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Abstract: In the present work, we have introduced a new formulation forthe approximate-analytical solution of the fractional one-
dimensional cable differential equation (FCE) by using theconformable fractional derivative. First of all, we have redefined Adomian
decomposition method (CADM) and variational iteration method (CVIM) in the conformable sense. Then, we have solved by using
the mentioned methods, which can analytically solve the fractional partial differential equations (FPDEs). In order to represent the
efficiencies of these proposed methods, we have compared thenumerical and exact solutions of the (FCE). Also, we have found
out that the proposed models defined with the conformable derivative operator are very efficient and powerful techniquesin finding
approximate- analytical solutions for the cable equation of fractional order. In addition, the classical derivative and integral properties
are recovered partially when the fractional term (alpha) isequal to one.

Keywords: Conformable derivative operator, approximate-analytical solution, Adomian decomposition method, variational iteration
method, fractional cable equation.

1 Introduction

Fractional differential equations have been used to model problems in viscoelastic materials, fluid mechanics, biology,

physics, finance, bioengineering and other areas of application [1,2,3,4,5,6]. There are many studies on Adomian

decomposition method (ADM) which can evaluate the solutions of FPDEs. The ADM has been applied to obtain

approximate solutions of linear or nonlinear fractional differential equations, fractional ordinary differential equations

(FODEs), FPDEs, integral and integro-differential equations [7,8,9,10,11,12,13,14,15]. Meanwhile, there are many

applications of solution methods based on variational iteration method (VIM) to ordinary-partial differential equations

and other research areas [16,17,18,19,20]. In addition, Zhang [21] applied a finite difference method for the FPDEs.

Meerschaert and Tadjeran [22] used finite difference approximations for two-sided space-fractional PDEs. Shawagfeh

[23] explained analytical approximate solutions for nonlinear fractional differential equations. Recently, [24,25,26,27]

recommended a new fractional derivative called conformable derivative operator (CDO) and by means of this operator,

some solution methods have been improved. Many researchers[28,29,30,31,32,33] have applied the CDO to the

problems in engineering, finance, biology, medicine, physics and applied mathematics. In this study, we have solved the

fractional cable equation using the proposed methods described by using the conformable fractional derivative.

The fractional cable equation can be given in its general form as [34].

∂u(x, t)
∂ t

= 0D1−γ1
t

(

K
∂ 2u(x, t)

∂x2

)

+ µ2
00D1−γ2

t u(x, t)+ f (x, t), (1)
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with the initial condition

u(x,0) = g(x), 0≤ x≤ L, (2)

and the boundary conditions

u(0, t) = ϕ(t), u(L, t) = ψ(t), 0≤ t ≤ T, (3)

where 0< γ1,γ2 < 1,K > 0andµ2
0 are constants, and0D1−γ1

t u(x, t) is the conformable fractional derivative operator of

order 1− γ1. In the literature, there are some processes of approximate solutions of the FCE. Implicit numerical methods

(INM) [ 34], the implicit compact difference scheme (ICDS) [35], and explicit numerical methods (ENM) [36] have been

applied to the FCE.

In this study, we consider the following non-homogeneous fractional cable equation for the special case:

∂u(x, t)
∂ t

= 0D1−α
t

∂ 2u(x, t)
∂x2 − 0D1−α

t u(x, t)+ f (x, t), 0< α ≤ 1, (4)

with the initial condition

u(x,0) = 0, 0≤ x≤ 1, (5)

and the boundary conditions

u(0, t) = 0, u(1, t) = 0, 0≤ t ≤ T, (6)

where f (x, t) = 2sinπx
(

t +(π2+1) t1+α

Γ (α+2)

)

. The exact solution of Eq. (1)-(3) is given byu(x, t) = t2sinπx [34].

