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1 Introduction

Let f : I ⊆R→R be a convex function defined on an intervalI of real numbers,a,b ∈ I anda < b. The following double

inequality is well known in the literature as Hadamard’s inequality:

f

(

a+ b
2

)

≤
1

b− a

∫ b

a
f (x)dx ≤

f (a)+ f (b)
2

. (1)

Both inequalities hold in the reversed direction iff is concave.

The inequalities in (1) have become an important cornerstone in mathematical anlysis and optimization. Many uses of

these inequalities have been discovered in a variety of settings. Moreover, many inequalities of special means can be

obtained for a particular choice of the functionf . Due to the rich geometrical significance of Hermite-Hadamard

inequlity, there is growing literature providing its new proofs, extensions, refinements and generalizations, see for

example ([5],[9]-[13]) and the references therein.

Definition 1. A function f : [a,b] ⊂ R → R is said to be convex if whenever x,y ∈ [a,b] and t ∈ [0,1], the following

inequality holds:

f (tx+(1− t)y)≤ t f (x)+ (1− t) f (y).

We say thatf is concave if (− f ) is convex. This definition has its origins in Jensen’s results from [8] and has opened up

the most extended, useful and multi-disciplinary domain ofmathematics, namely, convex analysis. Convex curves and

convex bodies have appeared in mathematical literature since antiquity and there are many important results related to

them.

We recall that the notion of quasiconvex functions generalizes the notion of convex functions.

Definition 2. A function f : [a,b]⊂ R→ R is said to be quasiconvex on [a,b] if

f (tx+(1− t)y)≤ max{ f (x), f (y)} ,
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for all x, y ∈ [a,b] and t ∈ [0,1].

Clearly, any convex function is quasiconvex. Furthermore,there exist quasiconvex functions which are not convex (see

[7],[14]). For example, consider the following.

Let f : R+ → R,

f (x) = lnx, x ∈ R
+.

This function is quasiconvex. Howeverf is not a convex function. For other recent results concerning the n−times

differentiable functions see [2]- [4],[6],[9],[11],[15]-[17] where further references are given.

In [1], Alomari et. al. proved the following theorems for quasiconvex functions.

Theorem 1.Let f : I ⊂ [0,∞)→ R be a differentiable mapping on I◦ such that f ′ ∈ L[a,b], where a,b ∈ I with a < b. If

| f ′| is an quasi-convex on [a,b], then the following inequality holds.

∣

∣

∣

∣

f (a)+ f (b)
2

−
1

b− a

∫ b

a
f (x)dx

∣

∣

∣

∣

≤
b− a

8

[

max

{∣

∣

∣

∣

f ′
(

a+ b
2

)∣

∣

∣

∣

,
∣

∣ f ′ (a)
∣

∣

}

+max

{∣

∣

∣

∣

f ′
(

a+ b
2

)∣

∣

∣

∣

,
∣

∣ f ′ (b)
∣

∣

}]

. (2)

Theorem 2.Let f : I ⊂ [0,∞)→ R be a differentiable mapping on I◦ such that f ′ ∈ L[a,b], where a,b ∈ I with a < b. If

| f ′|p/(p−1) is an quasi-convex on [a,b], for p > 1, then the following inequality holds:

∣

∣

∣

∣

f (a)+ f (b)
2

−
1

b− a

∫ b

a
f (x)dx

∣

∣

∣

∣

≤
(b− a)

4(p+1)1/p





(

max

{

∣

∣

∣

∣

f ′
(

a+ b
2

)∣

∣

∣

∣

p/(p−1)

,
∣

∣ f ′ (a)
∣

∣

p/(p−1)

})(p−1)/p

+

(

max

{

∣

∣

∣

∣

f ′
(

a+ b
2

)∣

∣

∣

∣

p/(p−1)

,
∣

∣ f ′ (b)
∣

∣

p/(p−1)

})(p−1)/p


 . (3)

Theorem 3.Let f : I◦ ⊂ R → R be a differentiable mapping on I◦ such that f ′ ∈ L[a,b], where a,b ∈ I◦ with a < b. If
| f ′|q is an quasi-convex on [a,b], for p ≥ 1, then the following inequality holds.

