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Abstract: This paper concentrates on modeling of the uncertain entropy multi item solid transportation problem, in which the supply
capacities, demands, conveyances and transportation capacities are thought to be uncertain variables due to the obvious uncertainty of
information. In general, the transportation cost in the transportation problem is employed by the optimization aim, while the dispersals
of trips among sources, destinations, and conveyances are often ignored. In order to minimize both transportation penalties and
maximize entropy value which guarantees uniform transportation of products from sources to destinations via conveyances, this paper
holds entropy function of dispersals of trips among sources, destinations, and conveyances as a second objective function. Inside the
construction of uncertainty theory, the uncertain entropyfunction for transportation models is first proposed here. Thus the model is
turned into its crisp equivalent by using uncertainty theory, which can be solved by applying minimizing distance optimization
method. Finally, a numerical experiment is given to illustrate the models.

Keywords: Uncertain entropy function, multi-item solid transportation problem, uncertain multiobjective optimization, uncertainty
theory.

1 Introduction

The requirement of improvement of classical Transportation Problem (TP) to Solid Transportation Problem (STP)

occurs, when different species of conveyances are possibleduring the transportation of commodities to minimize time as

well as cost. TP introduced by Shell [1], and then Haley [2] presented to solve a solution procedure. The multi-item solid

transportation problem (MISTP) is the complicated form of the STP. It comprises collections of conveyances to carry one

or more goods. Nowadays, it has been studied by some researchers [3-8] and so on.

It is usually difficult to predict the precise penalties for carrying the cost with a time, amount of demands, capacities of

different conveyances due to the uncertainty of MISTP. Therefore the probability distributions of the variables cannot be

observed. Thus, we can need some specialists to determine the belief degrees that each event will happen. It is an

imprecision which is associated to as human uncertainty. Inother words, a conventional view is to handle belief degrees,

like probability distributions. Liu [9] demonstrated thatit is inappropriate to determine belief degrees, it will give rise to

unacceptable ends.

In order to handle these types of uncertainties, Liu [10] presented uncertainty theory which is a branch of mathematics

based on normality, monotonicity, self-duality, countable subadditivity and product measure axioms. Then the

uncertainty theory was redefined by Liu[11] in 2010. Since then, studies on uncertainty theory have started to increase in
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both theory and practice. Moreover, it has been used in many areas such as game theory [12-15], finance [16,17,18],

differential equation [19] , regression [20], optimization [21-23], graph theory [24-27] and so on.

STP with uncertain variables has been examined by some scholars. Cui and Sheng [28] presented its uncertain

programming models. Zhang et al. [29] studied the fixed charge solid transportation problem applying uncertainty theory

to the crisp STP. Chen et al.[30] presented its uncertain bi-criteria models. They studied an entropy based STP with

Shannon entropy in [31]. Uncertain MISTP models for carrying multiple product were studied by Dalman [4] and Liu et

al.[6].

Entropy is employed to produce a quantitative measure of thedegree of uncertainty. Based on the Shannon entropy of

random variables [32], fuzzy entropy was first introduced byZadeh [33] to quantify the fuzziness, who represented the

entropy of a fuzzy event as a weighted Shannon entropy. Basedon the uncertainty theory, the concept of entropy of

uncertain variables is proposed by Liu [34] in 2009 to characterize the uncertainty of uncertain variables resulting from

information deficiency. Chen and Dai [35] investigated the maximum entropy principle of uncertainty distribution for

uncertain variables. The entropy of a function of uncertainvariables is presented by Dai and Chen [36]. Uncertain

entropy function describes a measure of dispersals of tripsfrom sources to destinations via conveyances. It is useful to

minimize the uncertain transportation penalties as well asto maximize uncertain entropy amount. That ensures

consistent distribution of commodities between origins and destinations via different conveyances. Therefore an entropy

based MISTP in this paper is formulated. Thus uncertain entropy function of dispersal of trips between origins and

destinations is considered as a second objective function.So the single objective MISTP transformed to multiobjective

MISTP, and then it is solved by using some mathematical programming methods.

The rest of the paper is constructed as follows. Section 2 andSection 3 offer basic definitions and theorems for modeling

an entropy based MISTP with uncertain variables. The structure of the MISTP is presented in Sect. 4. An entropy based

model is developed in Sect 5. Section 6 includes numerical experiment. The study is concluded in Sect. 7.

