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Abstract: This paper presents two methods for obtaining the solutiotise nonlinear Korteweg-de Vries—Burgers (KdVB) equatio
The first is the method of lines (MOL). The second method isrAdm decomposition method (ADM). The numerical resultshef t
MOL are compared with the analytical results of the ADM. Id@rto show the reliability of the considered methods we fltavepared
the obtained solutions with the exact ones. The resultatehiat the both methods are effective and convenient fafrapkuch types
of partial differential equations but the method of linegegi accurate results over the analytical method.
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1 Introduction

This paper is concerned with the initial-boundary valuehgm associated with the nonlinear dispersive and diss@at
wave which was formulated by Korteweg, de Vries and Burgetbe form

du du _d’u _d%

wherepu , 6, 5 are constant coefficients.

It is well known that many physical phenomena can be desttilyethe Korteweg-de Vries—Burgers equation. Eq. (1)
can serve as a nonlinear wave model of a fluid in an elastic [tlipef a liquid with small bubbles [2,] and turbulence
[3,4].The coefficient®and din Eq. (1) represent the damping and the dispersion coeffgieespectively. We note that
Eq.(1) is non integrable.

Soliton solutions of the KdV equation are known since longeti[5,6]. Many problems, however, involve not only
dispersion but also dissipation, and these are not govéspade KdV equation. More complicated problems are the
flow of liquids containing gas bubbles [7,8],and the propegaof waves in an elastic tube filled with a viscous fluid
[9,10]. Other cases regarded the governing evolution émuatan be shown to be the so-called Korteweg-de
Vries—Burgers equation.

In particular, the travelling wave solution to the KdVB etjoa has been studied extensively. Johnson [11], Demiray
[12] and Antar and Demiray [13] derived KdVB equation as tlogarning evolution equation for waves propagating in
fluid-filled elastic or viscoelastic tubes in which the effeof dispersion, dissipation and nonlinearity are present
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The KdVB equation is a one-dimension generalization of tloeleh description of the density and velocity fields that
takes into account pressure forces as well as the viscaowityhee dispersion. It may be a more flexible tool for physgcist
than the Burgers equation. Several studies in the litezateimploying a large variety of methods to derive explicit
solutions for KdVB equation (1).

2 The method of lines

The method of lines [14] is a well established numerical tégphe (or rather a semi analytical method) for the analysis
of transmission lines, waveguide[15-18]. The method dddiis regarded as a special finite difference method but more
effective with respect to accuracy and computational tinamtthe regular finite difference method. It basically inesl
discretising a given differential equation in one or two dimions while using analytical solution in the remaining
direction. The MOL has the merits of both the finite differemesethod and analytical method, it does not yield spurious
modes nor have the problem of relative convergence. The M@kemnerally recognized as a comprehensive and powerful
approach to the numerical solution of time-dependent gadifferential equations (PDES). This method usually
proceeds in two separate steps: first, approximating thiasparivatives. Second, the resulting system of semirdisc
(discrete in space—continuous in time) ordinary diffel@rgquations (ODES) is integrated in time. The essenceef th
method of lines is a way of approximating PDEs by ODEs. Obsliglan advantage of the MOL is that one can use all
kinds of ODE solvers and techniques to solve the semi-dis€@®Es directly.

3 Solving the KdV-Burger equation using the MOL

Consider KdV-Burger equation (1) with the initial conditio

2
u(x,0) = (i)(@: —10025+ & 4 12v25sech?(vx) — 1—2vetanr(x)) 2)
25" v o 5
and the boundary conditions

u(a,t) = 0.98 u(b,t) = 0.02 (3)

The exact solution of this problem is given by

2

u(x,t) = ((%)(Zivc — 10025 + %) + 12v%3sech?(vx — ct) — %Zvetanl*(vx— at)) (4)

The solution domain of the KdV- Burger equation (1) is thegaaglea<x < b,0<t <T.

