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Abstract: This paper concentrates on modeling of the uncertain eptragti item solid transportation problem, in which the slypp
capacities, demands, conveyances and transportationitepare thought to be uncertain variables due to the oilsvimcertainty of
information. In general, the transportation cost in thesportation problem is employed by the optimization aimilevthe dispersals
of trips among sources, destinations, and conveyancesfe® ignored. In order to minimize both transportation pées and
maximize entropy value which guarantees uniform transggiort of products from sources to destinations via convegsthis paper
holds entropy function of dispersals of trips among sourdestinations, and conveyances as a second objectivéduniiside the
construction of uncertainty theory, the uncertain entrypction for transportation models is first proposed heteusTthe model is
turned into its crisp equivalent by using uncertainty tlyeavhich can be solved by applying minimizing distance ojstation
method. Finally, a numerical experiment is given to illagtrthe models.

Keywords: Uncertain entropy function, multi-item solid transpoitat problem, uncertain multiobjective optimization, urteenty
theory.

1 Introduction

The requirement of improvement of classical Transpomatsoblem (TP) to Solid Transportation Problem (STP)
occurs, when different species of conveyances are poshibileg the transportation of commodities to minimize tinse a
well as cost. TP introduced by Shell [1], and then Haley [&gented to solve a solution procedure. The multi-item solid
transportation problem (MISTP) is the complicated formhaf STP. It comprises collections of conveyances to carry one
or more goods. Nowadays, it has been studied by some resea{8h3] and so on.

It is usually difficult to predict the precise penalties fariying the cost with a time, amount of demands, capacifies o
different conveyances due to the uncertainty of MISTP. &feae the probability distributions of the variables canb®
observed. Thus, we can need some specialists to determéniettef degrees that each event will happen. It is an
imprecision which is associated to as human uncertaintytiar words, a conventional view is to handle belief degrees
like probability distributions. Liu [9] demonstrated thats inappropriate to determine belief degrees, it willgnise to
unacceptable ends.

In order to handle these types of uncertainties, Liu [10ppngéed uncertainty theory which is a branch of mathematics
based on normality, monotonicity, self-duality, countaldubadditivity and product measure axioms. Then the
uncertainty theory was redefined by Liu[11] in 2010. Sinanthstudies on uncertainty theory have started to increase i
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both theory and practice. Moreover, it has been used in mesgsasuch as game theory [12-15], finance [16,17,18],
differential equation [19], regression [20], optimizati21-23], graph theory [24-27] and so on.

STP with uncertain variables has been examined by some ashdCui and Sheng [28] presented its uncertain
programming models. Zhang et al. [29] studied the fixed ahaddid transportation problem applying uncertainty tigeor
to the crisp STP. Chen et al.[30] presented its uncertaitritdria models. They studied an entropy based STP with
Shannon entropy in [31]. Uncertain MISTP models for camgyimultiple product were studied by Dalman [4] and Liu et
al.[6].

Entropy is employed to produce a quantitative measure oflfgeee of uncertainty. Based on the Shannon entropy of
random variables [32], fuzzy entropy was first introducedZageh [33] to quantify the fuzziness, who represented the
entropy of a fuzzy event as a weighted Shannon entropy. Basdtie uncertainty theory, the concept of entropy of
uncertain variables is proposed by Liu [34] in 2009 to chemdze the uncertainty of uncertain variables resultirgrfr
information deficiency. Chen and Dai [35] investigated thaximum entropy principle of uncertainty distribution for
uncertain variables. The entropy of a function of uncertanables is presented by Dai and Chen [36]. Uncertain
entropy function describes a measure of dispersals of firjps sources to destinations via conveyances. It is useful t
minimize the uncertain transportation penalties as wellteasnaximize uncertain entropy amount. That ensures
consistent distribution of commodities between origing dastinations via different conveyances. Therefore aropnt
based MISTP in this paper is formulated. Thus uncertainopgtfunction of dispersal of trips between origins and
destinations is considered as a second objective fund@iorthe single objective MISTP transformed to multiobjestiv
MISTP, and then it is solved by using some mathematical @mogning methods.

The rest of the paper is constructed as follows. Section Zaation 3 offer basic definitions and theorems for modeling
an entropy based MISTP with uncertain variables. The sireaif the MISTP is presented in Sect. 4. An entropy based
model is developed in Sect 5. Section 6 includes numeriga@xent. The study is concluded in Sect. 7.