2 Preliminary

In this section, basic definitions and theorems are given about the theory of uncertainty.

Definition 1. (Liu [10]) Let L be aσ -algebra on a nonempty setΓ . A set functionM : L → [0,1] s referred to as an

uncertain measureif it meets the following axioms:

Axiom 1. (Normality Axiom) M{Γ }= 1;

Axiom 2. (Duality Axiom) M{Λ}+M{Λc}= 1 for anyΛ ∈ L;

Axiom 3. (Subadditivity Axiom) For each numerable sequence of{Λi} ∈ L, we obtain

M

{

∞
⋃

i=1

Λi

}

≤
∞

∑
i=1

M{Λi}.

The triplet(Γ ,L,M) is referred to as anuncertainty space, and each componentΛ in L is referred to as anevent. Also,

in order to obtain an uncertain measure of compound event, a product uncertain measure is introduced by Liu [?] by the

following product axiom:

Axiom 4. (Product Axiom) Let (Γk,Lk,Mk) be uncertainty spaces for k= 1,2, · · · The product uncertain measureM is an

uncertain measure satisfying

c© 2018 BISKA Bilisim Technology

 ntmsci.com/cmma 


30 H. Dalman: Modelling and optimization of multi-item solid transportation problems with uncertain...

M

{

∞

∏
k=1

Λk

}

=
∞
∧

k=1

Mk{Λk}

whereΛk are arbitrarily chosen events fromLk for k= 1,2, · · · , respectively.

Definition 2. (Liu [10]) An uncertain variableξ is a measurable function from an uncertainty space(Γ ,L,M) to the set

of real numbers, i.e., for any Borel set B of real numbers, theset

{ξ ∈ B}= {γ ∈ Γ |ξ (γ) ∈ B}

is an event.

Definition 3. (Liu [10]) Theuncertainty distributionΦ of an uncertain variableξ is defined by

Φ(x) =M{ξ ≤ x} , ∀x∈ ℜ.

Definition 4. (Liu[10]) Let ξ be an uncertain variable. Theexpected valueof ξ is defined by

E[ξ ] =
∫ +∞

0
M{ξ ≥ r}dr −

∫ 0

−∞
M{ξ ≤ r}dr

provided that at least one of the above two integrals is finite. An uncertain variableξ is called linear if it has a linear

uncertainty distribution

Φ (x) =











0, x≤ a

(x−a)/(b−a) , a≤ x≤ b

1, x≥ b

denoted by Ł(a,b) where a and b are real numbers with a< b. Suppose thatξ1 andξ2 are independent linear uncertain

variables Ł(a1,b1) and Ł(a2,b2) . Then the sumξ1+ ξ2 is also a linear uncertain variable Ł(a1+a2,b1+b2) .

Definition 5. (Liu[10]) Let ξ be an uncertain variable with a regular uncertainty distributionΦ(x). If the expected value

is exist, then

E[ξ ] =
∫ 1

0
Φ−1(α)dα

whereΦ−1(α) is theinverse uncertainty distributionof ξ .

Theorem 1.(Liu [11]) Assumeξ1,ξ2, · · · ,ξn are independent uncertain variables with regular uncertainty distributions

Φ1,Φ2, · · · ,Φn, respectively. If the function f(x1,x2, · · · ,xn) is strictly increasing with respect to x1,x2, · · · , xm and strictly

decreasing with respect to xm+1,xm+2, · · · ,xn, thenξ = f (ξ1,ξ2, · · · ,ξn) has an inverse uncertainty distribution

Ψ−1(α) = f
(

Φ−1
1 (α), · · · ,Φ−1

m (α),Φ−1
m+1(1−α), · · · ,Φ−1

n (1−α)
)

.

In addition, Liu and Ha [?] proved that the uncertain variableξ has an expected value

E[ξ ] =
∫ 1

0
f
(

Φ−1
1 (α), · · · ,Φ−1

m (α),Φ−1
m+1(1−α), · · · ,Φ−1

n (1−α)
)

dα.
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Theorem 2.(Liu[11]) Let ξ andη be independent uncertain variables with finite expected values. Hence, for any real

numbers a and b, we have

E[aξ +bη ] = aE[ξ ]+bE[η ].

