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Abstract: This paper presents uncertain random programming modelsthfo fixed charge multiobjective multi-item solid
transportation problem, which contains uncertain randanables for fixed charges, unit transportation costs,c&utestination and
conveyance constraints. Utilizing both uncertainty amtticamness, the uncertain random programming model is finsetuinto an
expected value programming model under chance constraimis a deterministic model of the uncertain random modebiained.
Finally, numerical examples are given to illustrate the eisd
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1 Introduction

The classical transportation problem (TP) consists of suapd demand constraints. But, in practice, decision neaker
are usually faced with more constraints such as goods @amisor mode constraints of carrying. In such conditions, TP
is turned into a solid transportation problem (STP). The &Tfrst used by Shelll] and then, HaleyZ] presented a
solution procedure for solving the STP.

The classical transportation problems in which differdatns are going to carry from diverse production points to
diverse user points using various modes of conveyancernetdemulti-item STPs.

Due to the lack of information, data deficiencies, compiexihd unpredictable events, transportation systems are
generally vague. To illustrate these types of imprecisgrtee multi-item STPs are extensively studied under theyfuz
stochastic and interval parameters [3-8].

It is admitted that a fundamental of probability theory iattthe estimated probability distribution is near enougthto
long-run cumulative frequency. Thus, there is no fear thraip@ters can be used as random variables when the adequate
statistical data is present. Yet if there is no adequatesttal data, our fear is how to handle with the imprecissn#s

real world. Surely, taking into account the relevant paramselike fuzzy variables may be practicable, but it is
inconvenient. Generally, decision-makers have no altemaside form consult the field specialist to interpret the
corresponding parameters. It indicates that the beliefedeghich depends seriously on the personal experiencas. Th
is, the belief degree is an impreciseness, which is callethiasan uncertainty. For this, uncertainty theory was
introduced by Liu 9] and refined by Liu 10] depend on normality, duality, subadditivity and produdbans.
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Since then, the uncertainty theory becomes a branch of maties. Also, uncertainty theory have studied both
theoretically and practically in literature [10,18].

TPs based on the uncertainty theory has been studied by scnodars. Cui and Shendl$] gave an uncertain
programming model for the STP. Zhang et 2l][investigated uncertain fixed charge solid transportagtimblem, and
Gao et al. 1] presented uncertain models on railway transportatiomrptay problem. Dalman2?] introduced a
multi-item STP with uncertain variables.

However, randomness and uncertainty usually consist cangyistems. After the uncertain programming is presented in
[23], Liu [24] introduced chance theory for representing such types ofpdex events including both uncertainty and
randomness. Then some basic notations were given. Afterltha[25] showed the operational law for calculating a
monotone function of uncertain random variables and intced the formula to calculate expected value. Uncertain
random programming models have been investigated intiite¥g26]-[ 30] and so on.

According to my reading, no work has been given on uncertidom programming model for fixed charge multi-item

solid transportation problems with uncertain random \adeis. Thus, this paper focuses on uncertain random
programming for fixed charge multi-item solid transpodatiproblem with uncertain random variables. Using the
expected value of each objective function under the chanostiaints, the model is transformed into a deterministic
model. Finally, numerical examples are presented to iitistthe models.

This paper is constructed as follows: Section 2 presentegatefinitions and theorems about uncertainty and chance
theory. Section 3 presents a definition for an uncertain agangrogramming model. Based on uncertainty and
randomness, the fixed charge multi-item STP model is model&ection 4. Numerical examples are given to illustrate
different fixed charge multi-item STP model with some urgi@artandom variables in Section 5.

2 Preliminaries

2.1 Uncertainty theory

Basic definitions and notations of uncertainty theory avemghere.