Let us subdivide it into uniform rectangular meshes by theedix = ih(i = 0,1,2,3,.....N) and the lines
tj = jk(j =1,2,3,.....), We replace the partial derivatives depend on spatial viesaly, dissipation termu, and
dispersion ternuyy in KdV-Burger equation (1) with known finite difference apgimations at poink;.

The solution of the method of lines using fourth order finitifedlence scheme fauy ,uxy , andux is denoted by MOLI,
however the solution using a second order finite differecbeme foruy ,ux andux is denoted by MOLII.

The derivativauy in KdV-Burger equation (1) is computed by finite differensebeme in two way

(1) second order approximationsl, = % +0( h?).
(2) fourth order approximationsuy = Y=2-34-1t8b:1 Uiz | o p4),

The derivativeuy in KdV-Burgers equation (1) is computed by finite differes@@two ways
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(1) second order approximationgly = % + O( h?).

(2) fourth order approximationsuy = ’”i*2+1mi*1’13;?];‘*16””1’””2 +0( h%).

The derivativauyy in KdV-Burgers equation (1) is computed by finite differesaetwo ways

(1) second order approximationshe = 7”i*2+2”i*21h*32“”1+””2 + O( ).

(2) fourth order approximationsuy = ”i*378”i*2“&“*gé[&““%“”z*””?’ +0( h*).

Applying the above finite difference schemes to Eq. (1) Weldystem of ordinary differential equations for the unknow
u; as functions irt as follows:
du;(t)
dt
Using the fourth order finite difference scheme tdigr, uy and u,,, (MOLI), we have

= f(u),i=11)N-1. (5)

dui(t) _5 (Ui—3(t) — 8uj_2(t) + 13ui_1(t) — L3uj+1(t) + 8uj12(t) — Ui+3(t))
dt 8h3
—u(t) Ui—2 (t) — 8ui_1 (t) +8Uit1 (t) — Ui2(t)
' 12h
—Ui2+16Ui 1 — 30U + 16U 1 — U2 . B
+6 1oz , 1=1,2,3,...,N—1.

And for the second order finite difference scheme hgtand ux (MOLII), we have

du; (1) __5 (—Ui—2(t) +2ui—1 (t) + 2u;1 (t) + 8ui2(t))
at 2h3
LUz it oUWl 5 g

h? 2h

Thus, we have the system of differential equations of onepeddent variable t. This system can be easily solved by
using fourth order Runge—Kutta scheme

At(KlJr 2Ky + 2K3 + K4)
6

At At
KZ :F (Un+7Kl>; K3 :F (Un+7K2> 9 K4 :F(Un+At K3)

UMt —u"4+ ,Ke =F(U"),

The computational domain [s-20,20] x [0, 30]. The computational results are listed in Tables 1...5.

The results obtained using the method of lines have beena@dpvith the exact solution as a plots of the solution and
the absolute error (AE) profiles of the KdV-Burgers equatidmere 8 and & are constants at = 0.5,At = 1073,
v=1%.1€0,30.

We obtain the MOLI solutions of KdV-Burgers equation withglhér accuracy than MOLII. The obtained results
demonstrate the reliability of the MOL and its wider applitidy to nonlinear evolution equations.

4 Adomian decomposition method

Following the analysis of Adomian [Adomian, 1994] equat{@hcan be rewritten in an operator form as the following:

L(u)+R(U)+N(u) =g(t) (6)
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Fig. 1. Comparison of MOL | (dotted line) and exact (solid line) dauas atN = 500,06 = 0.02,6 =0.2,c=0.5,v= %
andt € [0,30].
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Fig. 2: The absolute error between the exact solutiofx,t) and the (MOL 1) solution for KdV-Burger equation for
t €[0,30].
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wherelL = % is the operator of the highest-ordered derivatives witlpeestot andR is the remainder of the linear
operator. The nonlinear term is represented\tjy). Thus we get