Theorem 3. (Liu[22]) Let g({x,ξ1,ξ2, . . . ,ξn) be constraint function. This function is strictly increasing with respect

to ξ1,ξ2, . . . ,ξk and strictly decreasing with respect toξk+1. ξ1,ξ2, . . . ,ξk are also independent uncertain variables with

uncertain distributionsΦ1,Φ2, . . . ,Φn, respectively, then the chance constraint

M {g({x,ξ1,ξ2, . . . ,ξn)≤ 0} ≥ α

holds if and only if
g
(

{x,Φ−1
1 (α), . . . ,Φ−1

k (α),

Φ−1
k+1(1−α), . . . ,Φ−1

n (1−α)
)

≤ 0.

The definition and theory of uncertain entropy function is introduced by Liu [15], as follows.

Theorem 4.(Liu [34]) Let ξ be an uncertain variable and its entropy is determined as:

H [ξ ] =
∞
∫
−∞

S(M {ξ ≤ x})dx,

where S(t) =−t ln t − (1− t) ln(1− t) .

Theorem 5.Let ξ be an uncertain variable with regular uncertainty distribution Φ. If the entropy H[ξ ] exists, then

H [ξ ] =
1
∫
0

Φ−1 (α) ln
α

1−α
dα.

Let’s examine the entropy of uncertain variables with the examples given below.

Example 1.Let Φ−1 (α) = (1−α)a+αb be the inverse uncertainty distribution for linear uncertain variableL (a,b) .

From Theorem 2.5, its entropy is determined as follows:

H =
1
∫
0

Φ−1 (α) ln
α

1−α
dα =

b−a
2

.

Example 2.Let

Φ−1 (α) =

{

(1−2α)a+2αb, ifα < 0.5

(2−2α)b+(2α −1)c, ifα ≥ 0.5.

be the inverse uncertainty distribution of zigzag uncertain variableZ (a,b,c) . Then Theorem 2.5, its entropy can be

obtained as follows:

H =
1
∫
0

Φ−1 (α) ln
α

1−α
dα =

c−a
2

.

Example 3.Similarly, let Φ−1 (α) = e+ σ
√

3
π ln α

1−α be the inverse uncertainty distribution of normal uncertain variable

N (e,σ ) . Applying Theorem 2.5, its entropy obtained is as follows:

H =
1
∫
0

Φ−1 (α) ln
α

1−α
dα =

πσ√
3
.
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3 Uncertain programming model for multi-item solid transportation problem

In order to model an entropy based MISTP with uncertain variables, the formulation of MISTP is first presented, then it

is transformed into the entropy based MISTP model with uncertain variables.

In a MISTP, there is a multi product to be carried from a set of origins to a set of destinations by a set of both similar or

distinct conveyances. Every origin has a state which provides any of the destinations employing some of the

conveyances, and every destination can receive its demand from some of the origins employing some of the conveyances.

Therefore each origin can provide zero, one or more destinations, and the demand for each destination can be joined by

at least one origin. Each conveyance is employed from the origins to the destinations for zero, one or more unlocked

ways. A unit price is considered for carrying any quantity ofproducts between the origins and the destinations via

distinct conveyances. In actual, the goal of a MISTP is to minimize the total transportation cost by receiving an optimal

result of products which are communicated in the unlocked directions by distinct conveyances.

Here the following notations are employed in all models.

M : the number of origins,

N : the number of destinations,

L : the number of conveyances,

R : the number of items,

i, j,k, p : the indexes used for source, destination and conveyance, respectively.

ap
i : the capacity of products of itemp at originsi ,

bp
j : the demand of products of itemp at destinationj,

ek : the total transportation capacity of conveyancek,

cp
i jk is the unit cost of transporting one unit of itemp from sourcei to destinationj by conveyancek,

xp
i jk is the amount of itemp to be carried from sourcei to destinationj by conveyancek.

Under these notations, a conventional mathematical model of MISTP can be formulated as follows:



























































f (x) =
R
∑

p=1

M
∑

i=1

N
∑
j=1

L
∑

k=1
cp

i jkxp
i jk (a)

s.t.











































N
∑
j=1

L
∑

k=1
xp

i jk ≤ ap
i , ∀i ∈ M; ∀p∈ R (b)

M
∑

i=1

L
∑

k=1
xp

i jk ≥ bp
j ,∀ j ∈ N; ∀p∈ R (c)

R
∑

p=1

M
∑

i=1

L
∑

k=1
xp

i jk ≤ ek,∀k∈ L (d)

xp
i jk ≥ 0, ∀i ∈ M; ∀ j ∈ N; ∀k∈ L; ∀p∈ R (e)

(1)

The objective function (a) diminishes the total transportation cost which is the sum of each unit cost. Constraint (b)

guarantee that the whole amount of productp carried from each origin to every destination should not be greater than the

capacity of that origin. Constraint (c) explains that the demand for each destination should be answered. Constraint (d)

shows the capacity of each conveyance, and constraint (e) represents nonnegative variables.

