12

[2a—m—Db].
Assuming thatf”” is essentially constant da, b], then
A 3
R(X) ~ 7—2(b—a) [2m—b—a],

soR(x) = 0 if f(x) is a polynomial of degreg 2. This is to be expected since quadratic interpolation ig gnaranteed
to be exact iff (x) is of degree< 2.

1.3 Delaunay triangulation

According to Aurenhammer and Klein [2], Voronoi was the ficstonsider thelual of the Voronoi diagram, but it was
later determined by Delaunay as follows:

Definition 3. Two point sites are connected if and only if the two sitesti@@ircle whose interior contains no point in
S where S is the set defined in definition

Using the definitions below, a given triangulation can beckkd to see if it is Delaunay.

Definition 4. A circumcircle is the circle that passes through the endfsoinand x for the edge x; and endpoints;x x;
and x, of triangle xx;x. for all combinations of i, j and k

Definition 5. Let T be a triangulation with m triangles and a set of n pointat&re each element of S is a vertex of a
trianglet € T fori=1,...,m. T is considered Delaunay if and only if the circumcirclewéry t contains no other vertex
inS.

Both definitions3 and5 are known as the Delaunay criterion or empty circle propfatyedges 8) and triangles¥),

and are implemented in several algorithms used for cre8télgunay triangulations. The advantage of using a Delaunay
triangulation is that it maximizes the minimum angle of dlthee triangles within the triangulation of a given set ofisi
which helps avoid skinny triangles. As the number of trimsghcreases, the triangles appear more uniform in size. Thi
reduces the risk of peaks of functions from being cut off bigdaskinny triangles, which improves the stability of the
calculations performed on the mesh.
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2 Algorithms

There are three types of algorithms used in the construofi@®launay triangulations: incremental insertion algoris,
divide-and-conquer techniques, and a sweepline techsidue simplest are the incremental insertion algorithmd, a
they can be expanded to be used in higher dimensions easéalforithms that use the divide-and-conquer or sweepline
techniques are faster than the incremental insertion tgaba in two dimensions but are difficult to generalize (i}t

to higher dimensions. To construct the Delaunay triangaran this paper, two algorithms are combined: the method
dtri s2 from the GEOMPACK package and the Bowyer-Watson algoritBoth algorithms are incremental insertion
algorithms, which means they maintain a Delaunay triartgprianto which points are inserted [5]. Firsti ri s2 is
used to triangulate the set of initial points including tlegtices along the boundary of integration and a randomlgeho
point within the boundary. The centroid of the largest tgigns then inserted using the Bowyer-Watson algorithmhin t
following sections, each algorithm is examined and showm tih@y are implemented into our integration problem.

2.1 Incremental insertion algorithms

The earliest incremental insertion algorithm was develdpe Lawson [11] and is based on edge flips. When a vertex
is inserted, the triangle that contains the new point is ép@md the point is connected to the vertices of the contginin
triangle by inserting three new edges (if the new point falighe edge of an existing triangle, the edge is deleted, and
the point is connected to the four vertices of the contaimjngdrilateral by inserting four new edges). The edges are
placed into a stack and are tested to determine if they pad3d¢taunay criterion. If not, then an edge flip is performed
to remove the non-Delaunay edge. With each flip two new edgeadided to the stack, and the algorithm ends when the
stack is empty yielding a globally Delaunay triangulation1981, A. Bowyer and D. Watson simultaneously presented an
algorithm that does not depend on the use of edge flips andasil be generalized to arbitrary dimensionality [11]. Our
implementation of the Bowyer-Watson algorithm is givendwehlnd starts with already having a Delaunay triangulation
of n points with a new pointx, 1, to be added.

(1) Determine which triangle containg, 1. Delete this triangle and add its neighbors to a stack.

(2) Pop atriangle off the stack and determine if the new pieintithin the circumcircle of the triangle. If yes, deleteth
triangle and add the neighboring triangles to the stack.

(3) Repeat 2 until stack is empty.

(4) Triangulate the deleted region (We use the metbobdi s2, which is discussed in the next section and our
implementation is discussed in Secti@.

(5) Inserting the triangulation from 4 into the space thas waided by the deleted triangles provides the new Delaunay
triangulation.

The Bowyer-Watson algorithm can also be implemented fromatsh with no preexisting triangulation. First, three
points are chosen that create a bounding triangle that ekl of the points that need to be triangulated. The dhgari
as outlined above then follows. Once all of the points haenbeserted, the bounding triangle is then deleted aloniy wit
all of its connections to the inner triangulation.

As stated above, this algorithm easily generalizes to lighmensions by replacing the triangles and circumcirotes f
tetrahedron and circumspheres, respectively [11].

In its simplest form, this algorithm is not robust againsindoff error, though. A degenerate case can develop in which
two triangles have the same circumcircle, but only one ofitlie deleted due to roundoff error, and the triangle that is
not deleted is between the new vertex and the triangle thainwhadeleted. This gives a cavity that is not empty, and the
resulting triangulation of the cavity would be a “nonsea$i¢11] triangulation. This problem can be avoided by using
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Lawson’s algorithm instead. Lawson’s algorithm is not dbtay robust to roundoff error, but failures occur much mor
sparingly compared to the simplest Bowyer-Watson algorithhe Bowyer-Watson algorithm can be implemented with
a depth-first search of the containing triangle and will parf equally as robust as Lawson’s algorithm. Another
advantage of Lawson’s is that it is slightly easier to impéeindue in part because the topological structure mairdaine
throughout the process stays a triangulation [11]. The RBawyatson was chosen due to the nice pairing that it has with
the methodit ri s2 given below. The method keeps track of a neighbor matrixctvkirtually negates the search time
for the triangles that are effected by the new insertion {pdihe time complexity is discussed in further detail in 8att
2.3

There are other methods that can be used to create Delausiayuliations such as divide-and-conquer and sweepline
techniques. Both can be implementedifnlogn), and can be more robust than Bowyer-Watson in two dimensiris
given our application, they each have two limitations. tritsey required a set of predetermined set of points, which
would mean the entire set of points would be triangulategt &tery new point. A possible solution would be to use one
of the techniques to triangulate the subset of affecteddtés after the new point is inserted. Given that this suisset
always relatively small, there was no added benefit to usihgeof the approaches given their intricacy. Second, both
also suffer from theurse of dimensionalityGiven these two limitations, Bowyer-Watson was chosen.

2.2 Incremental Delaunay triangulation algorithm with edijps

The methoddt ri s2 as described by Joe [5] is a variation of the algorithm givgrSlban [12]. Sloan’s algorithm
combines the techniques from the Bowyer-Watson and Lawsgaoritnms. First, a super triangle is created that
encompasses all of the points to be triangulated. Then a pois inserted into the triangulation. The triangle that
containsP is found, andP is connected to the three vertices of the containing triatglkreate three new triangles. The
Lawson flip algorithm is then used to make sure the trianguras still Delaunay. This process is repeated until all
points have been inserted [12]. Joe uses the same outlirt fdrs2 but disregards the initial bounding triangle and
initially sorts the points lexicographically [5]. The algihm indt r i s2 is outlined below by starting with a set of points
Sthat needs to be triangulated.

(1) SortSusing an ascending indexed heap sort to obtain the sorted iselicesSs.

