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Abstract: One of the most popular result in Mathematics is the Banaadftr@ction principle in a complete metric space. Due to
its wide range of applications, many mathematicians gdimeththe Banach contraction principle in different difens. One of the
generalizations is due to Jachymski [Proc.Am. Math. Sot3@),1359-1373], in which he considered a complete mepraces with

a graph structure. Alfraidan [Fixed Point Theory and Apgticns (2015) 2015:93. doi 10.1186/s13663-015-0341-2fg#ized the
work of Jachymski for quasi-contraction mappings in bothrin@nd modular metric spaces with a graph structure. Marduetric
spaces are more general than the usual metric spaces. paghés, we extend Alfraidan’s result to a generalized quastraction
mappings.
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1 Introduction

The abstract definition of a metric space was introduced bghat [L3] in 1906, and was seen as a nonlinear version of a
vector space endowed with a norm. Nakah8][introduced modular function spaces in 1950 and Musietak @rlicz

[16] redefined the modular function space in such away that, aufaotlinction space is seen as a vector space endowed
with a modular function. It was proved irl§], that this space is a complete normed linear space with reaited
Luxemburg norm. Therefore, it is natural to consider a m@dr version of function modular spaces. Thus, the modular
metric spaces considered i8] [are nonlinear versions of modular function spaces and anergeneral than metric
spaces.

Fixed point theorems for monotone single valued mappings netric space endowed with partial orderings are first
considered by Ran and Reuringg] in 2004, and have been widely investigated. The theorerGhi§ a hybrid of the
two independent fundamental theorems: Banach contragtioniple [5] and Tarski’s fixed point theoren2p].

A pointx € X is called a fixed point of a sefmappingT on X if x = T(x), for single valued mappings (amxde T (x) for
set-valued mappings). The fixed point set of a mapfingll be denoted byFix(T).

In 1922, BanachY], proved the existence of a unique fixed point for contractself-mappings in a complete metric
space. Banach contraction principlg |s a simple and powerful result with a wide range of applaad, including
iterative methods for solving linear and nonlinear diffaral, integral, and difference equations. Due to its aggtlons

in mathematics and other related disciplines, Banach aotidn principle has been generalized and extended in many
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directions. One of the most influenced generalization ofdgais theorem is traced to Nadldr7]. In 1969, Nadler 17]
extended Banach’s contraction theorem to multivalued restibn mappings. A number of extensions and
generalizations of Nadler’'s theorem were obtained by diffeauthors. In 1974 iri¢ [11], extended Nadler’'s theorem
to quasi contraction mappings. Independent of Banachidtyéarski and Knaster2] in 1955, proved the existence of
fixed points of single valued self-mappings in partially emeld sets. Ran and Reuring2(], proved the existence of
fixed points of single valued mappings in partially orderegtnic space. Jachymski{], investigated a new approach in
metric fixed point theory by replacing an order structurehveitgraph structure on metric spaces. In this way, the results
proved in ordered metric spaces are generalized (see fail fibf] and the reference therein). Beg et 4. [extended
Jachymski’'s theorem to multivalued mappings. Chifu anduRet [7], extended Jachymiski's theorem to a generalized
contraction mappings and iB]} to Ciric d—contraction mappings. Chistyako%({] proved the existence of fixed point
theorems forw—contraction mappings in the setting of modular metric spagdadoo and Khamsil] extended
Chistyakov’'s fixed point theorem to a multivalued mappinGso et al. R3], to quasi contraction mappings and
Rahimpoor et al19] to generalizedo—quasi contractions in modular metric spaces. Alfraiddmjade an extension of
Jachymski's result to a more general class of spaces, mohg#ic spaces. In3, Alfraidan extended th&s — w
contraction mappings he considered ) fo a more general class of mappings, Cifuasi contraction mappings in
modular metric spaces.

It is our purpose in this paper to extend the work of Alfraid&h to a more general class afeneralized quasi
contractionmappings.

2 Preliminaries

Throughout this pape#Z* andN will denote the set of positive integers and nonnegativegets, respectively. The
terminology of graph theory instead of partial orderingegia wider picture and yields interesting generalizatiothef
Banach contraction principle. We give the basic notatiangraph theory which will be used throughout (the detail will
be found in [L2]). A directed graph(digraph) is a pai& = (V,E) whereV is a nonempty set called vertices and
E = {(u,v) :u,ve V}is set of order pairs called edges.

Let (X,d) be a metric space amil be the diagonal oX x X. Let G be a digraph such that the 3&(G) of its vertices
coincide withX andA C E(G). Assume thaG has no parallel Edges. We will suppose tBatan be identified with the
pair (V(G),E(G)). If x andy are vertices of3, then a path irG from x to y of lengthk € N is a finite sequencéx, }"=§
of vertices such thaty = x, xx =y and(xi_1,%) € E(G), fori =1,2,3,...,k.