In order to obtain its uncertain programming model, let us consider that the per unit costξ p
i jk , the capacity of each origin

c© 2018 BISKA Bilisim Technology



CMMA 3, No. 1, 28-41 (2018) /ntmsci.com/cmma 33

ãp
i , that of each destinationb̃p

j and each conveyanceb̃p
j are all uncertain variables, respectively. Then uncertain

programming model of the MISTP can be expressed as



























































f (x,ξ ) =
R
∑

p=1

M
∑

i=1

N
∑
j=1

L
∑

k=1
xp

i jkξ p
i jk

s.t.











































N
∑
j=1

L
∑

k=1
xp

i jk ≤ ãp
i , ∀i ∈ M; ∀p∈ R

M
∑

i=1

L
∑

k=1
xp

i jk ≥ b̃p
j ,∀ j ∈ N; ∀p∈ R

R
∑

p=1

M
∑

i=1

L
∑

k=1
xp

i jk ≤ ẽk,∀k∈ L

xp
i jk ≥ 0, ∀i ∈ M; ∀ j ∈ N; ∀k∈ L; ∀p∈ R

(2)

This problem can not be optimized in this form because it contains uncertain variables. In order to optimize the MISTP

with uncertain variables given above, its expected value programming model should be formulated via chance constraint.



































































E [ f(x,ξ )] = minE

[

R
∑

p=1

M
∑

i=1

N
∑
j=1

L
∑

k=1

(

ξ p
i jkxp

i jk

)

]

s.t.















































M

{

N
∑
j=1

L
∑

k=1
xp

i jk − ãp
i ≤ 0

}

≥ γ p
i , ∀i ∈ M;∀p∈ R

M

{

b̃ j −
M
∑

k=1

L
∑

k=1
xp

i jk ≤ 0

}

≥ β p
j , ∀ j ∈ N;∀p∈ R

M

{

R
∑

p=1

M
∑

i=1

L
∑
j=1

xp
i jk − ẽk ≤ 0

}

≥ δk, ∀k∈ L

xp
i jk ≥ 0, ∀i ∈ M; ∀ j ∈ N; ∀k∈ L; ∀p∈ R

(3)

whereα p
i ,β p

j ,δk, ∀i ∈ M; ∀ j ∈ N; ∀k∈ L; ∀p∈ R are show that the confidence levels of each of constraint.

Theorem 6.Further, model (3) is converted into its equivalent form as:



























































min
R
∑

p=1

M
∑

i=1

N
∑
j=1

L
∑

k=1
xp

i jk

1
∫

0
Φ−1

ξ p
i jk
(α)dα

s.t.











































N
∑
j=1

L
∑

k=1
xp

i jk −Φ−1
ãp

i
(1−α p

i )≤ 0, ∀i ∈ M;∀p∈ R

Φ−1
b̃p

j

(

β p
j

)

−
M
∑

k=1

L
∑

k=1
xp

i jk ≤ 0, ∀ j ∈ N;∀p∈ R

R
∑

p=1

M
∑

i=1

N
∑
j=1

xp
i jk −Φ−1

c̃k
(1− δk)≤ 0, ∀k∈ L

xp
i jk ≥ 0, ∀i ∈ M; ∀ j ∈ N;∀p∈ R

(4)

whereξ p
i jk , ã

p
i , b̃

p
j , ẽk, ∀i jk are independent uncertain variables with uncertainty distributionsΦξ p

i jk
,Φãp

i
,Φb̃p

j
,Φẽk .