The main purpose of this study is to redefine ADM and VIM for thesolution of the FCE by using the conformable

derivative. We have solved FCE of fractional order using thesuggested methods and we have compared the numerical

and approximate-analytical solutions in term of figures andtables. Therefore, we have fulfilled the purpose. When

looking at the results, it is obvious that these methods are very effective and accurate for solving fractional cable

differential equation (FCDE).

2 Conformable derivative operator

Definition 1. Given a function f: [0,∞)→ R. Then the conformable derivative of f orderα ∈ (0,1] is defined by [24]:

Dα
∗t ( f ) (t) = lim

ε→0

f
(

t + εt1−α)− f (t)

ε
,

for all t > 0.

Theorem 1.[24] Let α ∈ (0,1] and f,g beα−differentiable at a point t> 0. Then;

(1) Dα
∗t (a f +bg) = aDα

∗t ( f )+bDα
∗t (g) for all a,b∈ R,

(2) Dα
∗t

(

tk
)

= ktk−α for all k ∈ R,

(3) Dα
∗t ( f (t)) = 0 for all constant functions f(t) = k,

(4) Dα
∗t ( f g) = f Dα

∗t (g)+gDα
∗t ( f ) ,

(5) Dα
∗t ( f/g) = gDα

∗t ( f )− f Dα
∗t (g)

g2 ,

(6) If f (t) is differentiable, then Dα∗t ( f (t)) = t1−α d
dt f (t) .

Definition 2. [24,25] Let f be an n−times differentiable at t. Then the conformable derivative of f orderα is defined as:

Dα
∗t ( f (t)) = lim

ε→0

f (⌈α⌉−1)
(

t + εt(⌈α⌉−α)
)

− f (⌈α⌉−1) (t)

ε
,
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for all t > 0, α ∈ (n,n+1 Here⌈α⌉ is the smallest integer greater than or equal toα.

Lemma 1. [24,25] Let f be an n−times differentiable at t. Then

Dα
∗t ( f (t)) = t⌈α⌉−α f ⌈α⌉ (t) ,

for all t > 0, α ∈ (n,n+1] .

3 Adomian Decomposition Method in Conformable Sense

Consider the following nonlinear fractional partial differential equation:

Lα (u(x, t))+R(u(x, t))+N(u(x, t)) = v(x, t) , (7)

whereLα = Dα
∗t is a linear operator with the conformable derivative of order α (n< α ≤ n+1), R is the another part of

the linear operator,N is a non-linear operator andv(x, t) is a non-homogeneous term. In Eq. (7), if we apply the linear

operator to Lemma1, we obtain the following equation :

t⌈α⌉−α ∂ ⌈α⌉u(x, t)

∂ t⌈α⌉
+R(u(x, t))+N(u(x, t)) = v(x, t) .

Applying the inverse of linear operatorL−1
α =

∫ t
0

∫ γ1
0 · · ·

∫ γn−1
n

1

γ⌈α⌉−α
n

(.)dγndγn−1 · · ·dγ1, to both sides of Eq. (7), we obtain

L−1
α Lα (u(x, t))+L−1

α R(u(x, t))+L−1
α N (u(x, t)) = L−1

α v(x, t) . (8)

According to the conformable ADM, we can demonstrate the solutionu(x, t) with the infinite series of components

u(x, t) =
∞

∑
n=0

un (x, t) . (9)

The nonlinear term dissociated in Eq. (7) is given by [37]:

N (u) =
∞

∑
n=0

An, (u0,u1, · · · ,un) , (10)

whereAn is the so-called Adomian polynomials. These polynomials can be derived for all nonlinear term with respect to

the algorithms developed by Adomian.

Substituting (9) and (10) into (8), we obtain

∞

∑
n=0

un = u(x,0)+L−1
α v−L−1

α R

(

∞

∑
n=0

un

)

−L−1
α

(

∞

∑
n=0

An

)

. (11)

By using Eq. (11), the iteration terms are obtained by the following way:

u0 = u(x,0)+L−1
α v,

u1 =−L−1
α Ru0−L−1

α A0,
...

un+1 =−L−1
α Run−L−1

α An, n≥ 0.