∣

∣

∣

∣

f (a)+ f (b)
2

−
1

b−a

∫ b

a
f (x)dx

∣

∣

∣

∣

≤
b−a

8

[

(

max

{
∣

∣

∣

∣

f ′
(

a+b
2

)
∣

∣

∣

∣

q

,
∣

∣ f ′ (a)
∣

∣

q
})

1
q

+

(

max

{
∣

∣

∣

∣

f ′
(

a+b
2

)
∣

∣

∣

∣

q

,
∣

∣ f ′ (b)
∣

∣

q
})

1
q

]

. (4)

The main purpose of the present paper is to prove several new inequalities for quasiconvex functions that are connected

with the celebrated Hermite-Hadamard integral inequality.

2 Main results

Lemma 1.Let f : [a,b]→R be n-times differentiable functions. If f (n) ∈ L[a,b], then

∫ b

a
f (t)dt =

n−1

∑
k=0

f (k)(a)+ (−1)k f (k) (b)
(k+1)!

(

b− a
2

)k+1

+(−1)n (b− a)n+1

2n+1n!

{

∫ 1

0
(t −1)n f (n)

(

t
a+ b

2
+(1− t)a

)

dt (5)

+

∫ 1

0
(1− t)n f (n)

(

t
a+ b

2
+(1− t)b

)

dt

}

where n natural number, n ≥ 1.
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Proof. The proof is by mathematical induction. Forn = 1, we have to prove the equality

f (a)+ f (b)
2

−
1

b− a

∫ b

a
f (t)dt =

b− a
4

{

∫ 1

0
(t −1) f ′

(

t
a+ b

2
+(1− t)a

)

dt +
∫ 1

0
(1− t) f ′

(

t
a+ b

2
+(1− t)b

)

dt

}

.

Integrating by parts, we have above equality.

Assume that (5) holds for ”n” and let us prove it for ”n+1”. That is, we have to prove the equality

∫ b

a
f (t)dt =

n

∑
k=0

f (k)(a)+(−1)k f (k) (b)
(k+1)!

(

b−a
2

)k+1

+(−1)n+1 (b−a)n+2

2n+2(n+1)!

{

∫ 1

0
(t −1)n+1 f (n+1)

(

t
a+b

2
+(1− t)a

)

dt

+

∫ 1

0
(1− t)n+1 f (n+1)

(

t
a+b

2
+(1− t)b

)

dt

}

. (6)

Then, we can write

I =
(b− a)n+2

2n+2(n+1)!

{

∫ 1

0
(t −1)n+1 f (n+1)

(

t
a+ b

2
+(1− t)a

)

dt +
∫ 1

0
(1− t)n+1 f (n+1)

(

t
a+ b

2
+(1− t)b

)

dt

}

and integrating by parts gives

I =
(b− a)n+2

2n+2(n+1)!







(t −1)n+1 f (n)
(

t a+b
2 +(1− t)a

)

b−a
2

∣

∣

∣

∣

∣

1

0

−
n+1

b−a
2

∫ 1

0
(t −1)n f (n)

(

t
a+ b

2
+(1− t)a

)

dt







+
(b− a)n+2

2n+2(n+1)!







(1− t)n+1 f (n)
(

t a+b
2 +(1− t)b

)

a−b
2

∣

∣

∣

∣

∣

1

0

+
n+1
a−b

2

∫ 1

0
(1− t)n f (n)

(

t
a+ b

2
+(1− t)b

)

dt







= (−1)n+2 (b− a)n+1

2n+1(n+1)!
f (n)(a)−

(b− a)n+1

2n+1n!

∫ 1

0
(t −1)n f (n)

(

t
a+ b

2
+(1− t)a

)

dt

+
(b− a)n+1

2n+1(n+1)!
f (n)(b)−

(b− a)n+1

2n+1n!

∫ 1

0
(1− t)n f (n)

(

t
a+ b

2
+(1− t)b

)

dt.

Now, using the mathematical induction hypothesis, we get

1
(−1)n

∫ b

a
f (t)dt =

1
(−1)n

n−1

∑
k=0

f (k)(a)+(−1)k f (k) (b)
(k+1)!

(

b−a
2

)k+1

+(−1)n+2 (b−a)n+1

2n+1(n+1)!
f (n)(a)+

(b−a)n+1

2n+1(n+1)!
f (n)(b)− I. (7)

Multiplying the both sides of (7) by (−1)n, we obtain

∫ b

a
f (t)dt =

n−1

∑
k=0

f (k)(a)+ (−1)k f (k) (b)
(k+1)!