Proposition 1.Sinceξ p
i jk has a regular uncertainty distributionΦ p

i jk , from Theorem 1 and Theorem 2, we write

E

[

R
∑

p=1

M
∑

i=1

N
∑
j=1

L
∑

k=1

(

ξ p
i jkxp

i jk

)

]

=
R
∑

p=1

M
∑

i=1

N
∑
j=1

L
∑

k=1
xp

i jkE
[

ξ p
i jk

]

=
R
∑

p=1

M
∑

i=1

N
∑
j=1

L
∑

k=1
xp

i jk

1
∫

0
Φ−1

ξ p
i jk
.
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Applying Theorem 3 to the constraints of model (3), we have

M

{

N
∑
j=1

L
∑

k=1
xp

i jk − ãp
i ≤ 0

}

≥ γ p
i ⇔

N
∑
j=1

L
∑

k=1
xp

i jk −Φ−1
ãp

i
(1−α p

i )≤ 0, ∀i ∈ M;∀p∈ R

M

{

b̃ j −
M
∑

k=1

L
∑

k=1
xp

i jk ≤ 0

}

≥ β p
j ⇔ Φ−1

b̃p
j

(

β p
j

)

−
M
∑

k=1

L
∑

k=1
xp

i jk ≤ 0, ∀ j ∈ N;∀p∈ R

M

{

R
∑

p=1

M
∑

i=1

L
∑
j=1

xp
i jk − ẽk ≤ 0

}

≥ δk ⇔
R
∑

p=1

M
∑

i=1

N
∑
j=1

xp
i jk −Φ−1

c̃k
(1− δk)≤ 0, ∀k∈ L

The above operations show that model (3) is equivalent to model (4).

4 Entropy based MISTP models with uncertain variables

In a conventional MISTP, some products are carried from origin to some distinct destinations through some conveyances

by minimizing the total costs. At the same time, the cost is expensive without entropy function because we need to try to

arrive all directions in a transportation network, if possible. It helps to reach all directions and reduce cost. This shows

the necessity of the entropy function in the MISTP. Therefore an uncertain entropy function is presented here as an

additional objective.

By employing Theorem 4 and Theorem 5, the objective functionof model (4) can be converted to the following

uncertain entropy function.

Lemma 1. Supposeξ p
i jk is an uncertain variable with regular uncertainty distribution Φ p

i jk . If f : Rn → R is a strictly

increasing function with respect to xp
i jk then the uncertain function f(x,ξ ) has an entropy, i.e.,

H [x,ξ ] =
R

∑
p=1

M

∑
i=1

N

∑
j=1

L

∑
k=1

xp
i jk

1
∫

0

Φ−1
ξ p

i jk
(α) ln

α
1−α

dα

It is obvious that if f: Rn → R is a strictly decreasing function with respect to xp
i jk , then the uncertain function f(x,ξ )

has an entropy

H [x,ξ ] =
R

∑
p=1

M

∑
i=1

N

∑
j=1

L

∑
k=1

xp
i jk

1
∫

0

Φ−1
ξ p

i jk
(1−α) ln

α
1−α

dα.

Proposition 2.Sinceξ p
i jk has a regular uncertainty distributionΦ p

i jk , we obtain

H [x,ξ ] =
R

∑
p=1

M

∑
i=1

N

∑
j=1

L

∑
k=1

xp
i jk

∞
∫

−∞

f

(

Φξ p
i jk
(x)

)

dx

From Theorem 2.5, this equality can be rewriten as:

H [x,ξ ] =
R

∑
p=1

M

∑
i=1

N

∑
j=1

L

∑
k=1

xp
i jk

0
∫

−∞

Φ
ξ p
i jk

(x)
∫

0

f ′ (α)dαdx+
R

∑
p=1

M

∑
i=1

N

∑
j=1

L

∑
k=1

xp
i jk

0
∫

−∞

∞
∫

Φ
ξ p
i jk

(x)

− f ′ (α)dαdx
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where f′ (α) = (−α lnα − (1−α) ln(1−α))′ =− ln α
1−α .

By applying the Fubini Theorem to the above function, we obtain

H [x,ξ ] =
R

∑
p=1

M

∑
i=1

N

∑
j=1

L

∑
k=1

xp
i jk

0
∫

−∞

0
∫

Φ−1
ξ p
i jk

(x)

f ′ (α)dαdx+
R

∑
p=1

M

∑
i=1

N

∑
j=1

L

∑
k=1

xp
i jk

1
∫

Φ
ξ p
i jk

(0)

Φ
ξ p
i jk

(x)
∫

0

− f ′ (α)dαdx.

=
R

∑
p=1

M

∑
i=1

N

∑
j=1

L

∑
k=1

xp
i jk

1
∫

0

Φ−1
ξ p

i jk
(α) f ′ (α)dα =

R

∑
p=1

M

∑
i=1

N

∑
j=1

L

∑
k=1

xp
i jk

1
∫

0

Φ−1
ξ p

i jk
(α) ln

α
1−α

dα.