By G~! we denote the conversion &, i.e., the graph obtained fro® by reversing the direction of edges. Thus, we
have E(G™1) = {(y,X)|(x,y) € E(G)}. A digraph is called an oriented graph, if wheneverv) € E(G), then
(v,u) ¢ E(G). Let us denote b, the undirected graph obtained fra@by ignoring the direction of edges. Actually it is
more convenient for us to tre& as a digraph for which the set of its edges is symmetric. Uttlier convention,
E(G) = E(G)UE(G™1). We say thaG is connected if there is a path between any two vertices anshyé is weakly
connected ifG is connected. If5 is such thaE(G) is symmetric and is a vertex inG, then the subgrapBy consisting

of all edges and vertices which are contained in some patimiieg atx is called the component @ containingx. In
this case/ (Gx) = [X|g, where[X|g is the equivalence class of the following relatRdefined orV (G) by the ruleyyRzif
there is a (directed) path @ fromy to z. Clearly Gy is connected.

Throughout this sectionX denotes a metric spad¢X,d) and byG we mean the grapls with vertex X and edge;
E(G) C X x X.
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Definition 1. A mapping T: X — X is called a G-monotone if T preserves edges ofi@.,
vxy e X((xy) € E(G) = (Tx Ty) € E(G)).

Definition 2. A mapping T: X — X is called a Banach Gcontraction or simply a G-contraction if T preserves edges
of G, i.e.,
vxy e X((xy) € E(G) = (TxTy) € E(G))

and T decreases weight of edges of G in the following way:
there existar € [0,1)Vx,y € X, (X,y) € E(G) = d(T(x), T(y)) < ad(x,y).

Definition 3. [11] Let C be a nonempty subset of a metric spacé Xhapping T: C — C is called quasi contraction if
there exists ko 1 such that for any )/ € C, we have

d(T(x),T(y)) < kmaxd(x,y),d(x,T(x)),d(y, T(y)),d(x, T(y)),d(T(x),y)}.

Definition 4. [3] Let C be a nonempty subset of Xmapping T: C — C is called G-monotone quasi contraction if T
is G—monotone and there existskl such that for any 3 € C, (x,y) € E(G), we have

d(T(x),T(y)) < kmaxd(x,y),d(x, T(x)),d(y, T(y)),d(x, T(y)),d(T(x),y)}.
Definition 5. A modular on a real linear space X is a functiomal X — [0, «], satisfying the conditions:

() p(0)=0.

(i) Ifxe X andp(ax)=0for a > 0then x=0.

(i) p(—x) = p(x), forall x € X.

(iv) p(ax+By) <p(x)+p(y) forall a,B > 0witha+  =1and xy € X. If the inequality
(V) p(ax+By) < ap(x)+ Bp(y) holds in(iv), the modularp is called convex.

Due to the limitation of linear modular spaces with addiéibalgebraic structures to solve certain problems from set
valued analysis, such as supper position operato,ithe modular theory on an arbitrary set was proposed.
Let X be a nonempty set. Throughout, for a function (0, ) x X x X — [0, ], we will write wy (X,y) = w(A,X,y) for
all A > 0 andx,y € X, so that
w={w }r>oWith wy : X x X — [0, ].

Definition 6. [8] A functionw : (0,00) x X x X — [0, 0] is said to be a modular metric on X if it satisfies the following
axioms:

(i) Givenxye X, x=y ifand only ifw, (x,y) =0, forall A > 0.

(i) wy(xy)=wy(y,x),forall A >0and xy € X.
(i) wrp(Xy) <w (x,2+wyu(zy), forall A,u >0,and xy,ze X. If instead of(i) we have only the condition:
(iv) wy(x,x) =0, forall A >0, xe X, thenw is said to be pseudomodular (metric) on X

A modular metricw on X is said to be regular(or strict) if the following weaker viersof (i) is satisfied.

x=yif and onlyifaw, (x,y) =0, for somei > 0.
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w is said to be convex if for alk, u > 0 andx,y,z € X, it satisfies the inequality:

A
Wy < mw,\ (x,2) + ﬁwu(z,y).

RemarkFor a pseudomodular metriegon a seiX, and anyx,y € X, the functionA — w, (x,y) is nonincreasing ofD, ),
and so the limit from the righty, | o(X,y) and the limit from the lefto, _o(X,y) exists in[0,«] and satisfy the inequalities

W 0% Y) <@ (XY) < Wy _o(X,Y).

Let w be a (pseudo) modular metric on a 3etThe binary relation on X defined forx,y € X by x N y if and only
if im , . wy (X,y) = O is an equivalence relation o1 Let X/ < be the quotient set of under? . Givenx € X, the
equivalence class ofin X/ % is given by:

Xo(X) =X={ye X:y2x}.