(12)
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Then, the approximate-analytical solution of Eq. (7) is obtained by

ũk (x, t) =
k

∑
n=0

un (x, t) .

Finally, we obtain the exact solution of Eq. (7) as

u(x, t) = lim
k→∞

ũk (x, t) .

4 Variational iteration method in conformable sense

In this section, it is given some basic solution steps and properties of variational iteration method in conformable sense

(CVIM) definition. We introduce a solution algorithm in an effective way for the nonlinear FPDEs of fractional order.

Firstly, we consider the following nonlinear fractional equation:

Dα
∗tu(x, t)+Lu(x, t)+Nu(x, t) = v(x, t) , t > 0, (13)

whereL is a linear operator,N is a nonlinear operator,v is a known analytical function andDα
∗t is conformable fractional

derivative of orderα with 0< α ≤ 1. In Eq. (13), if we apply the linear operator to Lemma 1, we get

t⌈α⌉−α ∂ ⌈α⌉u(x, t)

∂ t⌈α⌉
+L(u,ux,uxx)+N(u,ux,uxx) = v(x, t) .

According to the variation technique, the correction functional can be constructed as [38]

un+1(x, t) = un(x, t)+
∫ t

0
λ (ζ )

[

ζ 1−α ∂un(x,ζ )
∂ζ

+L(un(x,ζ ))+N(ũn(x,ζ ))− v(x,ζ )
]

dζ , (14)

whereλ is the Lagrange multiplier, that in this method may be a constant or a function, Taking the variation of both sides

of Eq. (14) with respect to the independent variableu, we find

δun+1(x, t) = δun(x, t)+ δ
(

∫ t

0
λ (ζ )

[

ζ 1−α ∂un(x,ζ )
∂ζ

+L(un(x,ζ ))+N(ũn(x,ζ ))− v(x,ζ )
]

dζ
)

, (15)

andũn is a restricted value whereδ ũn = 0. For α = 1 we obtain for Eq. (15) the following stationary conditions

1+λ (t)|ζ=t = 0, λ ′(ζ ) = 0.

Therefore the general Lagrange multipliers, can be specified asλ (ζ ) = −1. So, we get the iteration formula in the

following form

un+1(x, t) = un(x, t)−
∫ t

0

[

ζ 1−α ∂un(x,ζ )
∂ζ

+L(un(x,ζ ))+N(ũn(x,ζ ))− v(x,ζ )
]

dζ . (16)

By using the determined Lagrange multiplier and any selected functionu0, un+1, which is the successive approximations

of u(x) for n≥ 0, will be obtained readily. Hence, we get the solution as

u(x) = lim
n→∞

un(x).
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5 Solution of the fractional cable equation

5.1 Solution by CADM

Now let us solve the problem in Eq. (4) with the initial condition (5) and the boundary conditions (6) by using Adomian

decomposition method considering the conformable derivative operator.

Let Lα = Dα
∗t =

∂ α

∂ tα = t1−α ∂
∂ t be a linear operator, then if we apply the operator to Eq. (4) we have

Dα
∗tu(x, t) =

∂ 2u(x, t)
∂x2 −u(x, t)+Dα

∗tD
−1 f (x, t). (17)

By using the Lemma1, we can write the Eq. (17) as

t1−α ∂u(x, t)
∂ t

=
∂ 2u(x, t)

∂x2 −u(x, t)+ t1−α ∂
∂ t

D−1 f (x, t). (18)

Now, we apply the inverse of operatorLα which isL−1
α =

∫ t
0

1
ζ 1−α (.)dζ to both sides of Eq. (18), we get

u(x, t) = u(x,0)+L−1
α
(

t1−α f (x, t)
)

+L−1
α

(

∂ 2u(x, t)
∂x2 −u(x, t)

)

.