L(u)=g(t)=R(u)—N(u) @)
The inversd.—! is assumed an integral operator given by
t
L*1::/ ()dt. ®)
Jo
The operating with the operatbr! on both sides of Eq. (9) we have
u= fo+L " (g(t) — R(u) =N (u)) ©)

wherefy is the solution of homogeneous equation

L(u)=0. (10)

The integration constants involved in the solution of hosrepus equation (10) are to be determined by the initial or
boundary condition according as the problem is initiabeaproblem or boundary - value problem. The ADM assumes
that the unknown function(x,t) can be expressed by an infinite series of the form

[«

U(th) = Un (th) (11)
2
and the nonlinear operatbr(u) can be decomposed by an infinite series of polynomials giyen b
Fu=> A (12)
2
whereun(x,t) will be determined recurrently, ani, are the so-called polynomials of , up ,up, ...,un defined by
1d A
A== [F(5 A : (13)
nt dA i; A=0, n=0,123,...

It is now well known in the literature that these polynomieds be constructed for all classes of nonlinearity accgrdin
to algorithms set by Adomian [19,22].

5 Solution of KdV-Burger equation using ADM
In the following section, we discuss the solution of the KElMkger equation using ADM. Eq. (1) can be written in an
operator form:

LU= —8 Ugx — U Uy + O Uyy (14)

where the differential operator L is L §f.
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Applying the inverse operatdr-! on both sides of (14) and using the decomposition seriesai@)13) yield

1,25 62 12
SUM_oUn (X,t) = (2—5)(TC — 10025 + = +25sech? (v) — v 6 tanh(x))

! ((ni)A,o - 5(niun> Y ni)un)

whereA,, are Adomian polynomials that represent the nonlinear terpand given by

Ag = UoxUo
A1 = UoxUy + UixUg
Ao = UgyUy + U1xU7 + UxUg (15)

Az = UgxU3z + U1xUz + Uy

A4 = UgyUg + UxU3 + UoxUp + UscUs + UgyUp.

Other polynomials can be generated in a like manner. Theféinstomponents afi, (x,t) follows as

Uo (X) = f(x)

Ug (xt) = L™ (—Ao + BUoxx — SUoxex) (16)
Uz (X,t) = L1 (—Ag + BUpx — OUsexx)

Uz (%,t) = L™ (—Ag + O — Sz

The scheme in (16) can easily determine the compongitist) ,n > 0. So it is possible to calculate more components
in the decomposition series to enhance the approximatios résulting components using initial condition (2) ang
0.02,6 =0.2,c=05,v=15%.

1 ,25¢ 62 ) 12
o (X.t) = Uix0) = (5¢) (=~ — 10025 + 5+ 1225 sech?(vx) — Z Vo tanh(x))
_ 0.24t(sinh(x) + cosh(x))
t) =L (~Ao+ Ougx— & = 17
ug (X,t) (—Ao + Buoxx — SUoxx) oS (x) 17)
2 : 200
U (%,1) = L~ (—Aq + BUpec — BUieed) = 0.06t(2 cosh(x) smh(4x)+2005h (x)—3)
cosh™(x)
3(_Gq : 200 3
U (%,1) = L1 (—Ap-+ BUipee — Bligoc) — 0.02°(—6 sinh(x) + 2 sinh(x) coih (X) — 3 cosh(x) + 2 cosh®(x))
cosh’(x)
So, the solution in a series form is given by
0.24t (sinh(x) + cosh(x))
u(x,t) = 0.5+ 0.24 sech?(x) — 0.48tanh(x
(1) =05+ ) M)+ = o
0.06t2(2 cosh(x) sinh(x) + 2 cosh?(x) — 3)
+ 4
cosh™(x)
N 0.02t3(—6sinh(x) 4 2 sinh(x) cosh?(x) — 3cosh(x) + 2 cosh®(x))

cosh®(x)

We plot the solution and AE profiles of KdV-Burger equationt=a0.01, 1, 2, 2.5 using ADM.
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Fa
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200 0 -lo

Fig. 3: Comparison of ADM (dotted line) and exact (solid line) s@uas corresponding to KdV-Burger equation at
t =0.01,1,2 and 25 where—20< x < 20.