We are interested in the equivalence clas$g&) in X/ 2 According to Chistyakov§], we fix an elemenikg € X
arbitrarily and define the modular set:

Xw = X0 = Xw(Xo)-

Definition 7. [8] Letw be a pseudomodular on.Xix xg € X. The two sets:

Xop = X (X0) = {Xx € X : w) (X, X0) — 0asA — oo}
and
Xo = Xg5(Xo) = {x€ X :3A = A(x) > 0such thatw, (X,Xg) < oo},
are said to be Modular spaces.
Here we see thaX,, C X}, and in [8], a counter example was given to show the inclusion is proper
Example 1.Consider a metric spad,d) and define a functional

d(xy)

(A):(0,00)XXXX*)[0,00) by wA(va): A )

thenw is a convex modular oX. For arbitrary fixedkg € X, we see that lig_, w) (X, %) = 0 for eachx € X, showing

Theorem 1.[8] If wis a metric modular on Xthen the modular setXis a metric space with metric given by
dw(X,y) =inf{A >0:w(x,y) <A}, foranyxye Xey.

RemarkLet w be a convex modular on a sét Givenx,y € X,

(i) @ (%Yy) =Aw (xY), is a modular metric oiX.
(i) the functionsA — wj (x,y) andA — @, (X,y) are nonincreasing oft, «).

If w is convex modular oiX then the two modular spaces coincide, iXg,,= X/, and this common set can be endowed
with the metricd}, given by

dz,(x,y) =inf{A >0:w (x,y) <1} foranyxy € Xe.
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Theorem 2.[8] Letw be a convex modular on a set Xhen given ¥y € X,, for the metrics ¢, and d,,, we have

(a) conditions ¢, < 1 and d, < 1 are equivalent and if at least one of them holds, then

diy (X,y) < do(X,y) < V/d(X,Y).

(b) conditions ¢, > 1 and d;, > 1 are equivalent if at least one of them holds, then

\% dZ)(Xv y) S dw(xv y) S dZ)(Xa y)

Let w be a modular metric on a linear spaXeand satisfies the following two conditions:

(i) o) (Ux,0) = wy/u(x,0) forall A, i >0, andx € X.
(i) wy (X+zy+2) =w(xy)forallx,y,ze X, and if we set:

p(x) = wi(x,0) andw, (x,y) = wi(5¥,0) = p(5¥), forall A > 0 andx,y € X, then

(i) Xo =Xy is alinear subspace of and the functional:
[X|p = dw(x,0) x € X is an F—norm on .
(i) If wis convexX; =X =X, is a linear subspace &f and the functional:
X5 = dgy(%,0), X € X, is @anorm on %.

RemarkEvery metric spacéX,d) is a modular metric space. Indeed, if we define a functiangl0, o) x X x X — [0, c0)

by wy (x,y) = W, then, we see thab is a convex modular oX. So,d(x,y) = Awy (X,y) = @, (x,y) is a modular on

X. On the other hand, a modular metdicon a sei is a metric ifw assumes only finite values and is independent of the
parameten .

Definition 8.[1] Let (X, w) be a modular metric space.

(1) The sequencexn }nen In Xy, is said to bew—convergent to x X
if and only iflimp_. 1 (Xn, X) = 0. x will be called thew—limit of {x,}.
(2) The sequencfxn}nen in Xy, is said to bew—Cauchy if

n,mm w1 (Xn, Xm) = 0.
(3) A subset M of ¥ is said to bew—closed, if theww—limit of w—convergent sequence of M always belongs to M
(4) A subset M of ¥ is said to bew—complete, if anyw—Cauchy sequence in M —convergent sequence and its
w—limitisin M.
(5) A subset M of ¥ is said to becwo—bounded if we have

Ow(M) =suplwi(X,y) : X,y € M} < oo,

(6) A subset M of ¥ is said to bew—compact if for any sequenden }new In M, there exists a subsequenog, }nex of
{Xn} and xe M such that (x,,X) — 0as n— co.
(7) wis said to satisfy the Fatou property if and only if for any sence{X, }nen in X, w—convergent to xwe have

@ (xy) < liminf ax(xa,y), foranyye Xo.
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In general, if limh_e ), (Xn, X) = O for someA > 0, then we may not have lim,« w, (X, x) =0 forallA > 0.

Definition 9. [1] Let (X,w) be a modular metric spacew is said to satisfy theA,—condition if and only if
liM e ) (Xn,X) = O for someA > 0 implies thatimp . ), (X1, X) = 0for all A > 0.

Theorem 3.[8] Letw be a modular on a set XGiven a sequenc, neny C X and xe X,, we have
dew(Xn,X) = 0as n— e if and only if wy (Xn,X) — 0as n— oo, forall A > 0.

Corollary 1. Letw be a modular on a set Xrhen,co—convergence andg-convergence are equivalent if and only if the
modularw satisfies the\,—condition.

Theorem 4.[8] Letw be a convex modular on a set ®iven a sequence, hneny € X, and xe X7, we have
d¥,(Xh,X) — 0as n— oo if and only if wy (X,,X) — 0as n— oo, forall A > 0.

Note that, if the modulamw is convex, ther, = d, which implies
liMp_e ds(Xn,X) = 0if and only if limp_e0 ) (Xn,X) =0, YA > 0 and for any sequenden }nen € Xu, andx € Xe.