(2) Take the first three points according3pand create the first triangle.

(3) Add the next point according & and connect the new vertex to the vertices that are “visitdehe new point.
(4) Check to make sure the new triangles are Delaunay. lfpeoform edge swaps until all triangles are Delaunay.
(5) Repeat steps 3 and 4 until all points have been added tadhgulation.

A crucial component of this algorithm is that edge swappingrgntees the new triangles created are both Delaunay. Welz
[13] provides the following proposition and proof that galatees any four points that are not cocircular have exaotly o
Delaunay triangulation.

Proposition 1. Given a set R- R? of four points that are in convex position but not cocirculfinen P has exactly one
Delaunay triangulation.

Proof. Let P = pgrsbe a convex polygon. There are two triangulation®oé triangulatiorT; using the edger and a
triangulation T, using edgeqs Now consider the familyC; of circles through the edger, which contains the
circumcirclesC; = pgr andC; = rsp of the triangles irfl;. By assumptiors is not onC;. If sis outside ofC;, thenq is
outside ofC]. Consider the process of continuously moving fréjrto C; in €1 then pointy is “left behind” immediately
when going beyon@; and only the final circl€] “grabs” the poins.

Similarly, consider the familye, of circles throughpg, which contains the circumcirclg®; = pgr andC, = spq the
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latter belonging to a triangle iff,. As s is outside ofC,, it follows thatr is insideC,. Consider the process of
continuously moving frontC; to C; in G (right image in Figure??). The pointr is onC; and remains within the circle
all the way up taC,. This shows thaf; is Delaunay, where &%; is not.

The case thatis located insid€; is symmetric; just cyclically shift the roles @igrsto qrsp.

2.3 Complexity

Now the time complexity of thelt ri s2 method and the Bowyer-Watson algorithm are analyzedTUe¢ the time it
takes to triangulate a set nfadditional points be given as

n
T=9 T+
P

whereTy is the amount of time it takes to find the triangle that corgdiire new point an8 the time it takes to find all of
the triangles in the cavity. Since the neighbor relatiomsgiven indt ri s2, S = &'(1) because it is proportional to the
number of triangles in the cavity not the number of pointse Teason for this is that the search for the neighboring
triangle becomes obsolete as the number of points in thegwiation increases. Experimentally, the number of triesg

in the cavity per iteration is less than ten, so as n incretmeaumber of triangles affected stays essentially cofistan
thus, makingTy the dominating factor. In the worst case, the complexitfiois (1), which gives usZ(n?) [1]. This
worst case scenario happens when all existing trianglesueicircles contain the new point at every point insertion.
However, in the typical case, the number of triangles to beted at each point insertion does not depend on the number
of existing triangles as described above. Combining’anlogn) multidimensional search for the triangle that contains
the new point and the saved information of the neighbor icelatbetween triangles, the Bowyer-Watson algorithm
computes the Delaunay triangulationropoints in&'(nlogn).

In [5], Joe discusses the time complexitydifr i s2 and determines it to b&(mlogm). Since the method is only used
for the initial set of points and the vertices along the hdifite cavity along with the new point, then asncreasesmn
stays relatively constant and is significantly smaller thamhus, the time complexity adt ri s2 and Bowyer-Watson
together is stillo’(nlogn).

Whenever implementing a geometric algorithm, two problamsys need to be addressed: geometric degeneracies and
numerical errors. For the Delaunay triangulation, four arencocircular points will result in a non-unique triangida

[6]. In such a casedt ri s2 will produ ce the triangulation that comes first lexicogrimally. Another geometric
degeneracy that needs to be considered is if three or monéspaie too close to being co-linear. In this calte; i s2
checks for a “healthy” triangle when inserting a new poihtdtermines this by checking if the third point is to the left

or right of a directed ray between the initial two points o tiniangle. If the third point is within a certain tolerande o

the directed ray, the method will break and return a fatarerr

Numerical errors are more difficult to handle. As discusseBdction2.1, there is a degenerate case for roundoff error in
the Bowyer-Watson algorithm. Mavriplis also discusses igsue with round-off error in [7]. In general, the naturehef
problem will determine the accuracy requirements of thelig@nd outputs. For our implementation, double-precision
arithmetic is used, and it proves to be very robust. An oceesierror occurs when inserting several thousand points in
dtri s2 that appears to happen when two points are too close to eaeh, athich illustrates the round-off error
problems described in Secti@il Since the error rarely occurred, the iteration was simiged but noted during the
simulation process using a try/catch block.
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2.4 Delaunay integration

Now the triangulation of the integral domain is implemenitethe triangular prism rules described in [3] to approxienat

the integral
/| fxy)axdy @
D

whereD is the domain of integration that has been triangulatedrnrttéangles. First, replace the functidiix,y) above
with a two variable polynomial functiorp, of total degree 2 that interpolatef(x,y) at p; = (X332, yl—;yz),
p2 = (“—;)‘3,%), and pz = ()‘3—;"1,&23’1). Then the “signed volume” under the surface given @yx,y) is the
“volume” of the paraboloidal triangular prism with its baBg the lengths of the 3 parallel edges equalftay,y:),
f(x2,¥2), f(Xs,y3), and the heights at the midpoints of the sides are equal teetlies off (x,y) at those midpoints. This
gives us a “cubature”[3] rule in two variables that is analagto Simpson’s rule in one-variable and is given by

S toyanys 250 (pu) 4 1 () + 1 o) ®

whereD; € D for all i = 1,2,...,n. Although the 2D Simpson’s rule is the main method in which wiangulation is
implemented, the midpoint and trapezoidal equivalentsrilesd in [3] are also used for added performance comparison
For the midpoint rule, lets,t) be the centroid ob; and replace the functiofi(x,y) from Equation2 with the constant
functionpp(s,t). The “signed volume” under the surface givengyis the “volume” of the triangular prism with the base
Di and heightf (s,t). This gives the “cubature” rule as

//D f(x,y)dxdy= Area(Di) [f(x1,y1) + f(X2,¥2) + f(X3,Y3)],

whereD; e Dforalli=1,2,...,n[3].

2.5 Monte Carlo integration

Monte Carlo methods are numerical methods that depend argtendom samples to approximate their results. Monte
Carlo integration applies this process to the numericéhasion of integrals. The following estimator is given bydse
[4], but can be found in most sources discussing Monte Caelthatds. Supposk(x) is to be integrated ovéa, b:

F/abf(x)dx

and given a set of n uniform random variab¥< [a, b) with corresponding PDF oﬁ—a then the Monte Carlo estimator
forFis

(F™ :(b—a)n—llif(xi). 4)

Using fundamental properties of random variables, it iy ¢ashow that the expected value of the estimatdt.iThe
proof can be found in [4]. For the one-dimensional case, time@ergence rate is determined by looking at the convergence
rate of the estimator’s variance: 1
g[(FM] 0 —=.
[(F™)] Vi
Even though the convergence rate is slow compared to otleedibnensional techniques, it does not suffer fromdhese
of dimensionality The estimato[(F")], can easily be extended to multiple dimensions with the eayence remaining

the same as above [4].
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3 Implementation and numerical results

In this section the implementation of the algorithms anaitii¢hat was presented in the previous sections is givem The
test functions are defined, and the numerical results giyaadiing our implementations versus other known techrique
discussed in Sectiok are also discussed. First, the adaptive Newton-Cotes gtuadrdiscussed in Sectidn2is tested
against AS. Then AS is compared to Simpson’s rule over thauely triangulation described in equati@). Finally,

the performance of all of the techniques are compared to @hehn simultaneously.