Adding the entropy function to model (4), it turns to the following multiobjective model.















































































min
R
∑

p=1

M
∑

i=1

N
∑
j=1

L
∑

k=1
xp

i jk

1
∫

0
Φ−1

ξ p
i jk
(α)dα

max
R
∑

p=1

M
∑

i=1

N
∑
j=1

L
∑

k=1
xp

i jk

1
∫

0
Φ−1

ξ p
i jk
(α) ln α

1−α dα

s.t.











































N
∑
j=1

L
∑

k=1
xp

i jk −Φ−1
ãp

i
(1−α p

i )≤ 0, ∀i ∈ M;∀p∈ R

Φ−1
b̃p

j

(

β p
j

)

−
M
∑

k=1

L
∑

k=1
xp

i jk ≤ 0, ∀ j ∈ N;∀p∈ R

R
∑

p=1

M
∑

i=1

N
∑
j=1

xp
i jk −Φ−1

c̃k
(1− δk)≤ 0, ∀k∈ L

xp
i jk ≥ 0, ∀i ∈ M; ∀ j ∈ N;∀p∈ R

(5)

In the multiobjective MISTP model given above, the entropy function serves as a measure of dispersal of trips among

origins, destinations, and conveyances. It results more valuable to produce minimum transportation costs with maximum

entropy amount.

Example 4.Let us consider the MISTP function and supposexp
i jk are independent uncertain variables with linear

distributionL
(

ap
i jk ,b

p
i jk

)

. Then the MISTP function has the following entropy function

H [x,ξ ] =
R

∑
p=1

M

∑
i=1

N

∑
j=1

L

∑
k=1

xp
i jk

1
∫

0

Φ−1
ξ p

i jk
(α) ln

α
1−α

dα =
R

∑
p=1

M

∑
i=1

N

∑
j=1

L

∑
k=1

xp
i jk

(

bp
i jk −ap

i jk

2

)

where

Φ−1
ξ p

i jk
(α) = (1−α)ap

i jk +αbp
i jk .

Example 5.Supposexp
i jk are independent uncertain variables with with zigzag distribution Z

(

ap
i jk ,b

p
i jk ,c

p
i jk

)

. Then the

MISTP function has the following entropy function

H [x,ξ ] =
R

∑
p=1

M

∑
i=1

N

∑
j=1

L

∑
k=1

xp
i jk

1
∫

0

Φ−1
ξ p

i jk
(α) ln

α
1−α

dα =
R

∑
p=1

M

∑
i=1

N

∑
j=1

L

∑
k=1

xp
i jk

(

cp
i jk −ap

i jk

2

)
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where

Φ−1
ξ p

i jk
(α) =

{

(1−2α)ap
i jk +2αbp

i jk , ifα < 0.5

(2−2α)bp
i jk +(2α −1)cp

i jk , ifα ≥ 0.5.

Example 6.Supposexp
i jk are independent uncertain variables with with normal uncertain distributionN

(

ep
i jk ,σ

p
i jk

)

. Then

the MISTP function has the following entropy function

H [x,ξ ] =
R

∑
p=1

M

∑
i=1

N

∑
j=1

L

∑
k=1

xp
i jk

1
∫

0

Φ−1
ξ p

i jk
(α) ln

α
1−α

dα =
R

∑
p=1

M

∑
i=1

N

∑
j=1

L

∑
k=1

xp
i jk

(

πσ p
i jk√
3

)

whereΦ−1
ξ p

i jk
(α) = ep

i jk +
σ p

i jk

√
3

π ln α
1−α .

4.1 Minimizing distance function

This method combines multiple objectives

(E[ f1(x,ξ )],E[ f2(x,ξ )], · · · ,E[ fq(x,ξ )])

employing the distance metric of any solution from the idealsolution(E∗
1,E

∗
2, ...,E

∗
q) whereE∗

i for eachi = 1,2, ...,q,are

the optimal values of thei−th objective function.















min
x

(√

(E[ f1(x,ξ )]−E∗
1)

2+(E[ f2(x,ξ )]−E∗
2)

2+, · · · ,+(E[ fq(x,ξ )]−E∗
q)

2
)

subject to:

M{g j(x,ξ )≤ 0} ≥ α j , j = 1,2, · · · , p

(6)

Theorem 7.Let x∗ be an optimal solution of model (6).Then x∗ should a Pareto optimal solution of model (5).

