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Abstract: In this article, an improved collocation method based on theMorgan-Voyce polynomials for the approximates solution of
multi-pantograph equations is introduced. The method is based upon the improvement of Morgan-Voyce polynomial solutions with the
aid of the residual error function. First, the Morgan-Voycecollocation method is applied to the multi-pantograph equations and then
Morgan-Voyce polynomial solutions are obtained. Second, an error problem is constructed by means of the residual errorfunction and
this error problem is solved by using the Morgan-Voyce collocation method. By summing the Morgan-Voyce polynomial solutions of
the original problem and the error problem, we have the improved Morgan-Voyce polynomial solutions. When the exact solution of
problem is not known, the absolute error can then be approximately computed by the Morgan-Voyce polynomial solution of the error
problem. Numerical examples that the pertinent features ofthe method are presented. We have applied all of the numerical computations
on computer using a program written in MATLAB.
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1 Introduction

Functional-differential equations with proportional delays are usually refered to as pantograph equations or generalized
equations. The name pantograph came from the work of Ockendon and Tayler [1] on the collection of current by the
pantograph head of an electric locomotive.

We see these equations in many applications such as number theory, non-linear dynamical systems, electrodynamics,
probality theory on algebraic structures, astrophysics, cell growth and quantum mechanics, among others. Several
authors have studied proporties of the analytic solution ofthese equations and numerical methods. For example, the
equations with variable coefficients are treated in [2-4].

In recent years, the numerical treatment of the pantograph equations of the retarded and advanced type has attracted
attention. The existence of compactly supported solutionsis a specific property for this type [5].

Pantograph equations are important for explanining many different phenomena. Specially, they turn out to be the
fundamental equations when ODEs-based model fail. These equations are seen in studies based on biology, economy,
control and electrodynamics [6,7] and in industrial equations [1,8].This phenomena has been studied in [8-10], and has
direct applications to approximation theory and wavelets [10].

Since the beginning of 1994, to find the approximate solutions of differential, difference, integral and
integro-differential-difference equations, multi-pantograph and generalized pantograph, Taylor, Chebyshev, Bessel and
Legendre matrix methods have been used by Sezer et al [11-18].
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The purpose of this work is to apply Morgan-Voyce polynomials to the nonhomogenous and the homogenous
multi-pantograph equations with variable coefficients, which is the extension of the pantograph equations given in [5,16].

In this study, we want to solve the pantograph equation givenby

y′(t) = λ y(t)+
J

∑
j=1

µ j(t)y(q jt)+ g(t), 0≤ t ≤ b (1)

that is a multi-pantograph equations given in [5,19-21] andits initial condition is

y(0) = γ. (2)

In here,y(t) is an unknown function, the known functionsµ j(t) andg(t) are defined on intervala ≤ t ≤ b andλ andq j

are real or complex constants.

In this paper, by improving the Morgan-Voyce collocation method with the aid of residual error function used in [24-26],
we obtain an approximate solution of (1) expressed in the truncated Morgan-Voyce series form

yN,M(t) = yN(t)+ eN,M(t) (3)

where

yN(t) =
N

∑
n=0

anBn(t) (4)

is the Morgan-Voyce solution and

eN,M(t) =
M

∑
n=0

a∗nBn(t)

is the Morgan-Voyce polynomial solution of the error problem obtained with the aid of the residual error function. Here
an,a∗n,n = 0,1,2, ...,N are the unknown Morgan-Voyce coefficients;N andM are any chosen positive integers such that
M ≥ N ≥ 2; andBn(t),n = 0,1,2, ...,N are the Morgan-Voyce polynomials defined by

Bn(t) =
n

∑
k=0

(
n+ k+1

n− k

)
tk
,n ∈ N.