3.1 Implementation

In Section2.1and2.2, the Bowyer-Watson algorithm and the methiid i s2 were investigated. These methods were
combined to create a hybrid method that is based mainly oBalg/er-Watson algorithm. Starting with an arr&ythat
contains the four points representing the vertices of thargular integration domain and one randomly chosen point
within the rectangle, the initial triangulation is constited using thedt ri s2 method. From this initial triangulation,

dt ri s2 produces three outputs: the number of triangles, a matrixaining the vertices of each triangle, and another
matrix containing the neighbor relations of the triangl@se columns of each matrix refers to a triangle in the
triangulation, i.e. column one refers to triangle column two refers to triangl&, etc.

The centroid of the largest triangle is found, and the afféctegion is found by determining which triangles’
circumcircles contain the new point. The boundary of thec#d region is then stored in a temporary matrix with the
newly inserted point. The region is then triangulated usihgi s2. If the region is concave then the triangles that are
created from bridging the concave vertices are deletetielfégion is convex then the triangulation is correct, aedeth

is no need to delete any triangles.

Now that the affected region is triangulated, it needs teiitesl back into the main triangulation. To do this, the
referencing between the neighbor and vertex matrices oéffieeted region need to be inserted into the neighbor and
vertex matrix for the main triangulation. First the poinfarences in the vertex matrix are corrected. When triarionga
the affected region with m pointslt ri s2 labels the points ,2,...,m so the references need to be changed to their
original numbering fronP that consists oh points. Similar to the vertex matrix for the affected regitire neighbor
matrix is also updated to reflect the numbering of the whadagulation. While correcting the numbering for the overal
neighbor matrix, the entries that are boundary edges foatffieeted region are set to O if they are not a boundary edge
for the entire triangulation. If they are a boundary edgelfoth the affected region and larger triangulation, then the
entry remains the same. Then the vertex and neighbor matficethe affected region are merged with vertex and
neighbor matrices corresponding to the overall triangotatThis is done by first noticing that ifn triangles were
affected, then the new triangulation consistsrof 2 triangles, so each column in the overall neighbor matrifiled

with one from the affected region’s triangulation, and tve £xtra triangles are placed onto the end. The correspgndin
columns in the vertex matrix for the affected region are ddidethe same manner to the over all vertex matrix. The
vertex matrix is now complete and describes the triangaiatiith the new point added. Lastly, all of the zeros in the
overall neighbor matrix are changed to their correct triangferences, and all of the negative entries are updated as
well. The triangulation is now complete with correct vergad neighbor matrices.

The algorithm described above is used in the cubature reesribed in Sectiof.4. The implementation of each of the
cubature rules follows the same general outline with the alifference being at what points the function is being
evaluated as given by each rule. First, an initial triangjoitais found usingdt ri s2 along with the areas of each
triangle. The areas are then placed in an array in increasd®y, and a matrix containing the boundary edge informatio
is also created. Then the functions is “integrated” using ofithe three cubature rules described in [3] (Simpson’s,
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midpoint and trapezoid). The error is then calculated toifséés within the given tolerance. If the volume is not withi
the given tolerance then the triangle with largest arealectsd for refinement, and its centroid is computed. Thisipoi
becomes the new point to be inserted and the algorithm altowven to determine the new triangulation. After
triangulating, the areas of the triangles affected durmegttiangulation are deleted, and the new ones are caldudaie
sorted in ascending order. The two arrays of areas are thegehéogether. This process repeats until the volume is
within the given tolerance or a maximum number of iteratisngached. This method involving the cubature rules is not
implemented adaptively, so the error at each step is cordparthe previous step. However, the Voronoi Newton-Cotes
(VNC) method is implemented adaptively similar to our baasecof the two-dimensional adaptive Simpson'’s (AS) Rule.

3.2 Integrands

In [14], Yu and Sheu examine solving the following doubleegral using the Mean-Value theorem for integrals:

2 rR
/ / £(r,8,s @,n)drde,
0 JO

wheres, ,Re R,R>0,ne€ Z* andf(r, 8,s,¢,n) is one of the following functions:

A(r,0,s,¢,n) =rexp i (E) " rkcos[(n— k) p+ k] cosl% (E) " *rksin[(n— k) @+ k6] (5)
o ] =

B(r,0,s,¢,n) =rexp n (n) " krkcos|(n— k)@ + kO] sin[ ; (n) " rksin[(n— k) @+ k6] (6)
o \K | & \K

C(r,0,s,¢,n) =rsin [% (n) " *rkcos|(n— k) @+ ko] cosh_ S (n) $"*r¥sin[(n— k) o+ k9]_ @)

R Eo \K o \K |

D(r,0,s,¢,n) = rcos[ S (n) " *rkcos|(n— k)@ + kO] | sinh S (n> S *rksin[(n— k) o+ kG]_ (8)
Eo \K o \K |

E(r,0,s,¢,n) = rcos[ ; <n> " ¥rkcos|(n— k) @+ k8] | cosh i’ <n> " 4rksin[(n— k) o+ kB]- 9)
o \K (S0 \K ]

F(r,08,s,¢,n) =rsin Li) (E) " rkcos|(n— k) @+ k6] | sinh Li (E) S *rksin[(n— k) g+ ko] | . (10)

Even thougm can be an any integer such thet 1, it is only chosen to be between 1 and 3. Wihes increased, the
results would become quite large (L0°) most of the time, which made it more difficult to get a good grapd harder
to determine what could be causing the inaccuracies. Thieadstwere also tested on functions of the form

d b
//x'yldxdy
Cc a

wherea,b,c,d € R, i, j € Z andi+ j < 5. An analytical solution for each(r, 8,s, ¢,n) is provided by Yu and Sheu, so the
relative errors of each trial could easily be calculatechiBirly, the analytical solutions for the monomials can berfd,
so the relative error could easily be calculated.
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3.3 Results

The VNC method is initially tested against AS on the set of oroials described above. During the first several runs,
the Voronoi sampling only chose 3 additional points betweenboundaries at each step similar to how Simpson’s rule
finds the three midpoints (quartiles) between the bounslafier all of the simulations shown in the table, a tolerarfce o
£ =0.0001 is used, and the function is integrated over four raflgaimosen points to create a rectangle with vertices
a = —0.0088412084076052H, = 2.71855632151155; = 2.88900981641759, and = 3.44868288240732. The full
results of one of the simulations are given in Tablén AppendixA. From Tablel, it is obvious that the VNC method is
exact (within machine epsilon) for polynomials of degree twless but is not always exact for the polynomials of degree
three. As given in Equation 1.2, this is expected since tterpolating polynomial is only exact through degree twaj an
there is no additional degrees of accuracy since the emorigeonly proportional tdf (®). Also, it is clear that AS is exact
through degree three as expected as illustrated Tal#ter the higher degree>(4) polynomials shown in Tablgl, the