Definition 1. Let £ be ac-algebra on a nonempty sét A set functioriVl is called anuncertain measuiiéit satisfies the
following axioms:
Axiom 1. Normality Axiom) M{I" } = 1;

Axiom 2. Puality Axiom) M{A} + M{A€} = 1for anyA € L;

Axiom 3. Subadditivity Axiom) For every countable sequence{dfi} € £, we have

M {Q/\i} < iim{/\i}.
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The triplet(I", £,M) is called anuncertainty spaceand each element in £ is called anevent In addition, in order to
obtain an uncertain measure of compound event, a producrtein measure is defined by Lid(@ by the following
product axiom:

Axiom 4. Product Axion) Let (I, £k, M) be uncertainty spaces fork 1,2, --- The product uncertain measu} is an
uncertain measure satisfying

M { A Ak} = AMdAg
k=1 k=1
where/\y are arbitrarily chosen events frofy fork=1,2, ---, respectively.

Definition 2. (Liu [9]). An uncertain variabl€ is a measurable function from an uncertainty spa€el,M) to the set
of real numbers, i.e., for any Borel set B of real numbers siste

{&eB}={yer|é(y) B}
is an event.

Definition 3. (Liu [9]). The uncertainty distributionp of an uncertain variabl€ is defined by
d(x) =M{E <x}, vxel.

Definition 4. (Liu[9]). Let & be an uncertain variable. Thexpected valuef £ is defined by

eig)= gz e [ e <nor

provided that at least one of the above two integrals is fiditeuncertain variablef is called linear if it has a linear
uncertainty distribution

0, x<a
P(x)=4 (x—a)/(b—a), a<x<b
1, x>b

denoted by ¥a,b) where a and b are real numbers withxab. Suppose thaf; and &, are independent linear uncertain
variables t(a;,bs) and £(ap,by) . Then the sund; + &> is also a linear uncertain variable ta; + az,b; + by) .

Definition 5. (Liu[31]). Let & be an uncertain variable with a regular uncertainty distrtion @ (x). If the expected value
is available, then

1
E[€] :/ o (a)da
0
where®1(a) is theinverse uncertainty distributionf .

Theorem 1. (Liu [31]). Assumefy, &o, - - - , &, are independent uncertain variables with regular uncertaidistributions
@, Dy, -+, By, respectively. If the function(Xy, Xz, - - - ,Xn) is strictly increasing with respect tq x, - - -, Xm and strictly
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decreasing with respect toX1,Xm+2, - - ,Xn, thené = f(&1,&2,- -+, &n) has an inverse uncertainty distribution
Y o) =f (oY (a), - Ppt(a), Pt (1-a), -, O (1—a)).

In addition, Liu and Ha B2] shown that the uncertain variablg has an expected value

E[é] = /Olf (&4 @), -, dt(a), cbgil(lf a),-, oy (1—a))da.

Theorem 2. (Liu[31]). Let £ and n be independent uncertain variables with finite expectedeslSince then, for any
real numbers a and b, we obtain

E[a& +bn] = aE[&] + bE[n].

Theorem 3.(Liu[31]). Let g({x, 1, ¢2,...,&n) be constraint function. This function is strictly increagiwith respect to
&1,&2,...,& and strictly decreasing with respect &§.1. &1,&2,..., & are also independent uncertain variables with
uncertain distributionsP;, @y, ..., @y, respectively, then the chance constraint

A {Y({% €1,&2,...,én) <O} > @
holds if and only if

g({x. o Y (a),...., o (),
o (1-a),.... o (1-a)) <O

2.2 Uncertain random variables

Definition 6. An uncertain random variable is a measurable functfofrom a chance spacf™, £, M) x (Q,A,P) to
the set of real numbers such thigt € B} is an event inC x A for any Borel sefB.

Liu Liu [24] verified that a chance measure meets normality, duality aemonotonicity properties. If an uncertain
random variable turns to an uncertain variable, the changribution seems uncertainty distribution of an uncenmtai
variable. Similarly, if an uncertain random variable turrie a random variable, the chance distribution seems
probability distribution of a random variable.

Definition 7. Liu [24]. Let (I',£,M) x (Q,A,P) be a chance space, and IBte £ x A. Then the chance measure®f
is defned as

1
Ch{@}:/Pr{weQ|M{ye I (y,w) € ©} > x}dx
0

Definition 8. Liu [24]. Let & be an uncertain random variable. Then its chance distriliuts defined by
®(x) =Ch{& <x}

for any real numbex.
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Definition 9. Liu [24]. Leté be an uncertain random variable. Then its expected valuefisied by
; 0
E[(] = /Ch{E > x}dr — /Ch{é < x}dr
0 e

provided that at least one of the two integrals is finite.