Definition 10. Let f: X — (—o0,0) be a function on a topological space Xhen f is upper semi-continuous at the point
x € X if and only if

Xn — X = limsupf (X)) < f(X).
n—oo

Let @ be the class of all function : [0, ) — [0,) such that:

(i) ¢ is nondecreasing and upper semi-continuous.
(i) ¢(t) <t, Vt > 0. In the literature® is called the class of comparison functions. If in additiprsatisfies the
condition:
(iii) T She19@"(t) <, then® is called the class of strong comparison functions .

Lemma 1.[2]] If ¢ € @, then¢(0) =0, andlim,_,. ¢"(t) = O for each t> 0, where¢" is the n-times composition of
the functiong with itself.

As a consequence of propefiy), we can see that the sequer@é'(t)} is a nonincreasing sequence, for anyO0.

3 Generalized quasi contractions in metric spaces with a ggzh

Next, we give the definition o6—monotone generalized quasi contraction mappings in thiegetf metric spaces.
Definition 11. Let C be a nonempty subset of a metric spac& XC — C is called:

(1) G—monotone if T is edge preserving. i.€L,(x), T(y)) € E(G), wheneve(x,y) € E(G), for any xy € C.
(2) G—monotone generalized quasi contraction if T is@onotone and there existafac @ such that for any y € C
with (x,y) € E(G), we have

d(T(x), T(y)) <max¢(d(x,y)),$(d(x, T (x))), ¢ (d(y, T(¥))), ¢ (d(x,T(y))),$(d(T(x),y))}.
Forx € C, we define the orbiO(x) = {x, T(x), T?(x),--- } and its diameter by (x) = sup{d(T"(x), T™(x)) : n,m & N}.
We have the following technical lemma to prove one of our masults.

Lemma 2. Let(X,d) be a metric space and G be a reflexive and transitive digrapK.dret C be a nonempty subset of
X and T: C — C be a G-monotone generalized quasi contraction mapping. Letxbe such thatx, T (x)) € E(G) and
0(x) < oo, then for any re N, we have

5(T"(x)) < ¢"((x))
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where¢ € @ is the comparison function associated with the i@onotone generalized quasi contraction definition of T.
Moreover, we have( @ "(x), T™™(x)) < ¢"(d(x)) for eachnme N.

Proof.SinceT is G—monotone andx, T (x)) € E(G), we haveT"(x), T"1(x)) € E(G) for eachn € N. By the transitivity
of G, for eachn € N, we also have

(T"(x), T""™(x)) € E(G) for anyme Z*. (1)
As G is reflexive,(x,x) € E(G) and using th&s—monotonicity ofT, we get
(T"(x), T"(x)) € E(G) foranyne N 2
and hencel) holds true fom = 0. Thus, we obtain
(T"(x), T""™(x)) € E(G) for anyn,me N. (3)
First, we show that
3(T"(x)) < ¢"(8(x)) (4)

for eachn € N. Forn = 0, we haved(x) = ¢°(5(x)) and equality holds in this case. Foe= 1, from (3) and using the
monotonicity ofg, we have

d(T (%), TH™(x)) < max{¢ (d(x, T™(x))), $(d(x,T(x))),d (d(T(x), T*M(x))), $(d(x, TM(x))), (d(T (), T"(x)))}
< ¢(3(x)), (5)

for eachm € N. This shows that
3(T(x)) < 9(8(x)), (6)

and from 6) and the monotonicity o, we get
$(3(T(x))) < $*(3(x)).- (7

In addition, inequalities®), (7) and the monotonicity op, give

5(T"(x)) < ¢"((x)). (8)

(© 2017 BISKA Bilisim Technology


www.ntmsci.com/jacm

(_/
27 BISKA T W Hunde, M. G. Sangago and H. Zegeye: On Monotone Gereda@uasi contraction mappings...

On the other hand, by using)(and the definition 0®, we obtain
d(T(x), T™M(x)) = d(T"(0), TY(T™) (%)) < 8(T"(x)) (9)

for eachn,me N. From @) and @), we conclude thad(T"(x), T"™™(x)) < ¢"(d(x)) for eachn,me N.

Theorem 5.Let(X,d) be a complete metric space and G be a reflexive, transitivapligdefined on X such that the triple
(X,d,G) has Property(A), for any sequencé)nen in X, if Xxn = x and(Xn, Xn+1) € E(G) for n € N, then(x,, x) € E(G)

for each ne N. Let C be a nonempty closed subset of X andCT— C be a G-monotone generalized quasi contraction
mapping withg € @, the associated comparison function. Foe X with (x, T (x)) € E(G) and d(x) < c, we have the
following:

(a) There exists & Fix(T) such that{ T"(x)} converges to pMoreover, we have
(x,p) € E(G) and dT"(x), p) < ¢"(d(x)), for each ne N.

(b) If uis any fixed point of T such thét,u) € E(G), then u= p.