Table 1: Condensed Voronoi Newton-Cotes (VNC) v. Adaptive SimpsoRule (AS) on Monomials witha =
—0.0088412084076052B,= 2.71855632151155; 2.8890098164175% = 3.44868288240732 angl= 0.0001.

il ASTime | ASRel.Error | VNCTime | VNC Rel. Error
0 | 0 | 0.008355225 1.45465E-16 | 0.007077289 0

0| 1| 0.000445179 1.83618E-16 | 0.000605689 1.83618E-16
0 | 2 | 0.000444923 1.15589E-16 | 0.000636664 1.15589E-16
0| 3| 0.000717303 1.45154E-16 | 0.028169894 4.20143E-08
1| 0 | 0.000505850Q 0 0.000657144 0

1| 1| 0.000572153 1.35526E-16 | 0.000752119 2.71052E-16
1| 2| 0.000714487 3.41259E-16 | 0.000930037, 3.41259E-16
2 | 0 | 0.000655608 1.18479E-16 | 0.000882165 1.18479E-16
2| 1| 0.000450042 4.48665E-16 | 0.000632312 1.49555E-16
3| 0| 0.000457722 1.16218E-16 | 0.498908685 8.96198E-08

VNC method performs adequately giving four additional esd# accuracy for the given epsilon in many cases. However,
there are three cases that stand 6(xt;y) = x3y?, f(x,y) = x*y* and f(x,y) = x°, which are examined further in Tallte
Originally the maximum number of iterations was set to 5@01@ all three of those cases reached the maximum number,
so the maximum iterations was increased to see how many itM@ke to achieve a desirable accuracy. When increasing
the maximum iterations to 15000, the following results wienend and are shown in Tab® The relative errors again
give us an additional four or five digits of accuracy and evatperform AS on one of the runs. Unfortunately, the amount
of time taken spiked drastically. Since the desired acgunas finally achieved, the next step was to try to improve the
speed of the method.

Table 2: 15000 Max Iteration Voronoi Newton-Cotes (VNC) v. AdaptBenpson’s Rule (AS) on Monomials witl=
—0.0088412084076052B,= 2.7185563215115%, = 2.8890098164175%9 = 3.44868288240732 angl= 0.0001.

il ASTime | ASRel. Error | VNCTime | VNC Rel. Error | lterations
3| 2| 0.000457210 0 3.063991277| 1.30530E-08 6497
4| 1| 0.116197996 4.03868E-08 | 4.288516134f 2.32547E-09 9069
51 0| 0.211611352 7.10947E-08 | 7.329204530 3.50050E-08 14869

As stated above, the trials were initially run using the aidapyNC with the Voronoi sampling only being used for
three additional points along each axis. When examiningrteemediate steps of both methods, the VNC had very long
streaks of not adding any values to the total volume. Thistniéavas spending a lot of time finding an accurate enough
approximation to be able to move on to the next quadrant. Wineking at how the points were generally distributed
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between the two values, there were large gaps on the taiteedhterval giving large areas to approximate over on the
ends, which would then need more refinement. Since AS usesitipints of each cell at every step, the empty space is
filed much more evenly than with the Voronoi sampling; thiere, AS was always using significantly fewer iterations.
In an effort to correct this, more points were sampled at esiep (19 additional for a total of 21 with the endpoints)
but would only use the first, second and third quartiles ofghmpling. As shown in Tablg, the guaranteed accuracy
through degree two for VNC and degree three for AS remainbamged. In Tabld 2, the times for the larger degree
polynomials did end up improving with the accuracy remagnmioughly the same as before. Since increasing the number
of points helped the speed of the algorithm and also gavanikasiaccuracy, the Voronoi sampling of 19 points over the
three point method is used in the rest of the trials desciiibéluis paper. Even with the additional increase in speed, AS
provides both better accuracy and speed on these simplédnsoverall, though. Now both methods are tested on more
complicated functions.

Table 3: Condensed Voronoi Newton-Cotes (VNC) v. Adaptive Simpsdrule (AS) on Monomials with additional
sampling anch = —0.0088412084076052B,= 2.7185563215115%; = 2.8890098164175% = 3.44868288240732
ande = 0.0001.

i1 ASTime | ASRel.Error | VNCTime | VNC Rel. Error
0| 0| 0.001667055 0 0.005648840 1.45465E-16
0| 1| 0.000532987 0 0.001388274 3.67237E-16
0| 2| 0.000424188 2.31179E-16 | 0.001337843 0

0 | 3| 0.000500475 1.45154E-16| 0.022388000 4.90503E-08
1| 0| 0.000477947 0 0.001335283 4.29461E-16
1| 1] 0.000468731 1.35526E-16| 0.001387250 0

1| 2| 0.000577018 0 0.001409522 1.70629E-16
2| 0| 0.000573178 2.36958E-16 | 0.001332467 4.73917E-16
2| 1| 0.000468475 2.99110E-16 | 0.001327091 1.49555E-16
3| 0| 0.00055577Q0 1.16218E-16| 0.432514594 4.00847E-08

Next tests were run on the functions described above frorhjéhg VNC and AS. For all of the simulations shown
in Table4, again a tolerance of = 0.0001 is used, and the function is integrated over the retgagigen bya = 0,

R = 5.480255137¢ = 0, d = 2ir with R being a randomly chosen point. We also randomly cheese.444171059,

@ =5.69125859039527 anul= 1. It is clear to see from Tabkethat neither AS nor the VNC method performs well on
the six functions. These functions have fairly sharp higth law peaks and are also oscillatory. Simpson'’s rule is known
to break down with oscillatory functions, e.g. integratjsm(x)| from [0, 271 using Simpson’s rule arrives at an area of 0
when the true area should be 4. Considering most of the fumeippear to have equally high and low peaks, a similar
cancellation could be affecting the results. It is easy mthat the VNC method could also run into a similar problem
given an appropriate function and “midpoint.”

Table 4: Voronoi Newton-Cotes (VNC) v. Adaptive Simpson’s Rule (AfB)Functions A-F witta= 0, R=5.480255137,
c=0,d =21, s= 24441710599 = 5.6912585903952T = 1 ande = 0.0001.

f Type ASTime | ASRel. Error | VNC Time | VNC Rel. Error
A 11.8374406| 2.729767377| 16.11166813 1.182096082
B 12.04885046 1.418534859| 16.38065796| 0.842777814
C 12.13505427 1.611736343| 16.61918614 1.067504856
D 13.03777242 2.358085297 | 17.13948942 0.634025761
E 12.37735201 2.191400672| 18.07931543 0.806867337
F 12.78167719 1.697312935| 17.24927674 0.899201229
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Similar to our simulations comparing the methods on montanthe results displayed in Tablehave a maximum
number of iterations of 5000. As before, the maximum numbetepations was increased, this time all the way to
20000, but this did not improve the accuracy by a significanbant (rarely getting even one additional order of
accuracy). Ignoring the accuracy and looking at the timetoak to complete the simulation, AS still trumps the
Newton-Cotes method. Since both of the simulations are n@meéing the same number of iterations (5000), it is highly
likely the time difference is attributed to the extra work NC has to do to perform the extra sampling.