2 Preliminary

In this section, basic definitions and theorems are giventhe theory of uncertainty.

Definition 1. (Liu [10]) Let £ be aoc-algebra on a nonempty sét. A set functioM : £ — [0,1] s referred to as an
uncertain measuiiéit meets the following axioms:
Axiom 1. Normality Axiom) M{I" } = 1;

Axiom 2. Puality Axiom) M{A} + M{A°} = 1for anyA € £;
Axiom 3. Subadditivity Axiorm) For each numerable sequence{df;} € £, we obtain

M{Dl/\i} < iiM{/\i}.

The triplet(I", £,M) is referred to as amuncertainty spaceand each componerit in £ is referred to as arevent Also,
in order to obtain an uncertain measure of compound eventoduyzt uncertain measure is introduced by LR} py the
following product axiom:

Axiom 4. Product Axiom) Let (I, Lk, M) be uncertainty spaces fork 1,2, --- The product uncertain measul is an
uncertain measure satisfying
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M oo/\ :mM/\
{ﬂ k} k/:\l k{ A}

where/\y are arbitrarily chosen events frofy fork =12, ---, respectively.

Definition 2. (Liu [10]) An uncertain variabl€ is a measurable function from an uncertainty spécel, M) to the set
of real numbers, i.e., for any Borel set B of real numbers stite

{¢eBl={yel[&(y) B}

is an event.

Definition 3. (Liu [10]) The uncertainty distributior® of an uncertain variabl€ is defined by
P(x) =M{E <x}, vxel.

Definition 4. (Liu[10]) Let & be an uncertain variable. Thexpected valuef ¢ is defined by

ele] = [onig = o [ e <njar

provided that at least one of the above two integrals is fiditeuncertain variablef is called linear if it has a linear
uncertainty distribution

0, x<a
P(x)=1 (x—a)/(b—a), a<x<b
1, X>b

denoted by ¥a, b) where a and b are real numbers withab. Suppose thaf; and &, are independent linear uncertain
variables £(a;,b;) and L(ap, by) . Then the sund; + &, is also a linear uncertain variable ¢a; + ap, by + by) .

Definition 5. (Liu[10]) Let & be an uncertain variable with a regular uncertainty distrtion @ (x). If the expected value
is exist, then

1
E[§] = / o Y(a)da
Jo

where®—1(a) is theinverse uncertainty distributionf & .

Theorem 1.(Liu [11]) Assumefy, &, --- , &, are independent uncertain variables with regular uncertgidistributions
@, Dy, - Dy, respectively. If the function(ky, Xz, - - - ,Xn) is strictly increasing with respect tq %%, - - -, Xm and strictly
decreasing with respect toX1,Xm+2, - - , Xn, thené = f(&1,&2,- -+, &y) has an inverse uncertainty distribution

Y ia)=f (oY (a), - Ppt(a), ot (1-a),- -, O (1—a)).

In addition, Liu and Ha P] proved that the uncertain variabl& has an expected value

E[é] = /Olf (&7 a), -, dt(a), cbgil(lf ), oy (1—a))da.
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Theorem 2.(Liu[11]) Let & andn be independent uncertain variables with finite expectedaslHence, for any real
numbers a and b, we have

E[ag +bn] = aE[¢] + bE[n].

Theorem 3. (Liu[22]) Let g({x,&1,&2,...,&n) be constraint function. This function is strictly incregiwith respect
to &1,&2, ..., & and strictly decreasing with respect &, 1. £1,&2, ..., & are also independent uncertain variables with
uncertain distributionsby, @5, ... @y, respectively, then the chance constraint

‘%{g({xv 517527' . -,En) S O} Z a

holds if and only if
g({x @ Ha),..., o (a),
o L(1-a),...,d7 (1-a)) <O

The definition and theory of uncertain entropy function isaduced by Liu [15], as follows.

Theorem 4.(Liu [34]) Let £ be an uncertain variable and its entropy is determined as:

HIE] = [ S(a{& <x})dx,

where St) = —tIint— (1—t)In(1—t).

Theorem 5.Let& be an uncertain variable with regular uncertainty distritan @. If the entropy H¢| exists, then

da

1
H[&] :écb’l(a)ln Lt

Let’s examine the entropy of uncertain variables with tharegles given below.