6 Numerical results and someillustrations

In this section, we present the following tables to desdtileeabsolute errors between the exact and numerical safutio
The tables illustrate the errors for both methods, the Adondiecomposition method and the method of lines compared
with the exact solution, at different valuestof

It is observed that if we increase the number of terms in &lgor(17), the size of calculation is maximized with no
increase in accuracy so the reduction of terms facilitiesctimstruction of Adomian polynomials for nonlinear operst
and gives the same accuracy. ADM can provide the solutiom mitimal number of iterations.

A comparison between the numerical MOL and the decompasitiethods with those obtained by exact solution are
given forAt = 10~3. From the tables, we can observe that the decomposition mhéttezcurate as compared with MOL
at small period of time but with increasing the time, the M@lmore accurate when compared with ADM.

It is noted that when the time increase by using ADM gradulels accuracy and leads to increased errors. From the
comparative study between ADM and the MOL we may concludé¢ tina MOL is more accurate than ADM. To
demonstrate the efficiency of our methods we report the atesetrors in some arbitrary points in Tables 1-5.

From the above tables we can infer that ADM have better cgarare at small. However, a closer look at the errors of
ADM reveals that the error considerably increments withiéasing the time. This is an indication of little stability the

part of ADM, in contrast to the MOL. By increasing the numbétesms not affect on the accuracy of solution.
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Fig. 4: The absolute error between the exact solutiént) and the (ADM) solution using seven terms for KdV-Burger
equation at = 0.01,0.05,0.1,1,2 and 5 where-20 < x < 20.
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Table 1: The absolute error of MOL and ADM approximation solutionsfb= 500 and = 1 for KdV-Burger equation.

t=1
X Error of MOLI Error of MOLII LEJrSri(r)]rQOSf ltbt\e?rws LEJrSri(r)]rgo; ltbt\e?rws
-6 1.95076971*10° 1.045180608*10% | 1*10 10 1*1010
-4.8 1.97223468*10° 1.840800845*10° | 5*10°10 1*10~10
-3.6 1.951909900*10° 5.144083159*10° | 3.63*10°8 1.05*10°8
2.4 4.6626724703*10° | 6.023997785*10° | 3.7610*10° 1.0071*10°
-1.2 5.940662235*10’ 5.499337451*10* | 1.2750*10° 2.91644*10°
0 2.669026577*10" 3.292312710*10° 1.4363*10°° 6.85968*10°
1.2 3.148278159*10° 4.142080438*10" 1.9719*10° 3.76501*10°
2.4 3.198081237*10’ 2.668147003*10° 5.0092*10° 1.64418*10°
3.6 5.789936818*10° 9.517125206*10° 2.1215*10°8 2.7171*1010
4.8 8.49272577*10° 1.006655001*10° 2.0844*10°8 2.900*10°10
6 3.378234497*10' | 9.394625356*10° 1.9060*10°8 2.690*10°°
7.2 5.128405755*10'° | 8.426382432*10° 1.750*10°8 2.601*10°10
8.4 4.189192603*10'° | 6.594602121*10° | 3.30*10°° 2*10°10
9.6 2.438327352*10'° | 1.871565402*10° | 80*10°® 7*10°10
10.8 2.263137420*10'° | 1.420102646*10° 1.30*10°8 1.3*10°10
12 5.151473414*10'° | 5.898389068*10° 20.*10°8 2*10°10
13.2 3.799035079*10'° | 5.048499812*10° 1*10°8 1*10-10
14.4 4.030135947*10'° | 4.614364446*10° | O 0
15.6 4.006248145*10'° | 1.144917494*10° | O 0

Table 2: The absolute error of MOL and ADM approximation solutionsifb= 500 and = 5 for KdV-Burger equation.