Now that the VNC method and AS have been compared againsiogiaeh AS is now compared against the Simpson’s
rule analog using the Delaunay triangulation, which willdadled Simpson’s cubature (SC) rule, that was discussed in
Section2.4. Similar to the analysis performed above for the VNC and A8, gerformances of AS and SC will first be
compared over the monomials to make sure the expected dgeadaaccuracies hold. Then they will be tested on the
higher degree monomials. Both methods use a toleranee-d?.0001 over the rectangke= —1.62110966800282 =
—1.3743206705928%,= —3.323937975191% = —1.72003265166653. The full results of this simulation aregiin
Table13in AppendixA. Looking at Tables, both AS and SC perform well through degree three and tworppotyals,
respectively. SC does not give us the extra third order ofi@ay as shown earlier when comparing the VNC and AS,
but it does yield an additional two to three extra orders @laacy, which is still quite adequate. When looking at their
differences in speed, SC is quite slow, even for functiomsafbich it is exact, compared to AS. Similar to the VNC
method, SC has to take the extra time to triangulate. Thedulkation is slightly more time consuming than the Voronoi
sampling, so this is why there is a larger gap on average leet8€ and AS than the gap between VNC and AS.

Table 5: Simpson’s Cubature Rule (SC) v. Adaptive Simpson’s Rule) @8Monomials witha = —1.62110966800282,
b= —-1.3743206705928%,= —3.323937975191% = —1.72003265166653 angl= 0.0001.

SC Time AS Time

| SCRel. Error | AS Rel. Error

WNNRFRPPFPPFPOOOO|—

OFRPONPFPROWNPRF O|—

0.016313693
0.005531337
0.006637502
0.025780223
0.005419978
0.005155789
0.009143973
0.005003724
0.005474249

0.004566224

2.80482E-16
7.78505E-16
5.11924E-16
2.19831E-05
1.87274E-16
1.48513E-16
3.05773E-06
4.99029E-16
2.78244E-06
1.31798E-07

0.000848376
0.00044799¢
0.000467707
0.000461051
0.000468731
0.000481531
0.000441084
0.000488443
0.000503547

0.000488187

2.80482E-16
6.67290E-16
5.11924E-16
2.54077E-16
1.87274E-16
1.48513E-16
6.83606E-16
7.48543E-16
3.95743E-16
0

Looking at the higher degree>(4) polynomials in Tablel3, SC performs about the same as it did for degree three in
terms of accuracy. In the majority of cases, it gives at leastadditional order of accuracy but does not perform as well
as AS. There are a couple exceptions where they perform lggaal well or the SC performs better such as
f(x,y) = x*andf(x,y) = x. Since SC is always slower or the same speed as AS, it is easgtihat it does an adequate
job, but AS outperforms it in all categories for the simplaedtions, which is to be expected. SC and AS are now
compared on the functions A-F. TalBeshows that even though AS gives much better accuracy, SGisr ejuicker or

the same speed as AS. The graphs still have peaks and valieyhé previous example, but they are much less steep
(only reaching as high as ten as opposed to several thousatie iprevious example) and do not seem to be as
oscillatory as the previous example. This definitely helgs dccuracy of each method, but mainly helps AS. Over the
many simulations run, it was noticed that the convergencthigse functions is quite slow. Since SC is not implemented
adaptively, the method will stop when the current iterationl the previous iteration are withinof each other. These
two facts combined lead to the method terminating too eahych also explains its performance in speed.

(© 2017 BISKA Bilisim Technology



NTMSCI 2, No. 2, 1-19 (2017) http://www.ntmsci.com/jacm

For the lower degree<( 3) polynomials given in Tabld4, AS still remains the superior choice in both time and

Table 6: Simpson’s Cubature Rule (SC) v. Adaptive Simpson’s Rule)(@$Functions A-F wita=0,R=1,c =0,
d = 2m, s=1.8346866448179@&) = 5.7191237045541% = 1 ande = 0.0001.

f Type

SC Time

| SC Rel. Error

AS Time

| AS Rel. Error

TmOO >

0.181542123
0.162510249
0.091698284
0.263396794
0.447086736

0.071517238

0.008030536
0.009020936
0.000826563
0.125639992
0.054360408
0.025073541

2.271972965
2.453636943
1.233137896
1.315914670
1.355982622
1.362870489

3.01322E-08
2.98341E-08
3.37518E-07
1.77746E-05
2.10402E-06
5.59632E-08

accuracy. The VNC method and SC perform giving severalglimfiaccuracy and occasionally matching AS. As shown
in Table 15, both still lag behind in speed, which is consistent with amalysis provided above. Now the methods are
compared on monomials with degree4. Two interesting cases are examined further with theinltegpresented in
Table7 and Tables as well. Whenf (x,y) = x%y?, the VNC method and AS provide exact solutions with MC and SC
performing respectably giving three digits of accuracyeEthough AS and the VNC provide the same level of accuracy,
AS is roughly three times faster than the VNC, so AS is stilupesior choice. On the other hand, VNC still provides
better accuracy and speed than the other four methods. Whey) = x°, it is clear that with respect to accuracy AS, SC
and MC perform the best with MDT and TDT performing about taene and VNC performing the worst. However,
when reviewing each method’s performance with respectte tiAS is the second worst performer with SC and MC
performing the best. As discussed earlier with both AS ardANC method, additional iterations can be expensive with
respect to time. The VNC and AS methods are still capped st%000 iterations, but in this case, that amount is still too
expensive. If needed, the iterations could be increaseditorgore accuracy with AS, but given its performance on this
example, the added digits of accuracy could be extremelgresipe with time. The VNC method performs the worst in
both accuracy and speed, which could be improved by inargdbe number of sampled points to greater than 19, but
based on previous results, this could marginally increlaseatcuracy but not improve the speed at all.

Lastly, all of the methods presented in the previous sestiociuding Monte Carlo (MC) integration, midpoint rule,dan

Table 7: Condensed accuracy only for Midpoint Delaunay triangala(MDT), Trapezoid Delaunay triangulation (TDT),
Simpson'’s cubature (SC), Adaptive Simpson’s (AS), Vordteivton-Cotes (VNC) and Monte Carlo (MC) on Monomials
witha=2.51778949114548,= 5.67194769326588,= —2.9841054696519%, = 5.22175955533465 argl= 0.0001.

0.022003814

0.087866804

0.001089610

0.009776169

0.888547317

i | j | MDTRel.Error | TDT Rel. Error | SCRel. Error | AS Rel. Error | VNC Rel. Error | MC Rel. Error
00 1.37263E-16 1.37263E-16 0 1.37263E-16 2.74525E-16 0

0|1 1.22684E-16 1.22684E-16 1.22684E-16 0 1.22684E-16 0.005362692
1(0 1.34083E-16 0 1.34083E-16 0 0 0.001456460
212 0.041796026 0.391609471 | 0.003020576| 2.90959E-16 2.90959E-16 0.006233964
5|0

0.004548625

trapezoid rule are compared against one another. TAlaad15in AppendixA contain the accuracy and run times for
each method. Tablé confirms that the midpoint Delaunay triangulation (MDT) tcarate through constant functions
(with a bonus of accuracy through degree one), and the toigedzDelaunay triangulation (TDT) method is accurate
through degree one, but both of their accuracies dip sigmifig as the polynomials have higher degree.
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The MC method is also shown in Tableand was run for 50000 iterations. This number proved to kgelenough to
give a competitive accuracy without taking a significant amtoof time. Since the MC method is not a deterministic
quadrature like the other methods, there is no guaranteadireess for a specific degree (except wHér,y) is
constant), so it does not perform as well with regards to mayufor the lower degree polynomials when the other
methods are exact. However, Tableillustrates that it still does a good job of approximating tfunctions and

consistently provides three digits of accuracy.