Proof of the above theorem is given by Dalman[4].

5 A numerical example

In order to show the employment of these models, we confer a numerical experiment in this section. Suppose that two

products (items) are to be carried through two distinct conveyances (C1,C2) from three origins(O1,O2,O3) to four

destinations(D1,D2,D3,D4).

The schematic illustration for the considered MISTP is given with Fig. 1 where the hosts display all the potential

directions for carrying two different products from the origins to the destinations via conveyances.
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Fig. 1: The representation of network for the considered MISTP

Let us consider that variables of the objective function arenormal uncertain variables and also, variables of constraints

are linear uncertain variables, respectively. All data forthe model is presented in Tables 1, 2, 3, 4 and 5, respectively.

ξ p
i jk → N

(

ep
i jk ,σ

p
i jk

)

, i ∈ [1,3] ; j ∈ [1,4] ;k∈ [1,2] ; p∈ [1,2]

ãp
i → L

(

ap
i ,b

p
i

)

, i ∈ [1,3] ; p∈ [1,2]

b̃p
j → L

(

bp
j ,b

p
j

)

, j ∈ [1,4] ; p∈ [1,2]

ẽk → L
(

bp
j ,b

p
j

)

, k∈ [1,2]

Table 1 :The transportation costξ p
i jk for item p= 1

ξ 1
i j 1 1 2 3 4 ξ 1

i j 2 1 2 3 4

1 N(10,2) N(9,1.5) N(12,2) N(8,1.5) 1 N(7,2) N(5,1.5) N(5,2) N(6,1.5)

2 N(8,1) N(9,1.5) N(11,2) N(10,1) 2 N(5,1) N(6,1.5) N(4,2) N(6,1)

3 N(8,1.5) N(17,1.5) N(6,1.5) N(10,1.5) 3 N(4,1.5) N(7,1.5) N(6,1.5) N(5,1.5)

Table 2 :The transportation costξ p
i jk for item p= 2

ξ 2
i j 1 1 2 3 4 ξ 2

i j 2 1 2 3 4

1 N(9,2) N(6,1.5) N(3,2) N(7,1.5) 1 N(5,2) N(6,1.5) N(7,2) N(9,1.5)

2 N(9,1) N(10,1.5) N(11,2) N(10,1) 2 N(5,1) N(5,1.5) N(3,2) N(3,1)

3 N(6,1.5) N(18,1.5) N(8,1.5) N(12,1.5) 3 N(2,1.5) N(8,1.5) N(7,1.5) N(3,1.5)

Table 3 The sources ˜ap
i

i 1 2 3 1 2 3

ã1
i Ł(200,300) Ł(250,350) Ł(100,150) ˜a2

i Ł(100,150) Ł(125,250) Ł(110,160)
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Table 4 :The demands̃bp
j

j 1 2 3 4 1 2 3 4

b̃1
j Ł(75,125) Ł(30,75) Ł(15,35) Ł(25,50) b̃2

j Ł(55,100) Ł(60,100) Ł(20,30) Ł(10,20)

Table 5 :The transportation capacities ˜ek

k 1 2

ẽk Ł(250,300) Ł(350,500)

Following from the above data tables, expected value function for the MISTP is defined as;

2

∑
p=1

3

∑
i=1

4

∑
j=1

2

∑
k=1

xp
i jk

1
∫

0

Φ−1
ξ p

i jk
(α)dα =

2

∑
p=1

3

∑
i=1

4

∑
j=1

2

∑
k=1

xp
i jkep

i jk

and from Lemma 5.1, it has an entropy

2

∑
p=1

3

∑
i=1

4

∑
j=1

2

∑
k=1

xp
i jk

1
∫

0

Φ−1
ξ p

i jk
(α) ln

α
1−α

dα =
2

∑
p=1

3

∑
i=1

4

∑
j=1

2

∑
k=1

xp
i jk

(

πσ p
i jk√
3

)

Asume that the expected value function and its entropy function are f1 (x,ξ ) , f2 (x,ξ ) ,respectively. Because the aim of

this problem is to reach maximum roots with minimum costs, then the expected value programming model for the entropy

based MISTP model is formulated as follows:











































