Example 1Let ®1(a) = (1— a)a+ ab be the inverse uncertainty distribution for linear undertariable.Z (a,b) .
From Theorem 2.5, its entropy is determined as follows:

a
l1-a

1 _
H=/o(a)ln da =222,
! 2

Example 2Let

o (a) = (1-2a)a+2ab, ifa<05
(2—2a)b+ (2a —1)c, ifa > 0.5.

be the inverse uncertainty distribution of zigzag uncertariable 2 (a,b,c). Then Theorem 2.5, its entropy can be

obtained as follows:
a da — C;
1-a 2 °

jo}]

L1
H=/® " (a)ln
0
Example 3Similarly, let @1 (a) = e+ %é In ;9= be the inverse uncertainty distribution of normal uncertsiriable
A (e,0). Applying Theorem 2.5, its entropy obtained is as follows:

no
da

a —_
1-a /3

1
H=/® (a)ln
0
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3 Uncertain programming model for multi-item solid transportation problem

In order to model an entropy based MISTP with uncertain e the formulation of MISTP is first presented, then it
is transformed into the entropy based MISTP model with ua@erariables.

In a MISTP, there is a multi product to be carried from a setr@ios to a set of destinations by a set of both similar or
distinct conveyances. Every origin has a state which pesvidny of the destinations employing some of the
conveyances, and every destination can receive its demamdsbme of the origins employing some of the conveyances.
Therefore each origin can provide zero, one or more degtimgtand the demand for each destination can be joined by
at least one origin. Each conveyance is employed from thginsrito the destinations for zero, one or more unlocked
ways. A unit price is considered for carrying any quantityppbducts between the origins and the destinations via
distinct conveyances. In actual, the goal of a MISTP is toimize the total transportation cost by receiving an optimal
result of products which are communicated in the unlockeebtibns by distinct conveyances.

Here the following notations are employed in all models.
M : the number of origins,
N : the number of destinations,
L : the number of conveyances,
R : the number of items,
i, ],k p:the indexes used for source, destination and conveyagsectively.
a1-p : the capacity of products of itemat originsi ,
bJp : the demand of products of itepat destinatiorj,
& : the total transportation capacity of conveyakgce
cﬁk is the unit cost of transporting one unit of itgmfrom sourcd to destinationj by conveyancé,

xf}k is the amount of itenp to be carried from sourdeo destination by conveyancé.

Under these notations, a conventional mathematical mddél$TP can be formulated as follows:

£ (x R M N L P op
Chy X a

() pé IZlJZlkZl IijIjk ()

N L

ZZ.k<a1 VieM; VpeR (b)

(TR

P >bPVjeN; VpeR (1)

st RV EN PR (0

R M L

Y Z&Jk<€k,Vk€L (d)

p=1i=1k=1

X > 0,VieM;VjeN;vkeL;VpeR (e)

The objective function (a) diminishes the total transpwtacost which is the sum of each unit cost. Constraint (b)
guarantee that the whole amount of prodpicarried from each origin to every destination should notfeatgr than the
capacity of that origin. Constraint (c) explains that thended for each destination should be answered. Constrgint (d
shows the capacity of each conveyance, and constraint{esents nonnegative variables.

In order to obtain its uncertain programming model, let ussider that the per unit coéﬁk, the capacity of each origin
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a1p, that of each destinatid® and each conveyarﬁ% are all uncertain variables, respectively. Then uncertain

programming model of the MISTP can be expressed as

R M N L
f(X,E) Z Z Z Z IjkEIjk
p=1li=1j=1k=
NoL p p
,Z §X|1k<a1 ,VieM;VpeR
M L ~ .
3 2 Xk =BV eN; vpeR
st. { iZ1k=1
R M L
S 5 3 X sS8Vkel
p=1li=1k=1
Xk >0,VieM;VjeN;vkeL;VpeR

(@)

This problem can not be optimized in this form because it @ostuncertain variables. In order to optimize the MISTP
with uncertain variables given above, its expected valogm@mming model should be formulated via chance constraint

. R M N
E[f(x,E)]:mlnE Z Zl ZlkZ (Eljkxljk)

st. 1k=1

N L
My 5 xP ﬁipgo}zyip,ViEM;VpeR
=1
M
Mdbj— 3 quk<0}>[3 VieN;VpeR
k=

R

{z z zx @go}z@,VkeL
p=1li=

xijkzo, VleM;VjeN;vkeL;VpeR

wherea,BP,&, Vi € M;Vj € N; Vk € L; Vp € Rare show that the confidence levels of each of constraint

