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Abstract: In this article, the author considered certain non-homogeneous time fractional heat equation which is a generalization of the
problem of a viscous ring damper for a freely processing satellite. Transform method is a powerful tool for solving partial fractional
differential equations. The result reveals that the transform method is very convenient and effective.
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1 Introduction

Fractional differential equations arise in the unification of diffusion and wave propagation phenomenon. The time
fractional heat equation, which is a mathematical model of a wide range of important physical phenomena, is a partial
differential equation obtained from the classical heat equation by replacing the first time derivative of a fractional
derivative of order. In recent years, it has turned out that many phenomena in fluid mechanics, physics, biology,
engineering and other areas of the sciences can be successfully modeled by the use of fractional derivatives. That is
because of the fact that, a realistic modeling of a physical phenomenon having dependence not only at the time instant,
but also the previous time history can be successfully achieved by using fractional calculus. In this work, we consider
methods and results for the partial fractional diffusion equations which arise in applications. Several methods have been
introduced to solve fractional differential equations, the popular Laplace transform method, [1,2,3]. Atanackovic and
Stankovic [4,5] and Stankovic [13] used the Laplace transform in a certain space of distributions to solve a system of
partial differential equations with fractional derivatives, and indicated that such a system may serve as a certain model
for a visco-elastic rod. Wyss [15] and Schneider [12] considered the time fractional diffusion and wave equations and
obtained the solution in terms of Fox functions. In recent years, the implementations of extended G/G- method for the
solutions of nonlinear evolution equations, nonlinear Klein - Gordon equations, Boussinesq equations have been
well-established by researchers [14].

1.1 Definitions And Notations

Definition 1. The left Caputo fractional derivative of order α (0 < α < 1) of φ(t) is as follows [8]

Dc,α
a φ(t) =

1
Γ (1−α)

∫ t

a

1
(t−ξ )α

φ
′(ξ )dξ . (1)
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Definition 2. The Laplace transform of function f (t) is defined as follows

L { f (t)}=
∫

∞

0
e−st f (t)dt = F(s) (2)

If L { f (t)}= F(s), then L −1{F(s)} is given by

f (t) =
1

2πi

∫ c+i∞

c−i∞
estF(s)ds, (3)

where F(s) is analytic in the region Re(s)> c. The above integral is known as Bromwich complex inversion formula

Lemma 1. Let L { f (t)}= F(s) then, the following identities hold true.

1.L −1(e−k
√

s) = k
(2
√

π)

∫
∞

0 e−tξ− k2
4ξ dξ ,

2.e−ωsβ

= 1
π

∫
∞

0 e−rβ (ωcosβπ)sin(ωrβ sinβπ)(
∫

∞

0 e−sτ−rτ dτ)dr,
3.L −1(F(sα)) = 1

π

∫
∞

0 f (u)
∫

∞

0 e−tr−urα cosαπ sin(urα sinαπ)drdu,

4.L −1(F(
√

s) = 1
2t
√

πt

∫
∞

0 ue−
u2
4t f (u)du.

Proof. [1,2]

Example 1. By using an appropriate integral representation for the modified Bessel’s functions of the second kind of order
ν , Kν(s), show that

L −1{
Kη(a

√
s−µ)

(s−µ)
η

2

Kν(b
√

s+β )

(s+β )
ν
2
}= e(µ−β )t

∫ t

0

τη−1eµτ− a2
4τ

(2a)1+η

(t− τ)ν−1e−β (t−τ)− b2
4(t−τ)

(2b)1+ν
dτ. (4)

Solution 1. It is well known that Kν(a
√

s) has the following integral representation [6]

Kν(a
√

s) =
(a
√

s)ν

2ν+1

∫
∞

0
e−ξ− a2s

4ξ
dξ

ξ ν+1 . (5)

At this stage, using complex inversion formula for the Laplace transforms and the above integral representation we get

L −1{
Kη(a

√
s)

s
η

2
}= 1

2iπ

∫ c+i∞

c−i∞

1
sη

(
(a
√

s)0.5η

2η+1

∫
∞

0
e−ξ− a2s

4ξ
dξ

ξ η+1 )ds. (6)