Definition 10. Liu [24]. Let & be an uncertain random variable with regular chance digitibn ®@. Then
1
E[&] = / o tada.
0

Theorem 4. Liu [25]. Let &1,&,...,&, be uncertain random variables on the chance spdcel, M) x (Q,A,P) and
also let f: R" — R be a measurable function. Théis= f (£1,&>,...,&4) an uncertain random variable determined by

E(y,w) =T (&1(y, @), &2 (2, a2), .., &n (Yh, Gh))
forall (y,w) el x Q.

Theorem 5. Liu [25]. Let n1,n2,...,Nm be independent random variables with probability disttibos W, Y, ..., Yy,
respectively and lety, 15, ..., T, be dependent and/ or independent uncertain variables theancertain random variable

E = f (r’larIZv"'anmv Tla TZ) ...,Tn)

has an expected value
E [E] = /E [f (yl;yz; ---7Ym7 T, T2,..., Tm)] dq‘ﬁ- (yl) ’d%(yz) ’ )qum(ym)
RM

where E[f (y1,¥2,...,Ym, T1,T2,..., Tm)] iS the expected value of the uncertain variablg/fys,...,ym, 71, T2, ..., Tm) for
any real numbersyyo, ..., Ym.

Theorem 6.Liu [25]. Assumen; and n, are random variablest; and 1, are independent uncertain variables and also
f; and £ are measurable functions.Thus,

E[f1(n1, 1) + f2(n2, ©2)] = E[f1 (N1, T1)] +E[f2(n2, 12)].
3 Uncertain random programming model for fixed charge multi-item solid transportation
problem

Suppose that = (X;,%,, ..., X,) is n— dimensioal decision vectof, = (&;,¢,, ..., §,) is n— dimensional uncertain random
vector,f(x, &) andgj(x, &) < 0 are the uncertan random objective and constraint funstiespectively. Taking confidence
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levelsa = (al, a,, ..., ap) . Liu [25] formulated the following uncertain random programmingdalp

mXinE[f(x,E)], i=12,..q
subjectto (1)
Ch{gl(xvf)go}zah j:1525"'7p

In a multi item STP there is a multi product to be carried fromes of origins to a set of destinations by a set of both
similar or distinct conveyances. Every origin has such etemrovide any of the destinations employing some of the
conveyances and every destination can receive its demamdsibme of the origins employing some of the conveyances.
Thus, every origin can provide zero, one or more destinatiomd the demand for each destination can be met by at least
one origin. Each conveyance also is employed for zero, omeooe unlocked ways from the origins to the destinations
via conveyances. An unit cost is cosidered for carrying amgngjty of products between the origins and the destination
via distinct conveyances. The purpose of the multi item S5T# iminimize the total transportation cost by obtaining an
optimal outcome of the products communicated in the unlddieections by distinct conveyances.

Here the following notations are employed in all mathenazticodels of the multi item STP.

M : the number of origins,

N : the number of destinations,

L : the number of conveyances,

R : the number of items,

i, ],k p:the indexes used for source, destination and conveyaggpgectively.

a1-p : the capacity of products of itemmat originsi ,

b}’ : the demand of products of itemat destination,

& : the total transportation capacity of conveyakgce

cﬁk is the unit cost of transporting one unit of itgorfrom sourcd to destinationj by conveyancé,

tiﬁ’k is the fixed charge of carrying any amount of iterfrom source to destinationj by conveyancé,

xf}k is the amount of itenp to be carried from sourdeo destinationj by conveyancé.

yﬁk is a binary variable, it takes value of 1 if the route from smirto destinationj by conveyancé& is opened. This
meansti’j’k > 0. Thatis, if it is decided to send an amount of product from seuto destinationj by conveyancé the
value ofyf}k is 1. Otherwise it becomes 0.