Theorem 6.Further, model (3) is converted into its equivalent form as:

M

. R M N 1
min Z Z Z X|]kf¢§ ( )da
p=1i=1j=1k=1 0 ik

p=1i=1j=
xﬁkzo,wEM,vJeN;VpeR

WhereE”k, b

N L
b~ (1-aP)<0,VieM;¥peR

Z Z lek aip
j=1k=1
M L
s ) % ()= 2, zyﬁ-k <0.¥j eN¥peR
R M N
> 2 Z&,k 2 (1-3) <0, kel

(4)

b &, Vijk are independent uncertain variables with uncertainitytxibutions@g_pk , <D51_p, ®pp, P, .
1] ]

Proposition 1. SlnceE”k has a regular uncertainty distributiomﬁk, from Theorem 1 and Theorem 2, we write

1k=1

R M N L R M N L R M N L
%;ZZGWW)zégzzakkqfégzzxdﬁw
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Applying Theorem 3 to the constraints of model (3), we have

The above operations show that model (3) is equivalent toeir(ddl

4 Entropy based MISTP models with uncertain variables

In a conventional MISTP, some products are carried fromiotig some distinct destinations through some conveyances
by minimizing the total costs. At the same time, the cost [gegsive without entropy function because we need to try to
arrive all directions in a transportation network, if pdmsi It helps to reach all directions and reduce cost. Thisvsh

the necessity of the entropy function in the MISTP. Therefan uncertain entropy function is presented here as an
additional objective.

By employing Theorem 4 and Theorem 5, the objective funcbbrmodel (4) can be converted to the following
uncertain entropy function.

Lemma 1. Suppos;(-:i;'IJk is an uncertain variable with regular uncertainty distritoon CDiE’k. If f: %" — % is a strictly
increasing function with respect th}Pg(then the uncertain function(k, &) has an entropy, i.e.,

R M N L 1

HiE)=3 5 3 5 A [ o @
0

da

p1| jlk

It is obvious that if f: Z" — Z is a strictly decreasing function with respect l@;(xthen the uncertain function(k, &)

has an entropy
R M N a

HxE=3 5 3 zxjk/qafuk (1-a)h —"—da.

j=1k=1

Proposition 2. SlnceE”k has a regular uncertainty dIStI’IbutIOﬂ)IJk, we obtain

" pi%i%i 7 ( IJk(X)>dx

From Theorem 2.5, this equality can be rewriten as:

P
&k

/ ' (a) dardx+ §
0

<

p=1i= J:lk:l

E‘i\.o
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where f(a) = (—alna—(1-a)In(1-a)) = —In%;.

By applying the Fubini Theorem to the above function, weiabta

CDEP X)
R MN L 9 9 R M N L ik
HixE =3 Y S S [ [ f(a)dadxr Sxh [ [ —f(@)dudx
p=1i=1]=1k=1 oo 1 p=1i=1j=1k=1 0
A %
RMN L 1 . R M N 1
- X [ O @1 (@da= 3 " [0 (@i da
p=1i= jZlk:l ka il p= 1| Z ”ko it
Adding the entropy function to model (4), it turns to the éaling multiobjective model.
R M N L 1
miny 3 Y 3 %[ P (a)da
p=1i=1j=1k=1 0 ijk
R M N L a
max Z Z Z Z Xuqu)fp ( )Inﬁda
p=1li=1j=
N L
1-aP)<0,vieM;¥peR
lekzlxuk ( ) = p (5)
ot cDBl ) zx”k<0VJeNVpeR
R M N
33 Y X~ @ t(1-3) <0, vkel
p=1li=1j=1
xﬁkzo,wGM;vJeN;VpeR

In the multiobjective MISTP model given above, the entropgdtion serves as a measure of dispersal of trips among
origins, destinations, and conveyances. It results mduatée to produce minimum transportation costs with maximu
entropy amount.