t=5
Error of ADM Error of ADM
X Error of MOLI Error of MOLII Using 5 terms Using 7 terms
-6 9.811727574*10° 3.184064122*10° 1.98*10°/ 3.05*10°/
-4.8 | 9.793326538*10° 3.621059003*10° 0.0000023854 3.7214*10°

0.0305207870
0.4783218562
9.460043003
2.405908954
0.4095884839
0.0532855839
0.0071441455
0.0006701499
0.0000609787

0.734788826
2.054157460
6.074811896
0.513555601
0.024382254

4.14292*10*
0.000037755
0.000003425
0.004340444

4.904787680*10°
1.087383183*10’
1.349134235*10°
4.013708042*10°
1.320023576*10°
5.262008329*10°
2.570498745*10°
1.209137799*10°
1.745862402*10°

-2.4 | 9.791718291*10°
-1.2 | 9.561010450*10’

0 1.278075613*10°
1.2 | 2.789549492*10’
2.4 | 3.306383080*10°
3.6 | 1.313720809*10°
4.8 | 6.730153226*10°

6 2.291066074*10°
7.2 | 3.507566520*10°

8.4 | 1.207410716*10° 1.909985603*10° 0.0000055334 3.108:10°8
9.6 | 1.932325111*10° 1.860166550*10° 5.016*10°7 2.821*10°7
10.8 | 1.957402014*10° 1.685257301*10° 4.555%10°8 2.57*10°8
12 | 2.032961226*10° 1.914493980*10° 4.140%10°8 2.7*10°°
13.2 | 1.959853588*10° 2.581864930*10° 4.100%10°10 7*10°10
15.6 | 2.006210853*10° 6.316530631*10° 0 0
7 Conclusion

In this article, the method of lines and Adomian decompesithethod have been implemented for obtaining solutions of
the KdV-Burger equations. The results show that the consttimethods are powerful mathematical tools for obtaining
accurate solutions. A comparison between MOL and ADM shdws the accuracy of the MOL is better than that in
the ADM for solutions when the time increase. Moreover, MGin @vercome difficulties arising in the calculation of
Adomian’s polynomials. Therefore the MOL is more convenierapply than ADM. we conclude that the nonlinear KdV—
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Table 3: The absolute error of MOL and ADM approximation solutionso= 500 and = 10 for KdV-Burger equation.

t=10

X Error of MOLI Error of MOLII Ersrﬁ]rgo; '?eDrrl\n/l s Ersri(;]rgo; ?eDrr'\n/l s
-6 1.9560421002*10’ 1.845876784*10’ 7.664*10°/ 0.000002454
-4.8 1.9584247256*10° 2.630796691*10’ 0.000093045 0.000297790
2.4 1.96117980187*10 8.770627557*10’ 1.200017453 40.44833669
-1.2 1.95971405431*10 1.5001417885*10’ 24.03445058 41.42833669

0 1.95718343751*10 0.00001279501426 276.1600000 40.44833669
1.2 1.92183368330*10 0.00036723414692 16.07921173 22.73310721
2.4 5.86544390831*10° 0.00040572874333 1.105687563 2.955500615
3.6 5.59678794643*10 0.00071548482367 0.613696532 0.434259679
4.8 4.3823289428*1¢° 2.4049120831*1C° 0.197800572 0.181425669

6 1.9672920730*10° 1.3278297395*10° 0.021564028 | 0.0200777332
7.2 9.11246966527*10 2.397605292*10° 0.001991421 | 0.0018565813
8.4 3.04337807585*1C° 3.1510888284*10/ 0.000180951 | 0.0001687194
9.6 3.9962598039*1¢° 3.5804745633*10 0.000016418 | 0.0000153083
10.8 2.762818601*10° 3.6336069673*10 0.000001489 | 0.0000527848
12 3.87726236579*1F 3.9331884238*1¢° 1.3518*107 0.0000013888
13.2 3.90540066477*1F 1.219562827*10° 1.8941*10°8 1.2605*10°
15.6 4.0757175020*1¢° 6.4857230157*10° 1.02*10°° 9.401*10°°