Changing the order of integration and simplifying to obtain

L −1{
Kη(a

√
s)

s
η

2
}= aη

∫
∞

0

e−ξ

ξ η+1 (
1

2iπ

∫ c+i∞

c−i∞

ets− a2s
4ξ

2η+1 ds)dξ . (7)

The value of the inner integral is δ (t− a2

4ξ
), we have the following

L −1{
Kη(a

√
s)

s
η

2
}= aη

∫
∞

0

e−ξ

ξ η+1 δ (t− a2

4ξ
)dξ , (8)

making a change of variable (t− a2

4ξ
) = u and using elementary properties of Dirac - delta function, we arrive at

L −1{
Kη(a

√
s)

s
η

2
}= tη−1e−

a2
4t

(2a)η+1 . (9)
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Finally, using the shift and convolution theorem we obtain

L −1{
Kη(a

√
s−µ)

(s−µ)
η

2

Kν(b
√

s+β )

(s+β )
ν
2
}= e(µ−β )t

∫ t

0

τη−1eµτ− a2
4τ

(2a)1+η

(t− τ)ν−1e−β (t−τ)− b2
4(t−τ)

(2b)1+ν
dτ. (10)

Definition 3. The The Laplace transform of Caputo fractional derivatives of order non integer. For n− 1 < α ≤ n , we
have the following identity [15]

L{C0 Dα
t f (t)}= sα F(s)−

n−1

∑
k=0

sα−k−1 f (k)(0). (11)

Definition 4. The The two-parameter function of the Mittag-Leffler type is defined by the series expansion

Eα,β (z) =
∞

∑
n=0

zn

Γ (αn+β )
, (12)

when α,β ,z ∈C. We have the following relationship

L{tβ−1Eα,β (±atα)}= sα−β

sα ∓a
(Re(s)> |a|

1
α . (13)

Definition 5. The simplest Wright function is given by the series

W (α,β ;z) =
∞

∑
n=0

zn

n!Γ (αn+β )
, (14)

when α,β ,z ∈C. We have the following relationship

[L{tβ−1Eα,β (±atα)}= sα−β

sα ∓a
(Re(s)> |a|

1
α ). (15)

Lemma 2. The following identities hold true for 0 < ν < 1.

g(t) =L −1(
∫ a

0

e−(1+
k

sν+k )η

sν + k
dη) = ..

=e−kt
∫

∞

0

∫ a

0
e−uJ0(2

√
ktu)(

∫
∞

0
e−tr−ηrν cosπν sin(ηrν sinπν)dr)du)dη .

Proof. Let us assume that F(s) =
∫ a

0
e−(1+

k
s+k )η

s+k dη

by complex inversion formula for the Laplace transforms, we have

f (t) =
1

2πi

∫ c+i∞

c−i∞
ets(

∫ a

0

e−(1+
k

s+k )η

s+ k
dη)ds,

changing the order of integration which is permissible by Fubini’s theorem, leads to

f (t) =
∫ a

0
e−η(

1
2πi

∫ c+i∞

c−i∞

ets− kη

s+k

s+ k
ds)dη ,
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in the inner integral by making change of variable s+ k = ξ , we obtain

f (t) = e−kt
∫ a

0
e−η(

1
2πi

∫ c′+i∞

c′−i∞

etξ− kη

ξ

ξ
dξ )dη ,

the value of the inner integral is J0(2
√

ktη) [7,8] so that

f (t) = e−kt
∫ a

0
e−η J0(2

√
ktη)dη ,

using part three of (1) and theorem of Titchmarsh [8] leads to

g(t) = e−kt
∫

∞

0

∫ a

0
e−uJ0(2

√
ktu)(

∫
∞

0
e−tr−ηrν cosπν sin(ηrν sinπ.ν)dr)du)dη .