(

b− a
2

)k+1

+
(b− a)n+1

2n+1(n+1)!
f (n)(a)+ (−1)n (b− a)n+1

2n+1(n+1)!
f (n)(b)

− (−1)n
{

ww
∫ 1

0
(t −1)n+1 f (n+1)

(

t
a+ b

2
+(1− t)a

)

dt +ww
∫ 1

0
(1− t)n+1 f (n+1)

(

t
a+ b

2
+(1− t)b

)

dt

}

=
n

∑
k=0

f (k)(a)+ (−1)k f (k) (b)
(k+1)!

(

b− a
2

)k+1

+(−1)n+1 (b− a)n+2

2n+2(n+1)!

{

∫ 1

0
(t −1)n+1 f (n+1)

(

t
a+ b

2
+(1− t)a

)

dt

+

∫ 1

0
(1− t)n+1 f (n+1)

(

t
a+ b

2
+(1− t)b

)

dt.

whereww = (b−a)n+2

2n+2(n+1)!
. Thus, the identity (6) and the lemma is proved.
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Theorem 4.For n ≥ 1, let f : [a,b]⊂R→R be n−times differentiable function and 0≤ a < b. If f (n) ∈ L[a,b] and
∣

∣

∣
f (n)
∣

∣

∣

is quasiconvex on [a,b], then the following inequality holds:

∣

∣

∣

∣

∣

∫ b

a
f (t)dt −

n−1

∑
k=0

f (k)(a)+ (−1)k f (k) (b)
(k+1)!

(

b− a
2

)k+1
∣

∣

∣

∣

∣

≤
(b− a)n+1

2n+1(n+1)!

[

max

{

∣

∣

∣
f (n) (a)

∣

∣

∣
,

∣

∣

∣

∣

f (n)
(

a+ b
2

)
∣

∣

∣

∣

}

(8)

+max

{∣

∣

∣

∣

f (n)
(

a+ b
2

)∣

∣

∣

∣

,
∣

∣

∣
f (n)(b)

∣

∣

∣

}]

.

Proof. From Lemma1, it follows that

∣

∣

∣

∣

∣

∫ b

a
f (t)dt −

n−1

∑
k=0

f (k)(a)+ (−1)k f (k) (b)
(k+1)!

(

b− a
2

)k+1
∣

∣

∣

∣

∣

≤
(b− a)n+1

2n+1n!

{

∫ 1

0
(1− t)n

∣

∣

∣

∣

f (n)
(

t
a+ b

2
+(1− t)a

)
∣

∣

∣

∣

dt

+

∫ 1

0
(1− t)n

∣

∣

∣

∣

f (n)
(

t
a+ b

2
+(1− t)b

)
∣

∣

∣

∣

dt

}

.

Since
∣

∣

∣
f (n)
∣

∣

∣
is quasi-convex on[a,b], we obtain

∣

∣

∣

∣

∣

∫ b

a
f (t)dt −

n−1

∑
k=0

f (k)(a)+ (−1)k f (k) (b)
(k+1)!

(

b− a
2

)k+1
∣

∣

∣

∣

∣

≤
(b− a)n+1

2n+1(n+1)!

[

max

{

∣

∣

∣
f (n) (a)

∣

∣

∣
,

∣

∣

∣

∣

f (n)
(

a+ b
2

)∣

∣

∣

∣

}

+max

{∣

∣

∣

∣

f (n)
(

a+ b
2

)∣

∣

∣

∣

,
∣

∣

∣
f (n)(b)

∣

∣

∣

}]

.

This completes the proof.

Corollary 1. Let f as in Theorem 4, if in addition

(1)
∣

∣

∣
f (n)
∣

∣

∣
is increasing, then we have

∣

∣

∣

∣

∣

∫ b

a
f (t)dt −

n−1

∑
k=0

f (k)(a)+ (−1)k f (k) (b)
(k+1)!

(

b− a
2

)k+1
∣

∣

∣

∣

∣

≤
(b− a)n+1

2n+1(n+1)!

[
∣

∣

∣

∣

f (n)
(

a+ b
2

)
∣

∣

∣

∣

+
∣

∣

∣
f (n)(b)

∣

∣

∣

]

.