2 Fundamental matrix relations

Firstly, we can write the Morgan-Voyce polynomialsBn(t) in the matrix form as

BT (t) = RTT (t)⇔ B(t) = T(t)RT (5)

where
B(t) =

[
B0(t) B1(t) . . . BN(t)

]
, T(t) =

[
1 t1 t2 . . . tN

]
;

and

R =




(1
0

)
0 0 L 0(2

1

) (3
0

)
0 L 0(3

2

) (4
1

) (5
0

)
L 0

M M M L M(n+1
n

) (n+2
n−1

) (n+3
n−2

)
L
(2n+1

0

)




(N+1)×(N+1)

.
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We consider the desired solution of Eq. (1) defined by the truncated Morgan-Voyce series (4). So we can write the finite
series (4) in matrix form

y(t) = B(t)A; A =
[

a0 a1 . . . aN

]T

or from Eq. (5)
y(t) = T(t)RTA. (6)

On the other hand, the relation between the matrixT(t) and its derivative isT(1)(t) is

T(1)(t) = T(t)CT
, T(0)(t) = T(t) (7)

where

CT =




0 1 0 L 0 0 0
0 0 2 L 0 0 0
0 0 0 L 0 0 0
M M M M M
0 0 0 L 0 0 N
0 0 0 L 0 0 0




.

If we follow from (6) and (7), we derive

y′(t) = B′(t)A = T′(t)RT A = T(t)CT RT A. (8)

Similarly, the matrix relations are as follows,
T(q jt) = T(t)B(q j)

y(q jt) = T(t)B(q j)RT A (9)

where

B(q j) =




(q j)
0 0 K 0

0 (q j)
1 K 0

M M 0 M
0 0 K (q j)

N


 .

3 Method of solution

Now, we are ready to construct the fundamental matrix equation for Eq. (1). For this aim, by substituting the matrix
relation (6),(8) and (9) into Eq. (1), we obtain the matrix equation

T(t)CT RT A = λ T(t)RT A+
J

∑
j=1

µ j(t)T(t)B(q j)RT A+ g(t) (10)

In Eq. (10) we substitute collocation points defined by

ti =
b
N

i, i = 0,1, ...,N

and we obtain the system of the matrix equations as,

T(ti)CT RT A = λ T(ti)RT A+
J

∑
j=1

µ j(ti)T(ti)B(q j)RT A+ g(ti), i = 0,1, ...,N
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or briefly the fundamental matrix equation

{TCT RT −λ TRT −
J

∑
j=1

M jTB(q j)RT}A = G (11)

where

M j =




µ j(t0) 0 L 0
0 µ j(t1) L 0
M M 0 0
0 0 L µ j(tN)


 ,G =




g(t0)
g(t1)

M
g(tN)


 ,T =




T (t0)
T (t1)

M
T (tN)


=




1 t0 L tN
0

1 t1 L tN
1

M M 0 M
1 tN L tN

N


 .

So, we can write the fundamental matrix equation (11) corresponding to Eq.(1) in the form

WA = G or [W;G];W = TCT RT−λ TRT −
J

∑
j=1

M jTB(q j)RT
. (12)

Here, Eq. (12) corresponds to a system ofN+1 linear algebraic equations withN+1 unknown Morgan-Voyce coefficients
a0,a1, ...,aN . For the conditions (2), we can obtain the matrix form as,

y(0) = T(0)RTA = [γ] .

On the other hand, the matrix form for the condition can be written as

UA = [γ] or [U;γ] (13)

where
U = T(0)RT =

[
u0 u1 u2 K uN

]
.