According to the iteration terms Eq. (12) and the initial condition Eq. (5), we can write the decomposition series terms.

Therefore, the other components of the series are given by:

u0 = u(x,0)+L−1
α
(

t1−α f (x, t)
)

= 2sinπx

(

t2
2 +

(π2+1)tα+2

Γ (3+α)

)

,

u1 = L−1
α

(

∂ 2u0
∂x2 −u0

)

=−2sinπx

(

(π2+1)tα+2

2(α+2) +
(π2+1)

2
t2α+2

(2α+2)Γ (3+α)

)

,

u2 = L−1
α

(

∂ 2u1
∂x2 −u1

)

= 2sinπx

(

(π2+1)
2
t2α+2

2(α+2)(2α+2) +
(π2+1)

3
t3α+2

(2α+2)(3α+2)Γ (3+α)

)

,

...

un = L−1
α

(

∂ 2un−1
∂x2 −un−1

)

= 2(−1)nsinπx

(

(π2+1)
n
tnα+2

2(α+2)(2α+2)···(nα+2) +
(π2+1)

n+1
t(n+1)α+2

(2α+2)(3α+2)···((n+1)α+2)Γ (3+α)

)

,

(19)

and such like, we can calculate the rest of components of the Adomian series. Then the approximate solution of Eq. (4) is

given by

ũk (x, t) =
k

∑
n=0

un (x, t) .

Using the last equation we obtain the approximate analytical solution of the proposed problem

u(x, t)∼= 2sinπx

[

t2

2

(

1−

(

π2+1
)

tα

α +2− (π2+1)tα

)

+
t2

Γ (2+α)

(

π2+1
)

tα

α +2− (π2+1)tα

]

.

Then the exact solution of the Eq. (4) subject to the initial condition (5) and the boundary conditions (6) for special case

of α = 1, is obtained with CADM as

u(x, t)∼= t2sinπx.

In the following Figure1, CADM solution results of the cable equation for various values of the distance termx and the

time variablet for special case ofα = 0.30 (in left) andα = 0.70 (in right).

c© 2017 BISKA Bilisim Technology

www.ntmsci.com
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Fig. 1: CADM solutions of the cable equation withα = 0.30 andα = 0.70.

5.2 Solution by CVIM

In order to solve the Eq. (13) by way of conformable VIM, we have used the iteration formula (14) and the iteration

formula of the solution is given by:

un+1(x, t) = un(x, t)−
∫ t

0

[

ζ 1−α ∂un(x,ζ )
∂ζ

−
∂ 2un(x,ζ )

∂x2 +un(x,ζ )− ζ 1−α ∂
∂ζ

D−1
ζ f (x,ζ )

]

dζ . (20)

In addition, by using the Eq. (20) we can obtain the following set of linear PDEs:

u0 = u(x,0) = 0,

u1 = u0−

∫ t

0

[

ζ 1−α ∂u0(x,ζ )
∂ζ

−
∂ 2u0(x,ζ )

∂x2 +u0(x,ζ )− ζ 1−α ∂
∂ζ

D−1 f (x,ζ )
]

dζ (21)

= 2sinπx

(

t3−α

3−α
+
(

π2+1
) t3

3Γ (2+α)

)

,

u2 = u1−

∫ t

0

[

ζ 1−α ∂u1(x,ζ )
∂ζ

−
∂ 2u1(x,ζ )

∂x2 +u1(x,ζ )− ζ 1−α ∂
∂ζ

D−1 f (x,ζ )
]

dζ

= 4sinπx

(

t3−α

3−α
+

(

π2+1
)

t3

3Γ (2+α)

)

−2sinπx

(

t4−2α

4−2α
+

(

π2+1
)

t4−α

(4−α)Γ (2+α)

)

−2sinπx

(

(

π2+1
)

t4−α

(4−α)(3−α)
+

(

π2+1
)2

t4

4 ·3 ·Γ (2+α)