Proof. First we show(a). By Lemma2, we see tha{T"(x)} is a Cauchy sequence @ SinceX is a complete metric
space an€ is closed subset of, there existp € C such thag T"(x)} converges t@. From ©), we have

d(T"(), T™™M(x)) < ¢"(8(x)) (10)

for anyn,m e N. Thus, from @0) (by lettingm — ), we get thad(T"(x), p) < ¢"(d(x)), for n € N. Moreover, since
T is G—monotone andx,T(x)) € E(G), we have(T"(x), T™(x)) € E(G) for eachn € N and using PropertyA),
we conclude thatT"(x), p) € E(G) for eachn € N. In particular,(x, p) € E(G). It remains to show thap is a fixed
point of T. From (T"(x), p) € E(G) the G—monotonicity of T, we have(T"(x),T(p)) € E(G) for eachn € N. As
(T"(x), T™1(x)) € E(G) andG is transitive, we obtain that

(T"(x),T(p)) € E(G) for eachn € N. (11)

Thus, using{1) and the hypothesis th@itis aG—monotone generalized quasi contraction, we have a congpetiaction
¢ satisfying

d(T"(x),T(p)) < max{$(d(T"*(x),p)), (d(T"*(x), T"(x))), $(d(T" (%), T(p))), (A(T"(X), p)), #(d(p, T (p)))}
(12)

for eachn € Z*. Letting n — o in (12) and using the upper semi-continuity ¢f we getd(p,T(p)) < ¢(d(p,T(p))
which implies thad(p, T(p)) = 0 and hence = T(p). Next we show(b). Let u € C be any fixed point off such that
(x,u) € E(G). Then for eactn € N, asT is G—monotone, we havel"(x),u) € E(G). Therefore,

d(T"(x),u) < {@(d(T" (), u)), o (d(T"*(x), T"())), $(d(T"(x),u)), $(d(T"(x),u))} for eachne Z*. (13)

max{¢ (d(T"*(x), ), ¢ (d(T"1(x), T"(x))), § (d(T"(x), u))} = $(d(T"(x), u)) (14)

for somen € Z*, then from (3), we have

d(T"(x),u)) < @ (d(T"(x),u)).
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Thus, by propertyii) of ¢, we get
d(T"(x),u) = 0 which impliesT"(x) = u.
Hence,
THM(x) = T™(T"(x)) = T™(u) = u for eachm e N,
which shows that the sequentg(x) — u asn — oo, By the uniqueness of the limit we conclude that p. Otherwise,
max{¢ (d(T"*(x),u)),(d(T"(x), T"(x))),  (A(T"(x),u))} # $(d(T"(x),u)), for all neZ*.

Again, from (L3) we must have

d(T"(x), ) < max @ (d(T™1(x), 1)), (AT (%), T"(0))} < AT (%), 0) + (AT (x), T"(x)))  (15)

forallne Z*.
If we take limit superior of {5), and use the upper-semi continuitygfwe obtain

d(p,u) < limsupg (d(T"*(x), u)) +limsupg (d(T"(x), T"*(x))) < ¢ (d(p,u).

n—co n—o0

Which gives that

d(p,u) < ¢(d(p,u)). (16)
Using propertyii) of ¢ and (L6), we conclude that

d(u,p) =0 and hence = p.

Remarklf we take¢ (t) = kt, wherek € [0, 1), then Theorenb is reduced to the result of Alfuraidar8]| Theorem 3.1].

From Remark30, we observe that the class@f-monotone generalized quasi contraction mappings corttaéndass of
G— monotone quasi contraction mappings. The following exanilistrates that the inclusion is proper.

Example 2. Let X = R with metric d, the usual absolute value metric, i.ed(x,y) = [x—y|. We see thatX,d) is a
complete metric space. LEt= [0,) C R which is closed. Define a map

X
T:C=oChbyT(x)=——.
yT() 1+X
Consider a grapl on X with E(G) = X x X, thenG is connected, reflexive and transitive digraph. We are gtirsinow
thatT is aG—monotone generalized quasi contraction mapping, but @st@aonotone quasi contraction mapping. Now,
consider a function

¢ : [0,00) — [0,0) givenby¢(t) = ot
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We observe thap is a comparison function. Lety € C. Without loss of generality we assume thak y (asd is
symmetric, the same result follows for> y). Then we have

y—X y-X _ __y=X _ _y-X

AT T = gy ~ Trxry oy = Trytx - Try—x

p(y—x) =o(d(xy) < p(M(xy)),

M(x,y) = maxd(x,y),d(x, T (x)),d(y, T(y)),d(x, T (y)),d(T (x),y)}.
Therefore,
d(T(x),T(y)) < ¢(M(x,y)), (17)

which shows thal is aG—monotone generalized quasi contraction mapping. Next we $hatT is not aG—monotone
quasi contraction mapping. Indeed,