Under these notations, a mathematical model of multi itef® 83n be formulated as follows:

. R M N L P up R M N L p.p
f)=miny 5 5 5 GuXjt > 3 3 3 Vi ()
p=1i=1j=1k=1 p=li=1j=1k=1
N L .
S Y <aP vieM; ¥peR (b)
=
M L .
> S =bPvieN; (c)
s (2)
sty 3y 5 ¥y < vkel (d)
p=1i=1Kk51
x>0, Vi e M;VjeN;vkeL;VpeR ()
1ifxP >0
P 1k , VieM;VjeN;VkeL;VpeR f
yl]k {OifXﬁkO J p ()
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The objective function (a) minimizes the total transpaotatost which is the sum of each unit cost. Constraint (b)&ss
that the whole amount of produptcarried from each origin to every destination should not iggdr than the capacity

of that origin. Constraint (c) warrants that the demand frhedestination should be replied. Constraint (d) shows the
capacity of each conveyance constraint (e) portray nothegvariables,(f) represent binary variables, respelsti

We suppose thaxf;k,yf}k,aip,bjp, and g, are all uncertain random variables.Thus, we take them asrtamcrandom
varables i.e., the per unit co&fk, the fixed charge;i’j’k, the capacity of each origiqpfthat of each destinatiol?Jlﬁj and
each conveyandi%J are all uncertain random variables, respectively.

It means thatf (x,y; &, n) is also uncertain random variables. Sirfcas two uncertain random variables, it is hard to
rank them easily. One way of doing this is to convert the uladerandom programming model into the expected value
programming model.

Definition 11. A solution X is referred to as the expected value of uncertain random foletge multi item solid
transportation problem, if

E[f (X, ¥ &) <E[f(X',y5€.n)]

holds for any feasible solution x

Thus model(2) can be converted to its expected value pragiagimodel under chance constraints, as follows:

.ERMNLpp RMNL o

min Co X 4+ tP yP

pzligljzlkzl ik ik pzligljzlkgl ki
N L

Chy > Z&‘}kéaf}zaip,VieM;VpeR
==l
M L .

Ch ,Zlkzle;kZb?} >BP,VjeN;VpeR -
I=1k=

st RM L

"] Ch pzlizlkZ]_XiijQ( > W, vkeL

X > 0,Vi e M;Vj e N;vke L;VpeR

o Lifxf >0 ,
Y = ! , VieM;VjeN;VkelL;VpeR
! 0if xf, =0

Whereaip,BJ—p, W are preconcerted confidence level for= M;Vi € N;vVk e M;vke L;Vpe R

In this model, the given parameters are either uncertainrandom variables. iﬁip,bf’,a( are uncertain variables, the
change measure degenerates and becomes the uncertaistyrenéd the same time, iiip, b}",@ are random variables,
the change measure degenerates and becomes the prolmabdgyre.

!/ " /
Let us assume that tré®, is (c®, ) for uncetain variables anc” for random variables. Similarly?, is (t° ) for
k ijk ijk ik ijk

" /
uncetain variables an(i(iﬁ-’k) for random variables. Moreovea!, bf’, are (af’)’, (bjp) ,(&)’ for uncertain variables
"
)

and(aP)"”, (bjp) (&x)” for random variables.
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Then model (3) can be transformed into an equivalent fornokmAs:

R M N () RMNL()p RMNL()
+
i E p:lizljzlkz ijk lek pZ Z Zlkzl ijk lek pzllzljzlkzl ijk yljk
R M N L "o
pzllzljzlkz (uk) Yiik
N L
M jzlzﬁj?k< } PYieM;VpeR
N L N
Pr Z zx”k (a”) P.YieM;VpeR
M L /
M{ R (b)} PVjieN;VpeR
1L ; (4)
Pr zle (b) >p VJENVDER
st. i=1k=1
R M ,
MeY >3 Xlk QJ} o vkeL
p=1i=1k=1
R M L
Pre 5 5 5 X <(8)" > Vkel
p=1li=1k=1
X > 0,Vi e M;Vj eN;Vke L;VpeR
p 1ifxﬁk>0 ) .
Y = o , VieM;VjeN;vkelL;VpeR
0|fxijk:

/ / /
Lemma 1. Suppose (aip)/,(bp) ,(q)’,(cﬁk) ,(tirj’k) independent uncertain vaiables with regular uncertainty

distributions®, _p\/, @, 1, @ v, P, 5\, P
(@) 7 (6p) " 7@ T () (e
independent random vaiables with regular probability dizitions W(aip)/, (bp)"
i

converts into the following conventional mathematicalggeonming model.