(2)
∣

∣

∣
f (n)
∣

∣

∣
is decreasing, then we have

∣

∣

∣

∣

∣

∫ b

a
f (t)dt −

n−1

∑
k=0

f (k)(a)+ (−1)k f (k) (b)
(k+1)!

(

b− a
2

)k+1
∣

∣

∣

∣

∣

≤
(b− a)n+1

2n+1(n+1)!

[

∣

∣

∣
f (n) (a)

∣

∣

∣
+

∣

∣

∣

∣

f (n)
(

a+ b
2

)∣

∣

∣

∣

]

.

Remark. Under conditions of Theorem4, if we choose n = 1; then we obtain inequality (2).

Theorem 5.Let f : [a,b]⊂ R→ R be n−times differentiable and 0≤ a < b. If f (n) ∈ L[a,b] and
∣

∣

∣
f (n)
∣

∣

∣

q
is quasiconvex

on [a,b], then the following inequality holds.

∣

∣

∣

∣

∣

∫ b

a
f (t)dt −

n−1

∑
k=0

f (k)(a)+(−1)k f (k) (b)
(k+1)!

(

b−a
2

)k+1
∣

∣

∣

∣

∣

≤
(b−a)n+1

2n+1n!

(

1
np+1

)
1
p

[

(

max

{

∣

∣

∣
f (n) (a)

∣

∣

∣

q
,

∣

∣

∣

∣

f (n)
(

a+b
2

)
∣

∣

∣

∣

q}) 1
q

(9)

+

(

max

{
∣

∣

∣

∣

f (n)
(

a+b
2

)
∣

∣

∣

∣

q

,
∣

∣

∣
f (n)(b)

∣

∣

∣

q
})

1
q

]

where q > 1.
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Proof. From Lemma1 and the Hölder integral inequality, we obtain

∣

∣

∣

∣

∣

∫ b

a
f (t)dt −

n−1

∑
k=0

f (k)(a)+(−1)k f (k) (b)
(k+1)!

(

b−a
2

)k+1
∣

∣

∣

∣

∣

≤
(b−a)n+1

2n+1n!

{

(

∫ 1

0
(1− t)npdt

)
1
p
(

∫ 1

0

∣

∣

∣

∣

f (n)
(

t
a+b

2
+(1− t)a

)∣

∣

∣

∣

q

dt

)
1
q

+

(

∫ 1

0
(1− t)npdt

)
1
p
(

∫ 1

0

∣

∣

∣

∣

f (n)
(

t
a+b

2
+(1− t)b

)∣

∣

∣

∣

q

dt

)
1
q

}

.

Since
∣

∣

∣
f (n)
∣

∣

∣

q
is quasiconvex on[a,b], for q > 1, then

∣

∣

∣

∣

∣

∫ b

a
f (t)dt −

n−1

∑
k=0

f (k)(a)+(−1)k f (k) (b)
(k+1)!

(

b−a
2

)k+1
∣

∣

∣

∣

∣

≤
(b−a)n+1

2n+1n!

(

1
np+1

)
1
p

[

(

max

{

∣

∣

∣
f (n) (a)

∣

∣

∣

q
,

∣

∣

∣

∣

f (n)
(

a+b
2

)
∣

∣

∣

∣

q}) 1
q

+

(

max

{
∣

∣

∣

∣

f (n)
(

a+b
2

)
∣

∣

∣

∣

q

,
∣

∣

∣
f (n)(b)

∣

∣

∣

q
})

1
q

]

which completes the proof.

Corollary 2. Let f as in Theorem 5, if in addition

(1)
∣

∣

∣
f (n)
∣

∣

∣

q
is increasing, then we have

∣

∣

∣

∣

∣

∫ b

a
f (t)dt −

n−1

∑
k=0

f (k)(a)+ (−1)k f (k) (b)
(k+1)!

(

b− a
2

)k+1
∣

∣

∣

∣

∣

≤
(b− a)n+1

2n+1n!

(

1
np+1

)
1
p
[∣

∣

∣

∣

f (n)
(

a+ b
2

)∣

∣

∣

∣

+
∣

∣

∣
f (n) (b)

∣

∣

∣

]

.

(2)
∣

∣

∣
f (n)
∣

∣

∣

q
is decreasing, then we have

∣

∣

∣

∣

∣

∫ b

a
f (t)dt −

n−1

∑
k=0

f (k)(a)+ (−1)k f (k) (b)
(k+1)!