Under the condition (2), to obtain the solution of Eq. (1), wereplace the row matrice (13) by the last one row of the matrix
(12), so have the new augmented matrix [15,16,17]

[W̃;G̃] =




w00 w01 w02 K w0N ; g(t0)
w10 w11 w12 K w1N ; g(t1)
w20 w21 w22 K w2N ; g(t2)
M M M M M M M

wN−10 wN−11 wN−12 K wN−1N ; g(tN−1)

u0 u1 u2 K uN ; g(tN)




(14)

If rank W̃= rank[W̃;G̃] =N+1, then we can writeA =(W̃)−1 G̃. Thus, we uniquely determine the matrixA (thereby the
coefficientsa0,a1, ...,aN ). So Eq. (1) with condition (2) has a unique solution and thissolution is given by Morgan-Voyce

series soluion (4). On the other hand, when
∣∣∣W̃

∣∣∣ = 0, that is if rank̃W = rank[W̃;G̃] < N +1, then one can be found a

particular solution. Otherwise if rank̃W 6= rank[W̃;G̃]< N +1, then there is no solution.

4 Residual correction and error estimation

In this section, we will give an error estimation for the Morgan-Voyce polynomial solution (4) with the residual error
function [23-26] and will improve the Morgan-Voyce polynomial solution (4) with the help of the residual error function.
For this purpose, we get the residual function of the Morgan-Voyce collocation method as

RN(t) = L[yN(t)]− g(t). (15)
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HereyN(t) is the Morgan-Voyce polynomial solution given by (4) of problem (1) and (2). Thus,yN(t) satisfies the problem

L[yN(t)] = y′N(t)−λ yN(t)−
J

∑
j=1

µ j(t)yN(q jt)

= g(t)+RN(t)

yN(0) = γ.

Also, the error functioneN(t)
eN(t) = y(t)− yN(t) (16)

such thaty(t) is the exact solution of problem (1) and (2). By using Eqs. (1), (2), (15) and (16) we can get the error
differential equation

L[eN(t)] = L[y(t)]−L[yN(t)] =−RN(t)

with the condition
eN(0) = 0

or clearly, the error problem is

e′N(t)−λ eN(t)−
J

∑
j=1

µ j(t)eN(q jt) =−RN(t) (17)

eN(0) = 0. (18)

Here, we note that the nonhomogeneous condition
y(0) = γ

and
yN(0) = γ

has been reduced to the homogeneous condition
eN(0) = 0.

By solving problem (17)-(18) with the method introduced section (2) and (3), we get the approximation

eN,M(t) =
M

∑
n=0

a∗nBn(t), M ≥ N

to eN(t).

Consequently, by means of the polynomialsyN(t) andeN,M(t), (M ≥ N), we get the correct Morgan-Voyce polynomial
solutionyN,M(t) = yN(t)+ eN,M(t). Also, we construct the error functioneN(t) = y(t)− yN(t), the correct error function
EN,M(t) = eN(t)− eN,M(t) = y(t)− yN,M(t) and the estimated error functioneN,M(t).

If the exact solution of Eq. (1) is unknown, then the absoluteerrors|eN(ti)| = |y(ti)− yN(ti)| ,(0≤ ti ≤ b) are not found.
However the absolute errors can be approximately computed with the aid of the estimated absolute error function
|eN,M(t)| .
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5 Numerical examples

In this section, to show the accuracy and effeciency properties of the present method we give several numerical
examples. We have performed all the calculations with MATLAB. The values of the exact solutiony(t), the polynomial
approximate solutionyN(t), the corrected Morgan-Voyce polynomial solutionyN,M(t), the absolute error function
eN(t) = |y(t)− yN(t)|, the corrected absolute error function|EN,M(t)| and the estimated absolute error functioneN,M(t)
have been illustrated in Tables and Figures at the selected points of the given interval.