RMN L 1 RM N L 1
Y Y33 NP, a)da+z Z_Z injqu” N
I = T e T BT (c”k) S5 o (Cijk)
min R M N o L N
+Z_ZZ yljkf(D ()dCH‘ZZZ
p=1i=1j=1k= (,Jk> p=1li=
NoL
z zxf}k<¢(1) (1-af),VieM;VpeR
T
Z ZXIJk_ ( ),,(1faip),Vi€M;Vp€R
v
P -1 P\ vi - N-
P >w-l (BP),VjeN;VpeR
st. I%lk%lxl:_k_ (bP) (BJ) : P
Z Z lejk ( )/(1*M<),V|(GL
p=1i51k=1
R M L
>SS ZXIJk ,(17M<),Vk€L
p=1i=1k=1
xﬁkzowem-vJeN;VkeL;VpeR
1ifxP >0
Vi = X > ,VieM;VjeN;VkeL;VpeR
0if xfi =

)" respectively. And also suppoéal’)’, (bjp)/, (&), (cf}k)/ (

tP

”k) are

o)’ (Ciﬁk)l, (ti?k)/.Thus, model (4)

(a)da
S w1
1k§ y”kf (ljk>”( da

(®)
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Proof. From Theorem 6 and linear property of the expected value céuain random variables, we obtain

R M N L p R M N L " o
pélileZlkZ ( Ijk) X|JkJr Zl lezlkzl(cu k) lek

E R M N ( )y”k g g E(uk) yl]k

p1| 1J lk =1k=1

E[E g g % (ClFJJk)/XHk

p=1i=1j=1k=1

R M N L

Z Z Z Z Ijk
p=1i=1j=1k=1

R M N L N L "

> 253 (th) y.,k]+ 3,35 () yf}k]

R
by Ely
p=1li=1j=1k=1 p=1
R M N L / R M N
55> ZE[(C.-k)] DI P; ZE[ %)

=1i=
M
b

M
p=1i51j51KE 1751651 (' ]Xijk
SRR (OO A O
pé g Z1k1 1k y'k pz lZlkzl ijk yIJk
RMN L1 RN LI
ZZZZIQ’(p)()dCHz Y 3 Jwl,(a)da
— ijk

1
p=1i=1j=1k510  (of S1if1j51kE10 ()

RMN L1 RMN L1
+ZZZZf‘D(>()da+ZZZZfW
Ijk

p=1i=1j=1k=10 pP=1i=1j=1k=10 (ti‘j’k)

+E

,(a)da

From Theorem 3, the first uncertain constraints

N L
M{JZZ }>aDVieM;VpeR

are equivalent to the constraints
N L

Z\kzﬁk < cD(*a}), (1-af),VieM;VpeR
j=1k=

/ R M L
Similarly, other constraints Z Z x”k ( ) } > BJP,Vj eN;Vpe RM { >SSy xf}k < (Q()’} > W, Vke L are
i=1k= p=1li=1k=
ML R M L
i i it p -1 P\ i . o1 (1—
equivalent to the mequalltleiszlkzlxijk > (D(bip), (ﬁj),VJ € N;Vp € R z Izlkzlx] < (ea’ (1-—w),vk € L,

respectively. However,the first probabilistic constraint

gbs

Pr{ ()’ >

Then the following inequality can be obtained easily.

1- w{ sz”k} > af

HMI—

}>apVieM;VpeR

can be written as:
lek} >aP,vieM;VpeR

M=
-

i
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That s,
Thus,

are equivalent to the inequalities
N L
Z Z JkSL'U l” 1- ap)
=1 k=1

Other constraints can be proven in this way. So the proofrifyve

4 Numerical examples

/ / /
Example 1.Suppose thaal’)’, (bJP) (&), (cﬂk) ,(tirj’k) are independent uncertain linear vaiables

t (B by ) (a<bjp>'=b<bf>’) (3 D) ¢ ( ()P )’) '+ (ao.ﬁk)’ P )

and also(a”)”" (bjp) " (), (cfj’k) (tlﬂ’k) are the normal probability variables

N(l,l(aip)//?O'(aip)//) 7N (“(bf)”’o(bf)”) ,N([J(e‘()/;,o(e‘();/) 7N (u(cﬁk)//7o(cﬁk)”) 7N (u(ti;;k)” O’(tl;])k) )

Thus, model (5) transforms into the following equivalentsdministic single objective programming model.