A T() = x— > = X (18)
’ 7 14x 14X
y Y
d(y, T =y—— =" 19
Y T(y) =y Ty 1y (19)
y [X—y+Xy|  y—X+Xy y—X+Xxy
d(x, T =|x— = < < 20
KT =K-T5 = Ty S 1oy S Tix (20)
and
e X Y=X+tXy
dT.y) =ly— 5= 1 (21)
Now, we claim that
Y- X4YX
MOxy) = > (22)
Using the fact that the function
X
=17%
is strictly increasing function and the assumption thaty, we have
2 2
X X y Y (23)

=X <X .
1+X 1+x— 14y~ 14y

In addition, ify — x> 0, then we have

Y = X YX= yXt Y2+ YK > yX— yxeh Yy
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which implies that

(Y=X)(1+Yy) +yx(1+y) > YA (1+X),

and hence
y—X+yx_ ¥
> .
1+x ~ 14y (24)
On the other hand
Y—X+YX _y—X+yX
< < .
dXT) < 5 < P (25)
Again, as—x? < 0, we have
y— X+ yx—x% < y— X+ Xy,
which implies that
(Y=X)(14X) <y—x+yx
and hence
Y—X+YyX
—x<I—2
y=x= 1+X (26)
From (20)-(26), we conclude that
_ Y XHYX
M(X7y) - 1+X - d(XaTy) (27)
Now, if there is a constant numblee [0, 1) such that for eack,y € C
y—X (Y—x+yX)
d(T(x),T =———— <KkM(X,y) = k-——"> 28
(T00.TO) = gy < MOy =k (28)
then we must have
yX
— < —).
1+y—k(1+y—x) (29)

Lettingy — O (and hence& — 0) in (29), we get 1< k, which is a contradiction. Henc#, is not aG— monotone quasi
contraction mapping. Actually, has a unique fixed point and for eachk C,

X

T"(x) = <=
®) 1+nx— nx

=—-—0

Sl

asn — c. Here 0 is a unique fixed pint af, where theG—monotone quasi contraction mapping could not be applied to
guarantee the existence of such fixed points.
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4 Generalized quasi contractions in modular metric spaces ith a graph

Next, we are going to discuss the validity of the previousiitesn the setting of modular metric spaces.

Definition 12. Let (X, w) be a modular metric space and G be a reflexive, transitiveagigrdefined on XLet C be
a nonempty subset of. XA mapping T: C — C is said to be: G-monotone generalized—quasi contraction if T is
G—monotone and there exispsc @ such that for any %/ € C, and(x,y) € E(G), we have

@1 (T(x), T(y)) <max{¢(awn(xy)), ¢ (wr(xT(x))),¢(wn(y;T¥))), ¢ (wn(xT(¥)); ¢(wr(T(x),y))}

Let C be a nonempty subset &f and letT : C — C be any self mapping. For anyc C we define, the orbiO(x) =
{x, T(x),T2(x),...} and its diameter by

0w (X) = sup{aw(T"(x), T"(x)) : n,me N}.

Throughout, we assume thatis regular and satisfy the Fatou property.

Lemma 3.Let (X, w) be a modular metric space and G be a reflexive and transitigeagh on X . Let C be a nonempty
subset of X and TC — C be a G-monotone generalizad—quasi contraction mapping. For& C with (x, T(x)) € E(G)
anddy(X) < o, we haved,(T"(x)) < ¢"(dw(x)) for each ne N, where¢ is the comparison function associated with the
G—monotone generalized—quasi contraction definition of TMoreover, we have

W (T"(X), T™™M(x)) < §"(dw(x)) for any nme N.
Proof. SinceT is G—monotone andx, T (X)) € E(G), we have
(T"(x), T™1(x)) € E(G) for anyn € N.
By the transitivity of the grapks, for eachn € N, we have
(T"(x), T""™M(x)) € E(G) foranyme Z™. (30)
Again asG is reflexive,(x,x) € E(G) and using the monotonocity &, we obtain
(T"(x),T"(x)) € E(G) for eachn € N. (31)
Thus, from 80) and @1), we infer that
(T"(x), T™™(x)) € E(G) for eachn,m€ N. (32)

SinceT is aG—monotone generalized—quasi contraction, and using3), there is a comparison functigne @ such
that

@ (T"(x), T™™M(x)) < max{$ (cr(T"H(x), T ™ (x))), ¢ (wr(T"H(x), T"(X))),
¢ (con (T2, T M(x))), @ (n (TN H(x), T M(x)),
¢ (n (T, T M)} (33)
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foranyn € Z* and anym e N. We need to show that
3u(T"(X)) < ¢"(dw(x)) for eachn € N. (34)
To see this, ih = 0, the result is obvious; in this case equality holds. Now, iftaleen = 1, in (33), we get