Example 4.Let us consider the MISTP function and suppoﬁg are independent uncertain variables with linear

distributionL (aﬂk, biﬂ?k) . Then the MISTP function has the following entropy function

R
lel

! L
-1 a . p ijk al]k
ZXIk/CDEi?k(a)Inl_adale ZXijk< 5 )
0

p=1li=1j=1k=1

I
I
=~

where

Example 5.Supposexf are independent uncertain variables with with zigzag ithistion Z (afj?k, bfj’k,ci‘}k) . Then the
MISTP function has the following entropy function

R

R L 1 M
= X dJ
lei: i= kZl |k0/ ”k leIZJ

<

N L
ijk auk
5 ()

(© 2018 BISKA Bilisim Technology



 ntmsci.com/cmma 

35 BISKA H. Dalman: Modelling and optimization of multi-item solichhsportation problems with uncertain...

where

o} (a

(1- Za)a”k+2cxb”k, ifa <0.5
e (0) =
ijk (

2—2a)bf} + (2a - 1)cfy,, ifa > 0.5.

Example 68uppose<IJk are independent uncertain variables with with normal uagedistributionN (e”k, ”k) Then
the MISTP function has the following entropy function

1 R MN L nq?k
xP /CD X —
1 Iko it pzuZLJZkzl ”k< V3 )

<
z
-

R
XE:Z

H
Il
=~}
Il

|Jk\/—

Whered><,l? (o) =ej + In%5.

4.1 Minimizing distance function

This method combines multiple objectives

(E[f2(x IE[f2(x, &I, E[fq(x,£)])

employing the distance metric of any solution from the idsdlition(ES,E;, ..., Ea) whereE;* for eachi = 1,2, ...,0,are
the optimal values of thie-th objective function.

min (\/(E[f1(x )] — Ef)2+ (E[fa(x,&)] — B3>+, -, +(Elfalx.&)] — Eg)?)
subject to: (6)
M{gJ(X,E)SO}ZaJ, j:1525"'7p

Theorem 7.Let % be an optimal solution of model (6). Thenshould a Pareto optimal solution of model (5).

Proof of the above theorem is given by Dalman[4].

5 A numerical example

In order to show the employment of these models, we confemaeniaal experiment in this section. Suppose that two
products (items) are to be carried through two distinct eyances @;,C,) from three originaD;,0,,03) to four
destinationdd;, D2, D3, Dy).

The schematic illustration for the considered MISTP is giweith Fig. 1 where the hosts display all the potential
directions for carrying two different products from theginis to the destinations via conveyances.

(© 2018 BISKA Bilisim Technology
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Fig. 1: The representation of network for the considered MISTP

Let us consider that variables of the objective functionrayemal uncertain variables and also, variables of conggai
are linear uncertain variables, respectively. All datalfiermodel is presented in Tables 1, 2, 3, 4 and 5, respectively

&h—N(ehoah), ieL3iieLake(12:peL2)
& 5 L(a".bP), ie[1,3;pe (L2

BJP%L<bJp,b,P)7 jel4;pelL?

&L (b).bP), kell,2)

Table 1 :The transportation cof;‘rfk foritemp=1
ijll 1 2 3 4 i,lz 1 2 3 4
1 N(10,2) N(9,1.5) N(12,2) N(8,1.5) 1 N(7,2) N(5,15) N(5,2) N(6,1.5)
2 N(8,1) N(9,1.5) N(11,2) N(10,1) 2 N(G5,1) N(6,1.5) N@4,2) N(6,1)
3  N(8,1.5) N(17,1.5) N(6,1.5) N(10,1.5) 3 N(4,1.5) N(7,1.5) N(6,1.5) N(5,1.5)

Table 2 :The transportation cafy for itemp =2

5 1 2 3 4 2 1 2 3 4
1 N©92 N@®615 NGB2 N7.15 1 NG52) NG6,15 N7,2) NO1.5)
2 N(9,1) N(10,1.5) N(11,2) N(10,1) 2 NG,1) NG,15) NGEB2) NGB
3  N(6,1.5) N(18,1.5) N(8,1.5) N(12,1.5) 3 N(2,1.5) N(8,1.5) N(7,1.5) N(3,1.5)
Table 3 The sources’”
i 1 2 3 1 2 3

& £(200,300) (250,350) +(100,150)a2~ £(100,150) (125,250) (110,160)

(© 2018 BISKA Bilisim Technology
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Table 4 :The demancfé’

i 1 2 3 4 1 2 3 4
bl £(75,125) £(30,75) (15,35) +(25,50) b? +(55,100) +(60,100) +(20,30) (10,20)
Table 5 :The transportation capacit&s ~

k 1 2
& +(250,300) £(350,500)