BunL <<.,k>/j’<rzk>>

R M N L 0
+ X
min pilizljglkzl ”k pzllzljzlkzlu(uk) Xik
R MN L (.k)/er(.k) R MN L 0
+ZZZZ%VUK+ZZZZH "Yijk
S1j51k=1 ] ( )
> 5 X P 1-aP)b ieM R
< —a; ’ )
glkzlxuk ai a(%) (1-af) (aip),VIG VP E
N L
glkzlx”k_ Hapy' + 9y (1-aP),VieM;VpeR o
M L 6
’ —BP ’ P i y
3 Iahc>ag o) (1= BP) + by BR.VI €N VPR
ML
p > "+ O ” ,V eN;VpeR
ot Izlkzlxuk H(bp) + (bp) BJ J p
Y R M L
> ZZ&,k<a (1= + Dy e, VK E L
p=1iZ1k=1
R M L
> 2 Z&,k<ﬂ 7+ Ofgy (1= W), VKE L
p=1i51k=1
xﬁkzowem-VjeN;VkeL;VpeR
1ifxP
Yo = | X”">0,VieM;VJeN;vkeL;VpeR
! 0if xfj =0
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li li li
Example 2.Supposga’)’, (bjp) (&), (cﬁk) , (tfj’k) are independent uncertain zigzag variables

2 (e Pty tar) 2 (2 Py oy ) 2 (e Rsiar) 2 (3 B ) 2 (3 By
and also(aP)"”, (bﬁj) ' (@), (Cf}k)”, (ti‘j’k)” are the normal probability variables

N (u(aip)”y U<aip)”> 7N (“(bjp)”, U(bjp)”) 7N (“(e’()”y 0'(6‘)”) 7N (“(cﬂ )” U(Ci‘}k)”) 7N (“(tllj)k) G(ti?k)”) 3

respectively. Let confidence Ieveig?, ij, ¥ be greater than 0.5. Then, model (5) transforms into thewvatig equivalent
deterministic single objective programming model.

R M N L P 1+2b /+d R M N
SYS S ((uk) (élljk) (uk)> .FJ?kJr z z z ZH(])//X

min | PPLIS1IS1KEL = &
RM N L (% )’+2b(t. )/+d( )) R M N L
+ il el Ui + yP
p:li:ljzlk21 4 yljk Z Zl Zlkzlﬂ( ) yl]k
> 3 2af -1 2(1—aP)b, py,¥i € M;VpeR
glkgxuk (207" = 1) 8y +2(1 = 6) by, A EM; ¥p &
N L o
Zlg xIJk < Hg )u+0(a1_p)// (1-aP),VieM;VvpeR
p p i :
Izlkzlxuk > a(bp) (2— ZBJ' ) + b(bip)/ (ZBJ- — 1) ,VjeN;VpeR @)
p
Izlkzlx,k > N(bp)” + U(bp)”ﬁj ,VjieN;VpeR
st. RM L
péliglkzlxijk = 8 (2n—1)+ Zb(ex)/ (1-w).vkel

R M L
3 Y 3 Xk < Hgyr T 0y (1- W), VkeL
p=1li=1k=1

xijkzo,VieM;Vj eN;Vkel;VpeR

Oif xiﬂ?kzo’

1if x>0
yifj?k: . VieM;VjeN;VkelL;VpeR

li li li
Example 3.Supposga’)’, (bjp) (&), (cﬁk) ,(tfj’k) are independent uncertain normal variables

N (e lapy ) N (%,P)'v“(br)’) N (e Otay) N (%ﬁk)’ <c.';k>’) N (e@f,’k)’ (e )

and also(al’)", (bjp) " (@), (c-ﬁk)// (tfj’k) are the normal probability variables

N (“(a”)”’ "<ap>”> N (“(bjp)"v U(bjp)”) N (“(eo”v <e0”> N (“(cﬂ-k)”’ I(ch, )”) N (“(tﬁk) "(tﬁk)”) ’
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Thus, model (5) transforms into the following equivalentsdministic single objective programming model.