Table 4: The absolute error of MOL and ADM approximation solutionso= 500 and = 15 for KdV-Burger equation.

t=15

X Error of MOLI Error of MOLII Ersrﬁ]rgo; '?eDrrl\n/l s Ersri(;]rgo; ?eDrr'\n/l s
-6 2.6810669007 *10’ 6.5914829150*10/ 0.000006263 | 0.0000304262
-4.8 2.7989134165*10 1.1667666832*10" 0.000760262 | 0.0036916033
2.4 2.8726718315*10’ 2.1687496243*10" 0.091381742 | 0.4412447347
-1.2 2.9121456435*10’ 1.6623724619*10" 9.835546960 4447559886

0 2.9299921155*10’ 1.7657941775*10° 214.2414628 401.2058844
1.2 2.9380452071*10’ 4.7485260168*10 1947.360000 41.85274520
2.4 2.93992226563*10 2.1203759859*10" 887.9344146 3562.564660
3.6 2.93755557767*10 1.7390018314*10’ 99.76715580 175.5591839
4.8 2.90562275906*10 1.2607281341*10° 11.74070201 32.81122881

6 1.5035556899*10" 9.633360150*10° 0.2238971429 | 2.267795046
7.2 6.7054763575*10’ 6.0726624081*1CP 0.8501790915 | 0.663658713
8.4 0.0000050517426 8.3269207999*10* 0.8296939158 | 0.8127640893
9.6 1.6956484610*10" 1.4092512420*10" 0.0280762015 | 0.0279368659
10.8 3.2263613634*10° 2.768658380*10° 0.0025992930 | 0.0025866527
12 3.5331507095*10° 3.0166396709*10" 0.0002362413 | 0.0002350946
13.2 3.5331507095*1¢° 3.8576692407*10° 0.0000214347 | 0.0000213307
15.6 5.7036779084*1¢° 5.0145934626*10° 1.7661*10 1.7575*10°

Burgers equation gives soliton solution, which represantsnportant application in Physics and physical problerhs.
computations associated here were performed using Maple 15
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Table 5: The absolute error of MOL and ADM approximation solutionsN¥o= 500 and = 25 for KdV-Burger equation.

t=25
X Error of MOLI Error of MOLII Ersri(:]rgo; ?eDrm s Ersrﬁ]rgo; ?el?rlzl s
-6 2.821226859*10’ 9.39531785*10’ 0.0000856438 | 0.000700732
-4.8 3.061088577*10’ 9.39531785*10’ 0.0103965637 | 0.085022365
-2.4 3.300522158*10’ 2.038498259*10’ 1.249903314 10.16613057
-1.2 3.538602846*10’ 2.155697842*10’ 134.8547761 1029.221566
0 3.773140159*10’ 8.775313808*10’ 3142.318964 7149.615382
1.2 3.999921515*10’ 8.775313800*10’ 23093.26000 4253.757852
2.4 4.213395193*10’ 1.003352956*10’ 11341.68709 68668.29557
3.6 4.403334442*10’ 1.056396081*10’ 1068.966557 2693.452757
4.8 4.560730912*10’ 1.007154359*10’ 138.6426807 590.2571954
6 4.685195856*10’ 9.778011733*10’ 12.08368861 55.89151403
7.2 4.775559218*10’ 9.6540775%10°/ 0.2264402879 | 4.224219303
8.4 4.840431980*10’ 6.316896550*10’ 0.9502332627 | 0.917313296
9.6 4.097090497*10’ 4.952353226*10° 0.9591052401 | 0.956118795
10.8 5.449300515*10’ 1.892324320*10% 0.9589183454 | 0.958647421
12 5.711332285*10° 8.466932619*10° 0.8905563998 | 0.890531822
13.2 2.695173913*10° 9.816296780*10° 0.3422403071 | 0.342238077
15.6 1.959096925*1¢0° 1.660263860*10° 0.00388467196| 0.003884653
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