Following from the above data tables, expected value fondtr the MISTP is defined as;

1 4 2

2 3
533 3 [ o @da=5 55 55,

p=1i 0

2

and from Lemma 5.1, it has an entropy

Asume that the expected value function and its entropy fanare f; (x,&), f2 (x, &), respectively. Because the aim of
this problem is to reach maximum roots with minimum costentthe expected value programming model for the entropy

based MISTP model is formulated as follows:

2 3 4 2
E[fi(x,&)] = npé gl Zlg )(Ijkei':;k
2 3 4 2 o
E[f2(x,&)] = maxpzllz 3 quk< \/%k>
42
3 2 k= ogii-aP)<0icLdipeL? %
o1 (P 3 2 <o, 14 12
st.d P (Bi) - zlejk je1,4;pe1,2
2 3 4
2122 ik 5 (1—3) <0ke [1,2
XﬁkZO,'G[lﬁ],J6[1,4];k€[1,2];pg[172]

Suppose that the confidence levels gfe= 0.9;3” = 0.9, = 0.9 andi = 1,23,j = 1,234k =1,2,p= 12,
respectively.

Reconstructing model(7) as a single objective programnpragblem under the system constraints neclecting the

different objective, we obtain

2 3 4 2
min Z Z Z Z I]keljk
p=1li=1j=1k=1
% %xf’ Hl-aP)<0ie(1,3;pe1,2
==t jk a]P i/ =% [ B }
3 2
se.d % (8) -2, zm‘}kzo,JenA]:pe[l,a ®
2 3 4
leIZ Z lek (1—@)§O,k€[1,2]
xﬁkzo,ue[l,?,],Je[l,4];ke[1,2];pe[1,2]

(© 2018 BISKA Bilisim Technology
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max 2.3 42 "0'.',1
gllzljzlkg Xijk ( )
lekzlx”k q)gpl(lf aP)<0ic[L3;peL2
o (B) - 3. 3 X <01 e Laipe 1.2 ©)

st.

4
pzllzljzlxljk @' (1-8) <0ke 1,2

xf}k >0,ic[L,3];je[1,4;ke[1,2;pe L2

Solving problem(8), and(9),respectively, we obtain the following individual solutgn

min E[f;] = 12355 and max Ef;] = 6869500
min E[fy] = 694.322 and max [f,] = 2125142

Applying the distance minimization method (6) to model (fpdel (7) is reduced to the following single objective

programmng problem.

min 2342pep Efz 2342_IJk
péligljglkzlxijk ik —Elfa] | + pznz Z ZXUK

4

2
leZX,Jk alp(l—aip)<0|€[ 3;pelL,2]
3 2
st. (DE:}’l(BJp) kzlkzl&,k<016[1 A pe (1,2
2 3
2 §lek ®;*(1-8) <0 ke[1,2]
p=li=1j=1

Xk >0,i€e[L3;]jeL4ke([1,2;pe (1,2

2
- [f2]>

(10)

where the confidence levels af¢= 0.9;8" = 0.9;5 = 0.9 andi = 1,2.3,j = 1,2,3,4,k= 1,2, p= 1,2, respectively.

Taking E[f1] = 12355 and Hf;] = 2125142 in problem (10), it is solved to obtain the optimal sau8 by using Maple

2017 optimization toolbox, and the the solutions obtainedss follows:

x}yo= 34500 X1, = 2,x},, = 0.500, X35, = 17, X3, = 80, X3, = 25, X25; = 105, X3,, = 64, X35, = 73.500,

x%,,=59.500 x3,,= 11

By putting these parameters into Model (7), the minimum obstined is Ef;] = 1712

6 Conclusions

This paper presented the model of entropy based multi-itelid sransportation problem with uncertain variables.
Applying the expected value and chance-constrained pnugiag to the given MISTP with uncertain variables, a
deterministic model for the MISTP is first obtained. By takithe entropy of the objective function, the model is
transformed into a multiobjective MISTP. Thanks to entr@g reached to all roots with minimum cost. In order to

show its optimal solution, the distance minimization metioapplied to the multiobjective model. Finally, a numatic

experiment is given to demonstrate the applications of tlelets. The entropy function can be applied to different

uncertain transportation models such as step fixed-chamgldobjective and multilevel solid transportation andoso

(© 2018 BISKA Bilisim Technology
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