For the lower degree<( 3) polynomials given in Tabld4, AS still remains the superior choice in both time and

Table 8: Condensed time only for Midpoint Delaunay triangulation¥W), Trapezoid Delaunay triangulation (TDT),
Simpson’s cubature (SC), Adaptive Simpson’s (AS), Vororesvbdbn-Cotes (VNC) and Monte Carlo (MC) on Monomials
witha=2.51778949114548,= 5.67194769326588,= —2.9841054696519%8, = 5.22175955533465 arel= 0.0001.

MDT Time | TDT Time |

SCTime |

AS Time

| VNCTime |

MC Time

OIN = O O —

ON OB O

0.264221362
0.010175386
0.005873861
0.172706884

0.159462088

0.048522268
0.009185188
0.00499195
0.024697353
0.113784976

0.021801254
0.005659591
0.005412554
0.053885158
0.038072452

0.006768572
0.000578810
0.000433404
0.000398588

1.719201267

0.017867854
0.004228822
0.001324019
0.001289971

6.147717949

0.352805694
0.308191995
0.305286168
0.303935782
0.30707687

accuracy. The VNC method and SC perform giving severalslifiaccuracy and occasionally matching AS. As shown
in Table 15, both still lag behind in speed, which is consistent with dmalysis provided above. Now the methods are
compared on monomials with degree4. Two interesting cases are examined further with theinltegpresented in
Table7 and Table8 as well. Whenf (x,y) = x?y?, the VNC method and AS provide exact solutions with MC and SC
performing respectably giving three digits of accuracyeEthough AS and the VNC provide the same level of accuracy,
AS is roughly three times faster than the VNC, so AS is stilupesior choice. On the other hand, VNC still provides
better accuracy and speed than the other four methods. Wgy) = x>, it is clear that with respect to accuracy AS, SC
and MC perform the best with MDT and TDT performing about taene and VNC performing the worst. However,
when reviewing each method’s performance with respectne tiAS is the second worst performer with SC and MC
performing the best. As discussed earlier with both AS ardARC method, additional iterations can be expensive with
respect to time. The VNC and AS methods are still capped 5000 iterations, but in this case, that amount is still too
expensive. If needed, the iterations could be increaseditorgore accuracy with AS, but given its performance on this
example, the added digits of accuracy could be extremelgresipe with time. The VNC method performs the worst in
both accuracy and speed, which could be improved by inargdkie number of sampled points to greater than 19, but
based on previous results, this could marginally increlas@ctcuracy but not improve the speed at all.

Lastly, each of the methods is compared over the functiofs As seen previously and now in Tal#enone of the
methods provide much accuracy on the oscillatory functit(s is a little bit of an exception since it provides two to
three digits of accuracy for all but functiga From Table9, AS and the VNC both perform extremely poorly with regards
to accuracy and time. The functions again have fairly stessgkp and valleys with a couple of graphs maxing out in the
low thousands. As discussed earlier, the high peaks anelygathat appear in all of the graphs could cause issues with
the Newton-Cotes based methods.The maximum iterationsl etso be increased to greater than 5000, but this would
only increase the run times of AS and VNC, which are alreadseexely long compared to the other methods as shown
in Table10.
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Table 9: Accuracy only for Midpoint Delaunay triangulation (MDT)rdpezoid Delaunay triangulation (TDT), Simpson’s
cubature (SC), Adaptive Simpson’s (AS), Vorono Newton&SdivVNC) and Monte Carlo (MC) on functioWsF with
a=0,R=4.31068942603038t,=0,d = 211, s= 2.3565138228513% = 0.387434275655811,= 1 ande = 0.0001.

f Type | MDT Rel. Error | TDT Rel. Error | SC Rel. Error | AS Rel. Error | VNC Rel. Error | MC Rel. Error
A 0.683714451 10.03800011 | 0.352786127| 1.554339606| 1.061044439 0.132485128
B 0.6990499 8.567750035 | 0.471139253| 1.418966123| 1.049486153 0.020218433
C 0.607982921 2.107507132 | 0.437277931| 1.263018939 0.72749257 0.081858071
D 0.620570225 0.185445349 | 0.026569987 | 2.142429562| 1.288711192 0.009542655
E 0.017144236 2.145806657 | 3.902967839| 1.81321621 1.228863182 0.002194894
F 4.43223692 2.388462115 | 3.178847867| 1.369362554| 1.176581187 0.03489333

Table 10: Time only for Midpoint Delaunay triangulation (MDT), Trapaid Delaunay triangulation (TDT), Simpson’s
cubature (SC), Adaptive Simpson’s (AS), Vorono Newton&SqiVNC) and Monte Carlo (MC) on functioWsF with
a=0,R=4.31068942603038t,=0,d = 211, s= 2.3565138228513% = 0.387434275655811,= 1 ande = 0.0001.

fType | MDTTime | TDTTime | SCTime | ASTime [ VNCTime | MCTime

TmMOO >

0.155683822
0.240922523
0.268317065
0.476965478
0.296183923

0.085615529

0.160757179
0.183981267
0.204237321
0.105453539
0.241752978

0.193632883

0.173916472
0.16088441
0.124068137
0.230742016
0.029039326

0.052914928

12.23576955
12.23258725
12.82676935
12.74109161
12.81275861

12.95576287

17.99852238
17.25799038
17.25403164
17.56966932
17.46210201

17.38970056

2.672148681
2.696071642
2.747159004
2.702983829
2.725147064
2.761395790

4 Conclusions and future work

This paper presents two methods for solving a numericagjiat®on problem: a second degree Newton-Cotes method
combined with a Voronoi sampling technique and using a Dedguriangulation to divide the integration domain into
triangles to integrate over. These two methods are comparadmidpoint and trapezoid rule over triangles, adaptive
Simpson’s rule and Monte Carlo integration. In 3 the resatts presented and show that the Voronoi Newton-Cotes
method and Delaunay triangulation Simpson’s rule perfodagaately on simple functions such as monomials, but
neither performs nearly as well as adaptive Simpson’s wétpards to accuracy and speed. When comparing their
performances over more complicated functions such as ttoesel in the first part of SectioB.2, all of the methods
perform poorly in accuracy and run time and are not viablenoas for solving these problems. In the end, the Voronoi
Newton-Cotes and Delaunay triangulation methods can geoeidequately accurate results most of the time, but
adaptive Simpson’s is still more reliable in both accurany speed.