(

b− a
2

)k+1
∣

∣

∣

∣

∣

≤
(b− a)n+1

2n+1n!

(

1
np+1

)
1
p
[

∣

∣

∣
f (n) (a)

∣

∣

∣
+

∣

∣

∣

∣

f (n)
(

a+ b
2

)
∣

∣

∣

∣

]

.

Remark. Under conditions of Theorem5, if we choose n = 1; then we obtain inequality (3).

Theorem 6.For n ≥ 1, let f : [a,b] ⊂ R → R be n−times differentiable and 0 ≤ a < b. If f (n) ∈ L[a,b] and
∣

∣

∣
f (n)
∣

∣

∣

q
is

quasiconvex on [a,b], for q ≥ 1, then the following inequality holds.

∣

∣

∣

∣

∣

∫ b

a
f (t)dt −

n−1

∑
k=0

f (k)(a)+ (−1)k f (k) (b)
(k+1)!

(

b− a
2

)k+1
∣

∣

∣

∣

∣

≤
(b− a)n+1

2n+1(n+1)!

[

(

max

{

∣

∣

∣
f (n) (a)

∣

∣

∣

q
,

∣

∣

∣

∣

f (n)
(

a+ b
2

)
∣

∣

∣

∣

q}) 1
q

+

(

max

{∣

∣

∣

∣

f (n)
(

a+ b
2

)∣

∣

∣

∣

q

,
∣

∣

∣
f (n)(b)

∣

∣

∣

q
})

1
q
]

.

Proof. From Lemma1 and using the well known power-mean integral inequality, wehave

∣

∣

∣

∣

∣

∫ b

a
f (t)dt −

n−1

∑
k=0

f (k)(a)+ (−1)k f (k) (b)
(k+1)!

(

b− a
2

)k+1
∣

∣

∣

∣

∣

≤
(b− a)n+1

2n+1n!

{

∫ 1

0
(1− t)n

∣

∣

∣

∣

f (n)
(

t
a+ b

2
+(1− t)a

)∣

∣

∣

∣

dt

+

∫ 1

0
(1− t)n

∣

∣

∣
f (n) (wt +(1− t)b)

∣

∣

∣
dt

}

≤
(b− a)n+1

2n+1n!

{

(

∫ 1

0
(1− t)ndt

)1− 1
q
(

∫ 1

0
(1− t)n

∣

∣

∣
f (n) (wt +(1− t)a)

∣

∣

∣

q
dt

)
1
q

+

(

∫ 1

0
(1− t)ndt

)1− 1
q
(

∫ 1

0
(1− t)n

∣

∣

∣

∣

f (n)
(

t
a+ b

2
+(1− t)b

)∣

∣

∣

∣

q

dt

)
1
q
}

c© 2018 BISKA Bilisim Technology

www.ntmsci.com


6 C. Yildiz: New general integral inequalities for quasi convex functions

wheret a+b
2 . Since

∣

∣

∣
f (n)
∣

∣

∣

q
is quasiconvex on[a,b], for q ≥ 1, then we obtain

∣

∣

∣

∣

∣

∫ b

a
f (t)dt −

n−1

∑
k=0

f (k)(a)+ (−1)k f (k) (b)
(k+1)!

(

b− a
2

)k+1
∣

∣

∣

∣

∣

≤
(b− a)n+1

2n+1(n+1)!

[

(

max

{

∣

∣

∣
f (n) (a)

∣

∣

∣

q
,

∣

∣

∣

∣

f (n)
(

a+ b
2

)∣

∣

∣

∣

q}) 1
q

+

(

max

{∣

∣

∣

∣

f (n)
(

a+ b
2

)∣

∣

∣

∣

q

,
∣

∣

∣
f (n)(b)

∣

∣

∣

q
})

1
q
]

.

which completes the proof.

Remark. Under conditions of Theorem6, if we choose n = 1; then we obtain inequality (4).

3 Conclusions

In this study, we presented some generalized Hermite type inequalities for the mappings whose derivatives are quasiconvex

functions are established. A further study could be assess weighted versions of these inequalities.
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[12] M.E. Özdemir, Ç. Yıldız, New Inequalities for Hermite-Hadamard and Simpson Type with Applications, Tamkang J. of Math., 44,

2, 209-216, 2013.
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