@ (T (), THM(x)) < max{§ (i (x, T(x))), § (w1 (X, T (x))), $(n(T™(x), TH™M(x))),
¢ (cn (6 THM(x))), ¢ (@n(T(¥), T"(x)))}
< $(3u(x)) (35)

foranyme N. Thus
@i (T(x), THM(x)) < ¢(3w(X)) (36)

foreachme N.
By the definition ofd and 36), we obtain

80(T (X)) < $(8u(X))- (37)
Using the monotonicity of and @7), we obtain
$(3(T (X)) < $2(30(x))- (38)
Using 37) and 38), we get
3e(T?(%)) = Bu(T(T(%)) < $(Bu(T (X)) < $(8u()).- (39)
Repeated use of the monotonicitygpfind @7), gives
3(T"(X)) = Su(T(T" (X)) < ¢ (3u(T" (%))
1< 9"(B0()). (40)
On the other hand, fron8@) and using the definition a¥,, we obtain
@ (T"(), T™M()) = @i (T"(x), T™(T"(x))) < 8u(T"()) (41)
for eachn,m e N. Hence, from 40) and @1), we get that
Wi (T"(3), T™M(X)) < §"(3w(X))

for eachn,me N.

Lemma 4. Let (X, w) be a modular metric space and let C be a nonemsptycomplete subset of Xet T:C — C be a
G—monotone generalized—quasi contraction mapping andxC be such thad,(x) < . Then {T"(x)} w—converges
to a point ue C. Moreover, one has

wy (T"(x),u) < ¢" (3 (x))
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foralln € N.

Proof. By Lemma3, {T"(x)} is w—Cauchy sequence i@. SinceC is w—complete, then there existse C such that
{T"(X)} w—converges ta. Again, from @0), we have

wy(T(x), T"M(x)) < " (3w (X)) (42)
for n,me N. As w satisfies the Fatou property, letting— o in (42) to obtain
W (T"(x),u) < ¢"(dw(X), for eachn € N. (43)
Theorem 6.Let (X, w) be a modular metric space and let G be a reflexive transitigeagih defined on X such that the
triple (X, w,G) have Property (B):
for any sequencéx,}ner in X, if Xn =3 x and (Xn, Xn+1) € E(G) for n € N, then(x,,x) € E(G) for each ne N. Let C be a
nonemptyw—complete subset of X and: T — C be a G-monotone generalized—quasi contraction mapping with the

associated comparison functigne @, the strong comparison function. ForexC with (x, Tx) € E(G) and d,(X) < oo,
we have the following:

(a) The sequencgT"(x)} w—converges to some pointuin C
Moreover, we havéx,u) € E(G) and w; (T"(x),u) < ¢"(3,(X))
for each ne N. If in addition, s (u, T (u)) < 0 and (X, T (U)) < oo,
then u is a fixed point of T

(b) If u* is any fixed point of T in C such thét,u*) € E(G) and
w1 (T"(x),u*) < o for any ne N, then u= u*.

Proof. First we prove (a). By Lemmé, the sequencgT"(x)} is w—Cauchy inC. SinceC is w—complete, there isac C
such thaff"(x) -2 uasn — . From (40), we have

@y (T(x), T"M(x)) < ¢" (3w (X)) (44)
for eachm € N, and by assumptiow satisfies the Fatou property, we get (by letting- o) in (44)
W (T"(x),u) < liminf w (T"(X), T™M(x)) < ¢"(dw(x)) for anyn e N.

From property(B), we have(T"(x),u) € E(G), for n € N. In particular(x,u) € E(G). SinceT is G—monotone, we have
(T(x),T(u)) € E(G) and hence

@y (T(x), T (u)) < max{¢(wi(xu)),¢(wr(x,T(x))), ¢ (wr(u,T(u)),d(wr(x T(u)),d(wr(T(x),u))}. (45)
Sincew satisfies the Fatou property, and using Lenfinae have
wy (x,u) < liminf oy (X, T™(X) < 8w(X), @1 (X T (X)) < Sw(X),
and
(T (), u) <liminf e (T (x), T™(x)) < 8u(T (X)) < ¢(Sw(X))-
Substituting these values id%), we obtain

@ (T(x),T(u)) < max{g(du(x)), ¢ (wr(u, T(u))), ¢ (r(x T (W), d%(3w(X)}- (46)
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SinceT is aG—monotone andT"(x),u) € E(G), for eachn € N, we have that
(T™(x), T (u)) € E(G).
As (x,T(x)) € E(G) andT is aG—monotone, we also have
(T"(), T"(x)) € E(G)
for eachn € N, and using the transitivity property &, we get
(T"(x),T(u)) € E(G).

Now, we assume that

Then, for eacn € N, we have

@ (TM(), T (1) = @ (T"(T (x), T (u))
< max{§"(8u(T (%)), ¢ (i (u, T (W), *(wr(u, (T(W)))),
0" (@ (U, T(u), ¢ (e (T (%), T (W),
9" (3u(T(¥)))}-

From (@46) and the monotonicity op, we get

9" (n(T(x), T(u))) < max{™ (3w (x)), o™ H(wr(u, T(u)), " (i (x, T (W), $™2(8w(¥))}-

Combining 60) and @9), we obtain

@ (TMH(x), T (u)) < max{ @™ (8u(x)), 9" 2(8w(¥)), ¢ (wr(u, T (1)), $(wr(u, (T (1)),
9" (U, T (), 0™ (@i (x, T (u))}.