There are a couple improvements that could be made to thesSimgorule with Delaunay triangulation. To improve the
accuracy of the Delaunay cubature rule, it could be impldstkadaptively by comparing locally instead of globally
after each step. In the hybrid algorithm tther i s2 method and the Bowyer-Watson algorithm are combined. Shnee
triangulation puts the method at a disadvantage comparaditptive Simpson’s rule, the algorithm could be improved to
attempt to reduce the time taken to triangulate. To do thesBowyer-Watson algorithm could be implemented using an
object-oriented language such as Java and create a datausgrthat could hold all of the information for the triangle
such as its vertices, neighbors and centroid. This wouidieéte the use of thét r i s2 method entirely, which could
improve the run time of the triangulation. The next step widug to perform a similar analysis in higher dimensions to
see how our particular method handlesthese of dimensionality

(© 2017 BISKA Bilisim Technology


http://www.ntmsci.com/jacm

(_/
16 BISKA A. Carstairs and V. Miller: Numerical solutions to two-dimgonal integration problems

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors have contributed to all parts of the article. &lithors read and approved the final manuscript.

References

[1] C.A. Arens, The Bowyer-Watson Algorithm: An efficient implementatioa database environmentU Delft, July 2002.
[2] F. Aurenhammer and R. Klein. “Voronoi Diagramsfandbook of Computational Geometid. J.R. Sack and J. Urrutia, North
Holland, 2000, pp. 203-292.
[3] S. R. Ghorpade and B. V. Limay#, Course in Multivariable Calculus and Analyigp. 346-361, Springer, 2010.
[4] W. Jarosz Efficient Monte Carlo Methods for Light Transport in ScaittgrMedig University of California, San Diego, 2008.
[5] B. Joe, GEOMPACK - A Software Package for the GeneratibMeshes using Geometric Algorithm8gdvanced Engineering
Software Vol. 13, No. 5/6, pp. 325-331, 1991.
[6] D. Lischinski, Incremental Delaunay TriangulatidBraphics Gems IVpp. 47-59, 1994.
[7] D.J. Mavriplis, Front Delaunay Triangulation AlgorithDesigned for Robustness, Institute for Computer Apglicatin Science
and Engineering, ICASE Report No. 92-49, October 1992.
[8] S.E. Mousavi, H. Xiao and N. Sukumar, Generalized Gaus§luadrature Rules on Arbitrary Polygohgernational Journal for
Numerical Methods in Engineerinyol. 82, Issue 1, pp. 99-113, 2010.
[9] M. J. Ouellette and E. Fiume, On Numerical Solutions tedimensional Integration Problems with Applications todar Light
SourcesACM Transactions on Graphicsol. 20, No. 4, pp. 232-279, 2001.
[10] S. Rebay, Efficient Unstructured Mesh Generation by heaf Delaunay Triangulation and Bowyer-Watson Algorittiournal
of Computational Physi¢d/l. 106, pp. 125-138, 1993.
[11] J. R. Shewchuk, Lecture Notes on Delaunay Mesh Gewerdiiepartment of Electrical Engineering and Computerr&seUC
Berkeley, September 1999.
[12] S. W. Sloan, A fast algorithm for constructing Delaurtéagingulations in the planédv. Eng. Softwarevol. 9, pp. 34-55, 1987.
[13] E. Welzl, Lecture Notes, Chapter 6: Delaunay Triantjafes, Department of Computer Science, Swiss Federaltuiestbdf
Technology Zurich 2013.
[14] C. Yu and S. Sheu, Using Mean Value Theorem to Solve Soméle IntegralsTurkish Journal of Analysis and Number Theory
Vol. 2, No. 3, pp. 75-79, 2014.
[15] H. Zimmer, Voronoi and Delaunay Techniqu@&spceedings of Lecture Notes, Computer Sciegndes8, 2005.

A Full results tables

(© 2017 BISKA Bilisim Technology



NTMSCI 2, No. 2, 1-19 (2017) http://www.ntmsci.com/jacm

=
BISKA

17

Table 11: Voronoi

Newton-Cotes (VNC) v. Adaptive Simpson’s Rule (A®N Monomials with a =
—0.0088412084076052B,= 2.7185563215115%, = 2.8890098164175%] = 3.44868288240732 angl= 0.0001.

AS Time

| AS Rel. Error

VNC Time | VNC Rel. Error

GORBRWWWNNNNRPRPRPPRPPRPOOOOOOO|—]

OFRPONRPFPOWNRFRPORMWNRPFRPOORMWDNE O[]

0.008355225
0.000445179
0.000444923
0.000717303
0.005256895
0.018198816

0.00050585
0.000572153
0.000714487
0.000505338
0.005495996
0.000655608
0.000450042
0.000574457
0.000786678
0.000457722
0.000620536

0.00045721
0.121101104
0.116197996

0.211611352

1.45465E-16
1.83618E-16
1.15589E-16
1.45154E-16
3.11878E-08
9.64697E-09
0
1.35526E-16
3.41259E-16
2.14273E-16
9.21119E-09
1.18479E-16
4.48665E-16
0
1.18226E-16
1.16218E-16
0
0
4.03868E-08
4.03868E-08
7.10947E-08

0.007077289
0.000605689
0.000636664
0.028169894
0.116979043
0.484475327
0.000657144
0.000752119
0.000930037
0.025437127
0.130504124
0.000882165
0.000632312
0.000780278

0.03968156
0.498908685

1.49217904
2.354864375
1.890572353
2.345452395

2.349108286

0
1.83618E-16
1.15589E-16
4.20143E-08
3.11815E-08
5.47195E-09

0
2.71052E-16
3.41259E-16
1.05478E-07
1.02836E-09
1.18479E-16
1.49555E-16
1.88292E-16
7.85136E-08
8.96198E-08
5.65809E-08
0.006500369
3.33763E-07
0.028265236
0.184686147

Table 12: \Voronoi

Newton-Cotes (VNC) v. Adaptive Simpson’s Rule (A®Nn Monomials with a =
—0.0088412084076052B,= 2.7185563215115%, = 2.8890098164175%9] = 3.44868288240732 angl= 0.0001.

AS Time

| AS Rel. Error

VNC Time | VNC Rel. Error

GORPRWWWNNNNRPPRPPRPPOOOOOO||—]

OFRPONRFPOWNRFRPORMWNPFRPOORMWNE O|[—]

0.001667055
0.000532987
0.000424188
0.000500475
0.001801966
0.007804850
0.000477947
0.000468731
0.000577018
0.000557306
0.004736465
0.000573178
0.000468475
0.000460539
0.000472827
0.000555770
0.000464379
0.000470011
0.118157412
0.117699177
0.203343378

0

0
2.31179E-16
1.45154E-16
3.11878E-08
9.64697E-09

0
1.35526E-16

0
2.14273E-16
9.21119E-09
2.36958E-16
2.99110E-16
1.88292E-16
3.54679E-16
1.16218E-16
1.46700E-16
1.84698E-16
4.03868E-08
4.03868E-08
7.10947E-08

0.005648840
0.001388274
0.001337843
0.022388000
0.082919108
0.432353059
0.001335283
0.001387250
0.001409522
0.031654084
0.124463397
0.001332467
0.001327091
0.001327347
0.036043672
0.432514594
0.974934778
1.876273619
1.116981616
2.882673811
3.297244264

1.45465E-16
3.67237E-16
0
4.90503E-08
3.34052E-08
2.63289E-09
4.29461E-16
0
1.70629E-16
1.24042E-08
6.37093E-09
4.73917E-16
1.49555E-16
5.64876E-16
2.80358E-08
4.00847E-08
8.84301E-08
6.47114E-08
1.10403E-05
1.24821E-07
2.83738E-08
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Table 13: Simpson’s Cubature Rule (SC) v. Adaptive Simpson’s Rule)@8Vionomials witha = —1.62110966800282,
b= —-1.3743206705928% = —3.323937975191% = —1.72003265166653 ancl= 0.0001.