2 Main Results

In this section, the authors considered certain non-homogeneous time fractional heat equations which is a generalization
of the problem of a viscous ring damper for a freely processing satellite studied by P.G.Bahuta [8]. In this study, only
the Laplace transformation is considered as it is easily understood and being popular among engineers and scientists. The
basic goal of this work has been to implement the Laplace transform method for studying the above mentioned problem.
The goal has been achieved by formally deriving the exact analytical solution.

2.1 Non homogeneous time fractional heat equation

Problem 1. Let us solve the following partial fractional differential equation

DC,α
t u =

1
r

∂

∂ r
(r

∂u
∂ r

)−λu+µ, (16)

λ ,µ > 0,0≤ r ≤ a,u(r,0) = β ,u(a, t) = exp−ω
2t,

limr−>0 |u(r, t)| ≤M.

Solution 2. Solution: In order to obtain the solution of the fractional heat equation, the Laplace transform is applied to
PDE and boundary conditions to obtain

sαU(r,s)−β sα−1 =
1
r
(Ur(r,s)+ rUrr(r,s))−λUr,s)+

µ

s
, (17)

after simplifying, we get the following

Urr(r,s)+
1
r

Ur(r,s)− (sα +λ )U(r,s) =−(β sα−1 +
µ

s
). (18)

Hence, the homogeneous equation is

[Urr(r,s)+
1
r

Ur(r,s)− (sα +λ )U(r,s) = 0. (19)
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The equation (19) is modified Bessel differential equation of order zero. The general solution is

Up(r,s) = AI0(r
√

sα +λ )+BK0(r
√

sα +λ ). (20)

The function K0 for some r, is unbounded. However, Up(r,s) is a bounded function. Therefore B = 0 and (20) read

Up(r,s) = AI0(r
√

sα +λ ). (21)

Now, in order to obtain the solution of nonhomogeneous equation (16), we suppose that Uc(r,s) = γ is the solution to non-
homogeneous equation.
Then we get the following

Uc(r,s) =
sα−1β + µ

s
sα +λ

= γ. (22)

From relations (21) and (22), we obtain

U(r,s) =Up(r,s)+Uc(r,s) = AI0(r
√

sα +λ )+
sα−1β + µ

s
sα +λ

. (23)

In order to obtain constant A, in relation (23), we use boundary condition to get

U(a,s) =
1

s+ω2 = AI0(a
√

sα +λ )+
sα−1β + µ

s
sα +λ

, (24)

from the above relation, we get the value of constant A as below

A = (
1

s+ω2 −
sα−1β + µ

s
sα +λ

)
1

I0(a
√

sα +λ )
. (25)

By substitution of the value of A in relation (23), we obtain the general solution to non - homogeneous equation in the
following form

U(r,s) = (
1

s+ω2 −
sα−1β + µ

s
sα +λ

)
I0(r
√

sα +λ )

I0(a
√

sα +λ )
+

sα−1β + µ

s
sα +λ

. (26)

In case α = 1, we have

U(r,s) = (
1

s+ω2 −
β + µ

s
s+λ

)
I0(r
√

s+λ )

I0(a
√

s+λ )
+

β + µ

s
s+λ

. (27)

At this stage, the Bromwich’s integral is utilized to invert U(r,s) as follows.

u(r, t) =
1

2πi

∫ c+i∞

c−i∞
((

1
s+ω2 −

β + µ

s
s+λ

)
I0(r
√

s+λ )

I0(a
√

s+λ )
+

β + µ

s
s+λ

)etsds = .. (28)

....= ∑
k
(Res[((

1
s+ω2 −

β + µ

s
s+λ

)
I0(r
√

s+λ )

I0(a
√

s+λ )
+

β + µ

s
s+λ

)ets],s = sk,).

The singularities of the integrand are s = 0,s =−λ ,s =−ω2,s =− k2
n

a2 ,n = 1,2,3, ..., then the residues at the singularities
of (28) are as follows

1. At s = 0, we have

b1
−1 = lims−>0((

1
s+ω2 −

β + µ

s
s+λ

)
I0(r
√

s+λ )

I0(a
√

s+λ )
+

β + µ

s
s+λ

)sets =
µ

λ
(1− I0(r

√
λ )

I0(a
√

λ
).
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2. At s =−λ , we have

b2
−1 = lims−>−λ ((

1
s+ω2 −

β + µ

s
s+λ

)
I0(r
√

s+λ )

I0(a
√

s+λ )
+

β + µ

s
s+λ

)(s+λ )ets = 0.