Example 1.With exact solutiony(t) = et , consider the pantograph equation of first order

y′(t) = y(t)+ cos(
t
3
)y(0.2t)− sin(

t
5
)y(0.5t)+ sin(

t
5
)e0.5t − cos(

t
3
)e0.2t

, y(0) = 1, 0≤ t ≤ 1. (19)

And approximate the solution by the truncated Morgan-Voyceseries

y3(t) =
3

∑
n=0

anBn(t),

whereN = 3,µ1(t) = cos( t
3),µ2(t) = −sin( t

5),g(t) = sin( t
5)e

0.5t − cos( t
3)e

0.2t ,q1 = 0.2,q2 = 0.5,λ = 1. From Section
3, for N = 3, the set of collocation points is,

{
x0 = 0,x1 =

1
3
,x2 =

2
3
,x3 = 1

}

and from Eq. (10), the fundamental matrix equation of the problem is

{
TCT RT−λ TRT−M1TB(q1)RT−M2TB(q2)RT

}
A = G

where

M1 =




1 0 0 0
0 967

973 0 0
0 0 119

122 0
0 0 0 3073

3252


 ,M2 =




0 0 0 0
0 − 90

1351 0 0
0 0 − 247

1858 0
0 0 0 − 209

1052


 ,CT =




0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0


 ,RT =




1 0 0 0
2 1 0 0
3 4 1 0
4 10 6 1


 ,T =




1 0 0 0
1 1

3
1
9

1
27

1 2
3

4
9

8
27

1 1 1 1




G =




−1
− 1143

1162
− 615

662
− 1006

1217


 ,B(q1) = B(0.2) =




1 0 0 0
0 1

5 0 0
0 0 1

25 0
0 0 0 1

125


 ,B(q2) = B(0.5) =




1 0 0 0
0 1

2 0 0
0 0 1

4 0
0 0 0 1

8


 .

For this fundamental matrix equation, the augmented matrixis,

[W;G] =




−2 −3 −2 2 ; −1
− 609

316 − 3778
1165 −

24281
8726

1477
731 ; − 1143

1162
− 2117

1149 −
1454
423 − 1756

481
603
412 ; − 615

662
− 1411

808 − 1895
529 − 1339

292
623
3013 ; − 1006

1217


 .

From Eq. (13), the matrix forms for initial condition is

UA = [γ] or [U;γ]

or briefly

[U;γ] =
[

1 0 0 0 ; 1
]
.
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From system (14), we can write the new augmented matrix basedon conditions as

[
W̃;G̃

]
=




−2 −3 −2 2 ; −1
− 609

316 − 3778
1165 −

24281
8726

1477
731 ; − 1143

1162
− 2117

1149 −
1454
423 − 1756

481
603
412 ; − 615

662
1 0 0 0 ; 1


 .

If we solve this system, we obtain Morgan-Voyce coefficientsmatrix as follows

A =
[
− 2321

1193
3561
1472 −

2602
2749

169
714

]T
.

So, forN = 3, the approximate solution of the problem yields

y3(t) = 1+ t+0.4736418259t2+0.2366946411t3
.

Now, let us find the improved Morgan-Voyce polynomial solution for M = 5. For this purpose, let us first consider the
error problem

e′3(t)− e3(t)− cos(
t
3
)e3(0.2t)+ sin(

t
5
)e3(0.5t)− sin(

t
5
)e0.5t cos(

t
3
)+ e0.2t =−R3(t), 0≤ t ≤ 1 (20)

e3(0) = 0 (21)

where the residual error function is

R3(t) = y′3(t)− y3(t)− cos(
t
3
)y3(0.2t)+ sin(

t
5
)y3(0.5t)− g(t).

By solving the error problem (20)-(21) forM = 5 with the method introduced in Section 2 and 3, the Morgan-Voyce error
function approximation

e3,5(t) =−1.75207071074e−16− (7.086402501176031e−3)t+(4.468056167244545233e−2)t2

− (8.284377115551890685e−2)t3+(3.560908045406971714e−2)t4

+(1.371093245056628252e−2)t5
.

We have the improved Morgan-Voyce polynomial solution

y3,5(t) = 0.9999999999999998+1.0000008834778t+(4.99554494109247083e−1)t2

+(1.6938589008435243e−1)t3+(3.560908045406971714e−2)t4

+(1.371093245056628252e−2)t5
.