Hence, by induction we conclude that

@ (T"(x), T (1)) < max{$"(Gu(x)), "™ (8u(X)), ¢ (wr(u, T (), §*(cn(u,T(u))),
T ,¢n((;.)_|_(U,T(U))), ¢n(a}l(XaT(u))}

for eachn € N. Since¢"(t) is a nonincreasing sequence for any 0 andcw (u, T (u)) < oo, we have that

¢" (e (U, T(W))) < (oo (u, T(u)))

(47)

(48)

(49)

(50)

(51)
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foreachne Z+.
Thus, from 49) and 61), we have

@(T"(x), T(u)) < max{9"(3w(x)), 8" (du(x)), ¢ (cn (u,T(u))),
(

< 9"(Bu(X) + " H(30(x)) + ¢ "(an(x, (cr(u, T(w)))- (52)

Thus, taking limit superior of§2), gives

lim supeoy (T"(x), T (u)) < limsup(9"(Su(x)) + §™(80(X) + ¢"(wr (X T (u)) + ¢ (con(u, T (u)))

< limsup(¢"™(8w(x)) + limsup(¢™ 1 (8w(x)) + limsupg " (wr (X, T (u))) + ¢ (cwr(u, T (u))
=¢(wn(u,T(u)).

Whence, using the Fatou property, we obtain

w (U, T(u)) < liminf ey (T"(x), T(u)) < limsupwy (T"(X),T(u)) < ¢ (e (u, T(u)).

n—sco N—sco

Sincews (U, T(u)) < oo, and using propertyii ) of ¢, we must haveu, (u, T (u)) = 0. Sincew is regular, we conclude that
u=T(u). Next we prove (b). Let* be any fixed point ol . Suppose thaix,u*) € E(G), anda (T"(x),u*) < o for any
n € N. By induction, and using th&—monotonicty ofT, we have

(T"(x),u*) € E(G) for eachn € N.

By hypothesis, there is@ € @, strong comparison function, such that
@ (T, u*) < max{¢ (wn(T"(x),u")), ¢ (@ (T (%), T"(x))), ¢ (r(T"(x),u*))}
for eachn € Z*. If
max{ ¢ (ey(T™1(x),u"), @ (n (T (%), T"(x))), @ (wr (T(x),u"))} = ¢ (r(T"(x),u"))
for somenc Z*, then
@ (T(x),u") < ¢ (r(T"(x),u")).
Using property ofp, once again, we get
w (T"(x),u*) = 0.
Thus, agw is regular, we hav@"(x) = u* which implies thaff"(x) - u* asn — . Thus,

w

W (u,u*) < (U, T"(X)) + e (T"(x),u*) — 0
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ash — oo and the regularity of ofv providesu = u*.
Now, suppose that

max{ ¢ (ey(T™1(x),u"), @ (r (T (%), T"(X)), ¢ (wr(T"(X), 1))} # $ (wr(T"(X),u)),

for eachn € Z*. Then,

@ (T"(x),u") < max{ (wr(T"*(x),u")), @ (wr(T"(x), T"(x)))}
< max{¢ (cr (T 1(x),u")), $"(8u(X)} (53)
< max{@y(T"(x),u")), §"(3w(X))}
< @ (TMHX),u")) + ¢"(Bw(x)

for eachn € Z*. Similarly, we have
@ (T H(x),u*) < @y (TM2(x),u)) + @™ H(du(X)).

Following the same procedure, we obtain

and

(T (x),u") < max¢(wi(x,u”)), ¢ (wn(x T (X))}
<maxaw(x,u”)), ¢ (wi(dw(x)))}
<@ (xu)) + ¢ (@ (dw))-

So, we obtain
n
w (T Z )+ (X u). (54)
Thus,

limsupoy (T" Zdﬂ (Ow(X)) + wr (x,u*) <

n—soo

as¢$ was assumed to be a strong comparison function.
Now, if we set

y(u*) := limsupen (T"(x),u*),

n—co

then we have/(u*) < «. Then, from 63), we get

@ (T"(X),u") < max{$"(8w(x)), ¢ (wr(T"*(x),u"))} (55)
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and taking limit superior a: — o in (55), we obtain, y(u*) < ¢(y(u*)) which implies thaty(u*) = 0. i.e.,
limsup,_,. w1 (T"(x),u*) = 0. Therefore, applying Fatou property once again, we get

o (u,u*) < liminf e (T"(x),u*) < limsupen (T"(x),u*) =0,

n—o0 n—oo
and hence since is regular, we obtain = u*.

Remarklf we assume thafu,u*) € E(G) for any fixed pointu* in C and e (u, u*) < oo, then(T (u), T (u*)) € E(G) and
w1 (u,u*) = @y (T (u), T(u*)) < ¢(ewr(u,u*)). This clearly shows that = u*.

RemarkIf we take ¢ (t) = kt, wherek € [0,1), then Theorent is reduced to the result of Alfuraidar8][Theorem 4.1]
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