3. At s =−ω2, we have

b3
−1 = lims−>−ω2((

1
s+ω2 −

β + µ

s
s+λ

)
I0(r
√

s+λ )

I0(a
√

s+λ )
+

β + µ

s
s+λ

)(s+ω
2)ets =

I0(r
√

λ −ω2)

I0(a
√

λ −ω2)
e−ω2t .

4. If k1,k2,k3, ..... are the roots of the function J0(ξ ) , then J0(kn)= 0 for n= 1,2,3, .... Using the fact that I0(ξ )= J0(iξ ),
one gets ξ = −ikn, the roots of I0(a

√
s+λ ), are sn = −(λ + k2

n
a2 ). Finally, the residues at sn = −(λ + k2

n
a2 ), are At

s =−(λ + k2
n

a2 ), we have

b4
−1 = lim

s−>−(λ+ k2n
a2 )

((
1

s+ω2 −
β + µ

s
s+λ

)
I0(r
√

s+λ )

I0(a
√

s+λ )
+

β + µ

s
s+λ

)(s+λ )ets = ...

....= e−(
k2
n

a2−λ ) J0(
r
a kn)(

k2
n

a2 )(
k2

n
a2 −λ )+µ(λ + k2

n
a2 −ω2)−β (λ + k2

n
a2 −ω2)( k2

n
a2 )

J1(kn)kn(λ + k2
n

a2 )(λ + k2
n

a2 −ω2)
.

Let us suppose that λ = µ = 0 and β = 1. Hence, u(r, t) is in the following form

u(r, t) = e−ω2t J0(ωr)
J1(ωa)

+2a2
∑
k

e−(
k2
n

a2 )J0((
r
a )kn)

kn(a2− k2
n

ω2 )J1(kn)
. (29)

In case α = 0.5, (semi - derivative) we have

U(r,s) = (
1

s+ω2 −
β√

s +
µ

s√
s+λ

)
I0(r

√√
s+λ )

I0(a
√√

s+λ )
+

β√
s +

µ

s√
s+λ

, (30)

the above relation can be re-writen as below

U(r,s) =
β
√

s+µ

s(
√

s+λ )
+

1
s+ω2

I0(r
√√

s+λ )

I0(a
√√

s+λ )
− β
√

s+µ

s(
√

s+λ )

I0(r
√√

s+λ )

I0(a
√√

s+λ )
. (31)

At this point, we find inversion of the above relation term wise, so that

u(r, t) = L −1(
β√

s(
√

s+λ )
)+L −1(

µ

s(
√

s+λ )
)+L −1(

1
s+ω2 )∗L

−1(
I0(r

√√
s+λ )

I0(a
√√

s+λ )
)− .... (32)

....−L −1(
β
√

s+µ

s(
√

s+λ )
.
I0(r

√√
s+λ )

I0(a
√√

s+λ )
).

Let us introduce the following

G(r,
√

s) = (
β
√

s+µ

(
√

s+λ )
.
I0(r

√√
s+λ )

I0(a
√√

s+λ )
), (33)

then

G(r,s) = (
β s+µ

(s+λ )
.
I0(r
√

s+λ )

I0(a
√

s+λ )
), (34)
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and
g(r, t) = L −1[G(r,s)]. (35)

At this point, in order to invert (33), we may use the tables of inverse Laplace -transforms or part four of (1) to get

v(r, t) = L −1[G(r,
√

s)] =
∫ +∞

0

ηe−
η2
4t

2t
√

πt
g(r,η)dη ,

in order to invert (34), we need to evaluate the residues at all the singularties. The singularties of (34) are as follows