Table 1 shows some numerical values of the exact solution, the Morgan-Voyce polynomial solution and the improved
Morgan-Voyce polynomial solutions. In Table 2, the actual absolute errors are compared with the absolute errors estimated
by the presented method forN = 3,6 andM = 5,8,10,12 and also the absolute error functions are compared in Figure 1
and 2. We see from these comparisons that the estimated absolute errors are quite close to the actual absolute errors. Table
3 denotes the absolute errors of the improved Morgan-Voyce polynomial solutions forN = 3,6 andM = 5,8,10,12. The
improved absolute error functions are given in Figure 3 and 4. It is seen from Tables 2 and 3 and Figure 1 that the errors
decrease whenN andM are increased.
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Table 1: Numerical results of the exact and the approximate solutions for N = 3,6 andM = 5,8,10,12 of Eq.(19).

Exact Solution Morgan-Voyce solution Present Method
ti y(ti) = eti y3(ti) y3,5(ti) y3,8(ti)

0.0 1 1 0.999999999999999 0.999999999999999
0.2 1.22140275816 1.22140275816 1.221398805607721 1.22140275849008
0.4 1.49182469764 1.49182469764 1.491821761821928 1.49182469826052
0.6 1.82211880039 1.82211880039 1.822108599158451 1.82211880127839
0.8 2.22554092849 2.22554092849 2.225519436434760 2.22554092965348
1.0 2.71828182846 2.71828182846 2.718261280576066 2.71828183008548

y(ti) = eti y6(ti) y6,10(ti) y6,12(ti)

0 1 1 1.000000000000001 0.99999999999999
0.2 1.22140275816 1.22140246213 1.221402758160364 1.22140275816017
0.4 1.49182469764 1.49182428065 1.491824697641544 1.49182469764127
0.6 1.82211880039 1.82211824351 1.822211880039085 1.82211880039051
0.8 2.22554092849 2.22554021120 2.225540928492886 2.22554092849247
1.0 2.71828182846 2.71828001904 2.718281828459822 2.71828182845905

Table 2: Comparison of the absolute error functions for N=3,6 and M=5,8,10,12 of Eq. (19).

Absolute errors for Morgan-Voyce solutions Estimated absolute errors for Morgan-Voyce solutions
ti |e3(ti)|= |y(ti)− y3(ti)|

∣∣e3,5(ti)
∣∣ |e3,8(ti)|

0.0 0 1.7521e-016 1.5700e-016
0.2 2.2749e-004 2.3145e-004 2.2749e-004
0.4 6.7256e-005 6.4320e-005 6.7256e-005
0.6 3.6979e-004 3.7999e-004 3.6979e-004
0.8 3.8980e-004 4.1130e-004 3.8980e-004
1.0 4.0909e-003 4.0704e-003 4.0910e-003

|e6(ti)|= |y(ti)− y6(ti)|
∣∣e6,10(ti)

∣∣ ∣∣e6,12(ti)
∣∣

0.0 0 4.7722e-016 2.3261e-016
0.2 2.9603e-007 2.9603e-007 2.9603e-007
0.4 4.1700e-007 4.1700e-007 4.1700e-007
0.6 5.5688e-007 5.5688e-007 5.5688e-007
0.8 7.1730e-007 7.1730e-007 7.1730e-007
1.0 1.8094e-006 1.8094e-006 1.8094e-006

Table 3: Numerical results of the corrected error functions for N=3,6 and M=5,8,10,12 Eq. of (19).