M L

R N L D R M N 0
e X+ X
pzllzljzlkZ ( ik ) 1k pélizljg z IJ( ijk) ijk
min R M N L b R M N L o
+ e Y+ A
pz zljglkzl (ti’j)k> y|]k pz Zl ;lkzlﬂ( ) yl]k
N L V30, py p
p @) 1ol i e
ngkzlxijk <€yt In o ,VieM;VpeR
) 1-a”),VieM;VpeR
< " " —a; :
;lkzlx,k_u( P) +0(aip) (1-aP),VieM;vpe
M L \/§0'( p)/ B
zzx|k>e 1+ In—5p J VJENVDER
i=1k=1 ( )
(8)
P\ .
glkzlxljk = Hiepy” * a(bip)”ﬁj VNP ER
st. V30, o
R M L (elp) 1-
<e i+ — L In=% vkelL
p:llzlkZlX] k &) n 5

R M L D
péléléﬁk < By + 0y (1= W), vkel

Xk >0,¥i eM;VjeN;vkeL;YpeR
Lifxfy >0

g , VieM;VjeN;VkeL;VpeR
T 0if xf, =0 J P

! !
Example 4.Supposgal’)’, (bjp) (&) (cf}k) (tlﬂ’k) are independent lognormal uncertain variables
N (et o) N (%}’)” "(b?)’) N (&%) N (e<c.ﬁk>”"<cﬁk>’) N (‘*(rs;k)”"(rﬁk)’) ’
" " "
and also(al’)”, (bjp) (&), (cﬂk) ,(tirj’k) are the normal probability variables

N (Hiapy- 9y ) N (“(b?)”’o(bf)”) N (i ay) N (“(cw"’(cﬁk)”) N (“o.?k)” "(tm”) ’

/ /
respectively. Moreover, Ie(cﬁk) , (tiﬁ-’k) be less tharmt/3. Then, model (5) transforms into the following equivalent

deterministic single objective programming model.
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M N L
ZZZIJ(

1j=1k=1

1120 (1) feXp< () ) CSC( (”k>/\/§> Yo

RMN L R
o, ,vv3exple .\ |csc V3| X
| ERE R o el ) £
mn RMN L
t2 2272
N L V30 oy
jglkglxﬂk < em(e(%p)/ & 1—a‘,’r> ,VieM;VpeR
N oL .
Zlkzlxuk < H(apy + Oapy” (1-aP),vVieM;VpeR
M oL ﬁo(bp)/ BP
2 ZX., > exp| &py + ——Npp | VieNiVpER
1= i
ML,
3 3 Xk = ey +Opy Bf. VI €Ni VP ER
st. R M

Sy s 1 vk e L
X n+ 0, (11— , S
p21|21k21 |]k &) (&) ( M()

Xk >0, ¥i eM;VjeN;vkeL;VpeR

1|fxl‘}k>0

0if xh, =0

5 Conclusions

L ‘/éa(ep)'
) Z zx”k<exp +7'InT ,Vkel
p=1li=

yﬁk: , VieM;VjeN;Vkel;VpeR

P
CIJ

)”lek

R M N L 0
+ Y
pzlizlj;k;u(tﬁk) ik

(9)

In this paper, uncertain random programming models for tkedficharge multi-item solid transportation problem is
presented. Applying uncertainty and randomness, the misdélansformed into its deterministic form. Then the
deterministic model based on the expected value of eaclttdlgainder the chance constraints is reduced to classical
single objective programming problems. Also, fixed chargdtiritem STP models for each uncertain random variable
are illustrated with numerical examples. It is noted thatartain random programming can be considered so widely in
real-world applications since uncertain criteria broadppear in all kinds of real-world mathematical programming

problems.
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