E[ f1 (x,ξ )] = min
2
∑

p=1

3
∑

i=1

4
∑
j=1

2
∑

k=1
xp

i jkep
i jk

E[ f2 (x,ξ )] = max
2
∑

p=1

3
∑

i=1

4
∑
j=1

2
∑

k=1
xp

i jk

(

πσ p
i jk√
3

)

s.t.











































4
∑
j=1

2
∑

k=1
xp

i jk −Φ−1
ãp

i
(1−α p

i )≤ 0, i ∈ [1,3] ; p∈ [1,2]

Φ−1
b̃p

j

(

β p
j

)

−
3
∑

k=1

2
∑

k=1
xp

i jk ≤ 0, j ∈ [1,4] ; p∈ [1,2]

2
∑

p=1

3
∑

i=1

4
∑
j=1

xp
i jk −Φ−1

c̃k
(1− δk)≤ 0,k∈ [1,2]

xp
i jk ≥ 0, i ∈ [1,3] ; j ∈ [1,4] ;k∈ [1,2] ; p∈ [1,2]

(7)

Suppose that the confidence levels areγ p
i = 0.9;β p

j = 0.9;δk = 0.9 and i = 1,2.3, j = 1,2,3,4,k = 1,2, p = 1,2,

respectively.

Reconstructing model(7) as a single objective programmingproblem under the system constraints neclecting the

different objective, we obtain
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
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i jk −Φ−1
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(1−α p

i )≤ 0, i ∈ [1,3] ; p∈ [1,2]

Φ−1
b̃p

j

(

β p
j

)

−
3
∑

k=1

2
∑

k=1
xp

i jk ≤ 0, j ∈ [1,4] ; p∈ [1,2]

2
∑

p=1

3
∑

i=1

4
∑
j=1

xp
i jk −Φ−1

c̃k
(1− δk)≤ 0,k∈ [1,2]

xp
i jk ≥ 0, i ∈ [1,3] ; j ∈ [1,4] ;k∈ [1,2] ; p∈ [1,2]

(8)
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(

β p
j

)

−
3
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k=1

2
∑

k=1
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i jk ≤ 0, j ∈ [1,4] ; p∈ [1,2]
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4
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i jk −Φ−1
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(1− δk)≤ 0,k∈ [1,2]

xp
i jk ≥ 0, i ∈ [1,3] ; j ∈ [1,4] ;k∈ [1,2] ; p∈ [1,2]

(9)

Solving problem(8), and(9),respectively, we obtain the following individual solutions.

min E[ f1] = 1235.5 and max E[ f1] = 6869.500

min E[ f2] = 694.322 and max E[ f2] = 2125.142

Applying the distance minimization method (6) to model (7),model (7) is reduced to the following single objective

programmng problem.
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j
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−
3
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2
∑

k=1
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i jk ≤ 0, j ∈ [1,4] ; p∈ [1,2]

2
∑
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3
∑
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4
∑
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i jk −Φ−1

c̃k
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i jk ≥ 0, i ∈ [1,3] ; j ∈ [1,4] ;k∈ [1,2] ; p∈ [1,2]

(10)

where the confidence levels areγ p
i = 0.9;β p

j = 0.9;δk = 0.9 andi = 1,2.3, j = 1,2,3,4,k= 1,2, p= 1,2, respectively.

Taking E[ f1] = 1235.5 and E[ f2] = 2125.142 in problem (10), it is solved to obtain the optimal solutions by using Maple

2017 optimization toolbox, and the the solutions obtained are as follows:

x1
122= 34.500, x1

141= 2,x1
142= 0.500, x1

232= 17, x1
312= 80, x1

342= 25, x2
131= 105, x2

222= 64, x2
232= 73.500,

x2
312= 59.500, x2

342= 11.

By putting these parameters into Model (7), the minimum costobtained is E[ f1] = 1712.

6 Conclusions

This paper presented the model of entropy based multi-item solid transportation problem with uncertain variables.

Applying the expected value and chance-constrained programming to the given MISTP with uncertain variables, a

deterministic model for the MISTP is first obtained. By taking the entropy of the objective function, the model is

transformed into a multiobjective MISTP. Thanks to entropyare reached to all roots with minimum cost. In order to

show its optimal solution, the distance minimization method is applied to the multiobjective model. Finally, a numerical

experiment is given to demonstrate the applications of the models. The entropy function can be applied to different

uncertain transportation models such as step fixed-charge,multiobjective and multilevel solid transportation and soon.
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