Improved absolute errors
ti

∣∣E3,5(ti)
∣∣ |E3,8(ti)|

∣∣E6,10(ti)
∣∣ ∣∣E6,12(ti)

∣∣
0.0 2.2204e-016 1.1102e-016 4.4409e-016 2.2204e-016
0.2 3.9526e-006 3.2991e-010 1.9451e-013 2.2204e-016
0.4 2.9358e-006 6.1925e-010 2.7378e-013 6.6613e-016
0.6 1.0201e-005 8.8788e-010 3.4117e-013 8.8818e-016
0.8 2.1492e-005 1.1610e-009 4.1833e-013 1.1102e-015
1.0 0.0548e-005 1.6264e-009 7.7638e-013 4.4409e-016
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Fig. 1: Comparison of the absolute error functions and the estimated error functions forN = 6 andM = 10,12 of Eq. (19).
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Fig. 2: Comparison of the absolute error functions and the estimated error functions forN = 6 andM = 10,12 of Eq. (19).
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Fig. 3: Comparison of the improved absolute error functions forN = 3 andM = 5,8 of Eq. (19).
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Fig. 4: Comparison of the improved absolute error functions forN = 6 andM = 10,12 of Eq. (19).
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Fig. 5: Comparison of the absolute error functions|eN(t)| and|EN,M(t)| for N = 7 andM = 10,12 of Eq. (22).

Example 2.With the exact solutiony(t) = e−t cos(t), consider the pantograph equation with variable coefficients [19]

y′(t) =−y(t)+ µ1(t)y(
t
2
)+ µ2(t)y(

t
4
), y(0) = 1, 0≤ t ≤ 1 (22)

whereµ1(t) =−e−0.5t sin(0.5t), µ2(t) = −2e−0.75t cos(0.5t)sin(0.25t). From Eq. (13), the fundamental matrix equation
of the problem is

{TCT RT −λ TRT −M1TB(q1)R
T −M2TB(q2)R

T}A = G

hereµ1(t) =−e−0.5t sin(0.5t), q1 =
1
2, µ2(t) =−2e−0.75t cos(0.5t)sin(0.25t), q2 =

1
4, λ =−1, g(t) = 0.

According to the procedure in Section 2,3 and 4, we find the aproximate solutions of the problem for different values ofN
andM. In Table 4, we compare the absolute errors obtained by the present method, the Morgan-Voyce collocation method
and Taylor method. The absolute error functions are compared in Figure 5.

Table 4: Comparison of the solutions and the absolute errors of Eq. (22).

Taylor method Morgan-Voyce Collocation Method Present method
ti N = 7, |e7(ti)| N = 7, |e7(ti)| |E7,10(ti)| |E7,12(ti)|

0.0 0 0 4.3110e-14 1.2724e-14
0.2 9.9331e-010 1.4522e-008 6.0341e-13 1.7542e-14
0.4 2.4854e-007 1.1150e-008 4.7518e-13 1.7319e-14
0.6 6.2234e-006 6.3543e-009 3.2929e-13 2.1927e-14
0.8 6.0719e-005 8.8224e-010 1.0442e-12 1.8097e-14
1.0 3.5341e-004 4.6167e-007 2.1931e-12 6.5781e-15
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6 Conclusion

In this article, we have improved the Morgan-Voyce collocation method, based on Morgan-Voyce polynomials, for
Multi-pantograph equations. This improvement is based on the residual error function. In addition, an error estimation is
given with the residual error function. Morever, if the exact solution of the problem is unknown, then the absolute errors
|eN(ti)| = |y(ti)− yN(ti)| , (0≤ ti ≤ b ) can be estimated by the approximation|eN,M(t)|. It is seen from Tables 1-3 that
the estimated absolute errors|eN,M(ti)| are quite close to the actual absolute errors|eN(ti)|= |y(ti)− yN(ti)| . We see from
tables and figures that the errors decrease whenN andM are increased. The comparisons of the present method by the
other methods show that our method is very effective. A consirable advantage of the method is that the approximate
solutions are computed very easily by using a well-known symbolic software such as Matlab, Maple and Mathematica.
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[16] M. Sezer and A. Akyüz-Daşcıoğlu, A Taylor method fornumerical solution of generalized pantograph equations with linear

functional argument, J Comput Appl Math 200 (2007), 217-225

c© 2017 BISKA Bilisim Technology



NTMSCI 5, No. 4, 248-260 (2017) /www.ntmsci.com 260
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