Table 14: Accuracy

SC Time

| SCRel. Error

AS Time

| AS Rel. Error

GORARBRWWWNNNNRPRPRPPRPPRPOOOOOO|—]

OFRPONRPFPOWNRFRPORMWNRPRPOOORMWNE O]

0.016313693
0.005531337
0.006637502
0.025780223
0.005628104
0.025711359
0.005419978
0.005155789
0.009143973
0.027169265
0.024940551
0.005003726
0.005474249
0.004514515
0.009087397
0.004566224
0.006894267
0.012163975
0.005361354
0.006172864
0.005350859

2.80482E-16
7.78505E-16
5.11924E-16
2.19831E-05
0.000980107
0.000504705
1.87274E-16
1.48513E-16
3.05773E-06
0.000164893
0.000247897
4.99029E-16
2.78244E-06
3.36712E-05
0.000268450
1.31798E-07
1.19500E-05
1.11948E-05
4.93102E-07
3.78024E-05
7.47998E-07

0.000848376
0.000447996
0.000467707
0.000461051
0.008406700
0.030613710
0.000468731
0.000481531
0.000441084
0.000472827
0.031728579
0.000488443
0.000503547
0.000525819
0.000467451
0.000488187
0.000463611
0.000596730
0.000466939
0.000483579

0.000449276

2.80482E-16
6.67290E-16
5.11924E-16
2.54077E-16
2.76362E-07
7.71966E-08
1.87274E-16
1.48513E-16
6.83606E-16
1.69643E-16
1.72726E-08
7.48543E-16
3.95743E-16
1.06261E-15
7.91086E-16
0
0
2.01799E-16
3.78813E-07
3.78813E-07
1.87723E-06

only for Midpoint Delaunay triangulation (MDT),r@pezoid Delaunay triangulation (TDT),

Simpson’s cubature (SC), Adaptive Simpson’s (AS), Vororeavbbn-Cotes (VNC) and Monte Carlo (MC) on Monomials
witha=2.51778949114548,= 5.67194769326588,= —2.9841054696519%8, = 5.22175955533465 arel= 0.0001.

MDT Rel. Error | TDT Rel. Error | SC Rel. Error | AS Rel. Error | VNC Rel. Error | MC Rel. Error

GORARWWWNNNNRPPRPRPPRPPOOOOOOO|—

OFRPONRFPOWNRFRPRORRWNREFPOUUORMWNEF O|—

1.37263E-16
1.22684E-16
0.031254337
0.079913262
0.085085066
0.164348054
1.34083E-16
0.000343677
0.030968972
0.046836029
0.087317344
0.004460387
0.002454287
0.041796026
0.052590909
0.013892921
0.005542517
0.055330400
0.020762319
0.016455419
0.022003814

1.37263E-16
1.22684E-16
0.312565299
0.071087959
0.349330409
0.250576017
0
0.001646319
0.071611407
0.097188218
0.247612927
0.012879597
0.019768922
0.391609471
0.075861068
0.024434128
0.016485043
0.135658417
0.083940060
0.021512025
0.087866804

0
1.22684E-16
3.20000E-16
0.000673081
0.000541126
0.005319045
1.34083E-16

0
0.000628227
0.003659738
0.004180156
1.24805E-16
4.02520E-05
0.003020576
0.000576465
0.000445991
0.001896887
0.002939728
0.000124715
0.001381476
0.001089610

1.37263E-16
0
3.20000E-16
0
0.000170947
0.482681292
0
1.19842E-16
1.56293E-16
0
0.439828056
2.49611E-16
1.11550E-16
2.90959E-16
0
1.11416E-16
1.99165E-16
0
1.34399E-10
1.15998E-10
0.009776169

2.74525E-16
1.22684E-16
0
0.288846650
0.832750855
0.929758393
0
1.19842E-16
1.56293E-16
0.552294340
0.910577689
3.74416E-16
3.34651E-16
2.90959E-16
0.764040384
5.39003E-09
2.22670E-08
0.299282761
0.594516070
0.367237377
0.888547317

0
0.005362692
0.001030788
0.000739701
0.005001589
0.003924581
0.001456460
0.002003265
0.001598617
0.007234298
0.011503918
0.001587096
0.002064355
0.006233964
0.014456091
0.001646359
0.002018411
0.005762480
0.004245154
0.005712344
0.004548625
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Table 15: Time only for Midpoint Delaunay triangulation (MDT), Trapaid Delaunay triangulation (TDT), Simpson’s

cubature (SC), Adaptive Simpson’s (AS), Vorono Newtond&sqVNC) and Monte Carlo (MC) on Monomials witgh=

2.51778949114543, = 5.6719476932658%,= —2.9841054696519% = 5.22175955533465 angd= 0.0001.

MDT Time | TDT Time |

SCTime |

AS Time

| VNCTime |

MC Time

OORDWWWNNNNRPPPRPPPOOOOOO|—

OFRPONPFPOWNRFPORRWNRERPROUIRAWNE O|-—

0.264221362
0.010175386
0.212448951
0.069382987
0.108419526
0.076242439
0.005873861
0.112953752
0.168781675
0.094807373
0.106156252
0.089998973
0.189325214
0.172706884
0.129739761
0.087928978
0.160555453
0.162005423
0.178353931
0.115505535

0.159462088

0.048522268
0.009185188
0.038722941
0.323772511]
0.111599014
0.180678132
0.00499195
0.094920268
0.225280823
0.209948624
0.135796660
0.106370010
0.094818125
0.024697353
0.298044512
0.188436391
0.220046699
0.195561824
0.080940248
0.355869727
0.113784976

0.021801254
0.005659591
0.004221398
0.068109400
0.054363361
0.028078824
0.005412554
0.004018392
0.028803296
0.052410613
0.079992545
0.004385236
0.057345731
0.053885158
0.071032123
0.019048514
0.032886456
0.100761618
0.004267989
0.046673454
0.038072452

0.006768572
0.000578810
0.000389372
0.000453883
1.694423275
1.599314592
0.000433404
0.000424956
0.000450556
0.000420092
1.650970269
0.000401660
0.000575738
0.000398588
0.000481275
0.000416508
0.000463099
0.000406780
0.483936032
0.454968130

1.719201267|

0.017867854
0.004228822
0.001326323
6.1294469
6.034388905
5.991035482
0.001324019
0.001363698
0.001321203
6.003799002
5.999080969
0.001311475
0.001439474
0.001289971
5.997509913
3.934356623
5.764459568
5.976562154
6.037025678
5.989358442

6.147717949

0.352805694
0.308191995
0.304616223
0.305803539
0.305586709
0.305959953
0.305286168
0.300387145
0.303793959
0.30607208

0.305938450
0.355044391
0.303675688
0.303935782
0.307859966
0.303384875
0.305458710
0.323290212
0.313836483
0.309507822

0.30707687
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