1. A simple pole at s =−λ .
2. If k1,k2, ...kn, .. are the roots of the function J0(x), thus for J0(kn) = 0.and I0(x) = J0(ix) therefore, ikn are the roots

of I0(x). Hence, the roots of I0(a
√

s+λ ) are sn =− a2λ+k2
n

a2 .
At this point, we use the Bromwich’s integral to invert (35) the residue at simple pole s = −λ is (35) the residue at
simple pole s =−λ is

(i)

b1
−1 = lims−>−λ (s+λ )(

β s+µ

(s+λ )
.
I0(r
√

s+λ )

I0(a
√

s+λ )
)est = 0,

the residue at poles s =−λa2+k2
n

a2 is,
(ii)

b2
−1 = lim

s−>− λa2+k2n
a2

(s+
λa2 + k2

n

a2 )(
β s+µ

(s+λ )
.
I0(r
√

s+λ )

I0(a
√

s+λ )
)est ,

the above limit can be written as follows

b2
−1 = lim

s−>− λa2+k2n
a2

(β s+µ)(I0(r
√

s+λ )

(s+λ )
est 1

I0(a
√

s+λ )−I0(ikn)

s−(− λa2+k2n
a2 )

).

By using the relations, I0(x) = J0(ix) and J′0 = J1, we obtain

(I0(a
√

s+λ ))′ = (J0(ia
√

s+λ ))′ =− ai
2
√

s+λ
(J1(ia

√
s+λ ).

At this stage, let us take the limit as s tends to sn =− a2λ+kn
a2 , we arrive at

lims−>sn(I0(a
√

s+λ ))′ =
a2

2kn
J1(kn).

Finally, we may find the residue b2
−1 as below

b2
−1 = 2e−(

a2λ+kn
a2 )t

(µ−βλ − βk2
n

a2 )
J0(

rkn
a )

J1(kn)
,

by following the same procedure, we may find b3
−1 as below

L −1(
I0(r
√

s+λ )

I0(a
√

s+λ )
) = b3

−1 = lim
s−>− λa2+k2n

a2

(s+
λa2 + k2

n

a2 )(
I0(r
√

s+λ )

I0(a
√

s+λ )
)est ,
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after simplifying we get

b3
−1 = 2e−(

a2λ+kn
a2 )t

(µ−βλ − βk2
n

a2 )
J0(

rkn
a )

( a2

2kn
)J1(kn)

.

After substitution of the value for each term in relation (32), we get the formal solution as follows

u(r, t) = βeλ 2tEr f c(λ
√

t)+
µ√
π

∫ t

0

eλ 2η Er f c(λ
√

η)
√

t−η
dη+

.....+
n=+∞

∑
n=1

e−ω2t ∗2e−(
a2λ+kn

a2 )t J0(
rkn
a )

( a2

2kn
)J1(kn)

−

n=+∞

∑
n=1

2e−(
a2λ+kn

a2 )t
(µ−βλ − βk2

n

a2 )
J0(

rkn
a )

J1(kn)
(H(t)∗ 1

t
√

πt

∫
∞

0
ξ e−

ξ 2
4t −

(k2
n+a2λ )ξ

a2 )dξ .

In the above relation * is convolution for the Laplace transform and H(.), stands for the Heaviside unit step function.

3 Conclusions

The main purpose of this work is to develop a method for finding an exact analytic solution of the time fractional heat
equation. In this work, the author considered the time fractional heat equation (Time fractional in the Caputo sense). Many
linear boundary value and initial value problems in applied mathematics, mathematical physics, and engineering science
can be effectively solved by the use of the Fourier transform, the Laplace transform, the Fourier cosine/sine transform.
The Fourier and Laplace type integral transform are wonderful alternative methods for solving different types of PDEs
of fractional order. There are a lot of applications of PFDEs in the field of Visco elasticity as well.The paper is devoted
to study applications of one dimensional Laplace transforms in details. One dimensional Laplace transforms provides a
powerful method for analyzing linear systems. The transform method introduces a significant improvement in this field
over existing techniques. We hope that it will also benefit many researchers in the disciplines of applied mathematics,
mathematical physics and engineering.
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