)

,

u3 = u2−

∫ t

0

[

ζ 1−α ∂u2(x,ζ )
∂ζ

−
∂ 2u2(x,ζ )

∂x2 +u2(x,ζ )− ζ 1−α ∂
∂ζ

D−1 f (x,ζ )
]

dζ

= 6sinπx

(

t3−α

3−α
+

(

π2+1
)

t3

3Γ (2+α)

)

−6sinπx

(

t4−2α

4−2α
+

(

π2+1
)

t4−α

(4−α)Γ (2+α)

)
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−6sinπx

(

(

π2+1
)

t4−α

(4−α)(3−α)
+

(

π2+1
)2

t4

4 ·3 ·Γ (2+α)

)

+2sinπx

(

t5−3α

5−3α
+

(

π2+1
)

t5−2α

(5−2α)Γ (2+α)

)

+2sinπx

(

(

π2+1
)

t5−2α

(5−2α)(3−α)
+

(

π2+1
)2

t5−α

3(5−α)Γ (2+α)

)

+2sinπx

(

(

π2+1
)

t5−2α

(5−2α)(4−2α)
+

(

π2+1
)2

t5−α

(5−α)(4−α)Γ (2+α)

)

+2sinπx

(

(

π2+1
)2

t5−α

(5−α)(4−α)(3−α)
+

(

π2+1
)3

t5

5 ·4 ·3 ·Γ(2+α)

)

,

...

and so on. When we considerα = 1, the solution obtained by variational iteration method in the conformable mean is

given by

un(x, t) = t2sinπx

(

6
2
+
(

π2+1
) 6t

3Γ (3)
−

6
2
−
(

π2+1
) 6t

3Γ (3)
−
(

π2+1
) 6t

3 ·2
−
(

π2+1
) 6t2

4 ·3 ·Γ (3)
+ · · ·

)

.

By using the equations in (21), the exact solution of the CVIM solution for special case ofα = 1 is given as follows:

u(x, t) = t2sinπx.

The following Figure2 shows the CVIM solutions results of the cable equation for(x, t) = [0,1]× [0,1] considering the

fractional operatorα = 0.30 (in left) andα = 0.70 (in right).

Fig. 2: CVIM solutions of the cable equation withα = 0.30 andα = 0.70.

According to Table1 we can observe that the absolute error values in terms of the solution of the Eq. (4) are very small

for various valuesα,x andt. It is very important to characterize the behavior of the error and to make the error stability of

the method used for numerical solutions. Therefore, we haveinvestigated the error analysis of the recommended methods

and we have shown the absolute error values in Figure3. Moreover, we have presented in Figure4 the comparison of the

numerical and exact solutions. Figure3 and Figure4 have declared that the solutions obtained using CVIM is closer to

the exact solutions with respect to CADM ones.
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Table 1: Absolute errors|ũk (x, t)−u(x, t)| obtained with CADM and CVIM for the cable equation.

Fig. 3: Absolute error graph of CADM and CVIM att = 0.1 for various values ofα.
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Fig. 4: Comparison the numerical solutions and the exact solutionsat t = 0.1 for various values ofα.

6 Conclusion

In the present paper, approximate-analytical solutions with two numerical methods for linear non-homogeneous

time-fractional cable differential equation have been obtained. These methods are based on conformable derivative (CD)

which is extremely popular in the last years. We have verifiedthe efficiencies and accuracies of the suggested methods

by applying them to the biological cable equation with the initial condition and the boundary conditions. The successful

applications of the recommended models have indicated thatthese models are in complete settlement with the

corresponding exact solutions. According to the solution graphs and tables, we can conclude that the solutions obtained

using CVIM is closer to the exact solutions with respect to CADM ones. Meanwhile, in view of their usability, our

methods are applicable to many initial-boundary value problems and linear-nonlinear partial differential equationsof

fractional order.
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