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Abstract: In the current study, a comprehensive analysis of nonlinearfree vibrations of a flexible rotating beam attached with a setting
angle to a rigid hub is perused. The system is supposed to be subjected to an external torque and a rotation dissipation load which
collectively referred to as perturbations. A set of two strongly coupled second-order ordinary nonlinear differential equations with
an ignorable coordinate is used to depict the dynamics of theindividual mode in plane flexural deflection of the arm and itsoverall
rotational motion. For the unperturbed system which is our especial case in this work, the system angular momentum parameter, not
the hub rotational speed, becomes a specified constant of motion. Furthermore, in order to consider the effect of beam deflections on
the overall motion and vice versa, utilizing torque-controlled approach is necessary. It is noteworthy that here threepowerful analytical
methods for instance Modified Differential TransformationMethod (MDTM), Variation Iteration Method (VIM) and finallyHomotopy
Perturbation Method (HPM) have been introduced to investigate the comportment and frequency of cantilever rotating beams with
a setting angle. These methods are useful and practical for solving a wide variety of nonlinear equations. Comparisons amongst the
obtained results by all the presented methods and Numericalsolution reveal that all the afore-mentioned methods are significantly
effective and efficient especially MDTM.

Keywords: Cantilever beam, natural frequency, modified differentialtransformation method (MDTM).

1 Introduction

Nowadays, the rotating components are significantly noticed in a wide variety of industries such as turbine, compressors,
helicopter rotor blades, airplane propellers, satellite antennas, robotic arms and various cooling fans. It is putative that
the dynamic property of the above instruments has to be first thoroughly solved and understood if their high performance
is perfectly fulfilled. The dynamic behavior of rotating beams is highly complex and thus in order to have an acceptable
concept of this issue, they are generally modeled in the formof a simple rotating beam. Studies demonstrate that
increasing the rotational speed tends to stiffen the beam (due to the centrifugal force) and thus increases its flexural
natural frequencies and the beam deflections affect the overall motion of the rotating beam. Most of the studies like
Hamdan and Al-Bedoor[1] considered the free vibrations of rotating beams (undamped system with no torque). In other
words, the rotational speed was assigned a constant value ora time dependent function and introduced as an input to the
system. Therefore in those studies, researchers did not consider the influence of the beam elastic vibrations on the rigid
body motion. On the other hand, only few studies have looked after the more realistic, so called rigid-flexible coupling
case where the rigid body motion is affected by the flexible beam elastic deflections in addition to the overall motion
effect on these deflections. In a rotating undamped system, the magnitude and duration of the external torque which were
applied for a specified starting period sets the steady staterotational speed or angular position.

The scrutiny for vibration characteristics of rotating beams has been investigated for a long period of time. A magnificent
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Fig. 1: The rotating straight beam.
Fig. 2: The rotating beam with a setting angle
(ψ).

review of this issue can be found in published papers given byLeissa[2], Rammurati[3] and Rao[4]. Totally, the
researches about the rotating beam from the orientation of the beam relative to the hub can be divided into the following
several forms:I) the rotating straight beam (Fig.1).II) the rotating beam with a setting angle(ψ) (Fig.2).III) the rotating
beam with an inclined angle(ηup) (Fig.3) and some other forms which are graphically described in the following chapter
of this article in Fig.4 and Fig.5. Undoubtedly obtaining the exact solution of differential equations with variable
coefficients for these kinds of system is not convenient but after some assumptions and elimination of parameters and a
little simplification, we can extract the final governing equation for this mentioned system. Therefore, it will be very
simple to evaluate natural frequency of the system.

Entirely, the basic solutions for rotating beam mechanism are often solved by approximation methods, take for example:
the finite element method[5,6], the Galerkin method[7], theRayleigh-Rits method[8], the perturbation method[9], the
finite difference method[10] and the dynamic stiffness method[11]. But in this case study, Modified Differential
Transformation Method (MDTM), Variation Iteration Method(VIM) and finally Homotopy Perturbation Method(HPM)
have been utilized to investigate the mentioned system completely and to yield natural frequency of the proposed beam.

Fig. 3: The rotating beam with an inclined
angle(ηup).

Fig. 4: The rotating beam with a flapping
angle(Φ).

c© 2018 BISKA Bilisim Technology



NTMSCI 6, No. 1, 59-75 (2018) /www.ntmsci.com 61

Fig. 5: The rotating beam with a flapping angle (Φ) and a setting angle (θup).

It is citable that in this case study, we mainly aim at the vibrational characteristics of rotating beams with a setting angle.

Nomenclature

RH Hub radius
mH Hub mass
θ̇ The angular velocity of hub
ψ Setting angle
Ab Uniform cross section area of the beam
EI Flexural rigidity
L Constant length of the beam
mb Beam mass
ρ Beam mass density
CdR Assumed rotational linear viscous damping coefficient
CdT Assumed bending linear viscous damping coefficient
φ Assumed mode shape
ε Small positive parameter
C0 = C + 1

3 +
C2(1+ µ

2 )
Dimensionless system parameter

µ = mH
/

mb
Dimensionless system parameter

C= RH
/

L Dimensionless system parameter
β = ( EI

mbl3
)1/2 Dimensionless system parameter

βi , i = 1, ...,9 Dimensionless constant coefficient associated with the assumed mode of vibration
H Angular momentum
Pθ Angular momentum of the system about the hub rotation axis divided by a mass

momentum of inertia factor
C Dimensionless hub radius to beam length ratio
µ Dimensionless hub mass to beam mass ratio
TA Constant amplitude of starting period
ts Time duration of starting period
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Fig. 6: (a). Cantilever beam diagram. (b). Deflected configuration of the arm.

2 The dynamic model

The cantilever beam which has been depicted in Fig.6 is attached to a hub which is assumed to be a rigid disk with radius
RH ,mH and rotating at an angular velocitẏθ about the Z-axis. The effect of torque T on the hub causes it torotate only.
The X,Y,Z is system of fixed rectangular Cartesian coordinate axes with origin at the center of the hub. The x,y,z and
the x′,y′, z′ are two sets of rectangular Cartesian coordinate axes rotating with the hub with common origin at the root
of the beam. The setting angleψ is rotation of the hub about longitude axis of the beam. The beam is assumed to be
initially straight along thex′-axis clamped at its base to the hub surface, having a uniformcross-sectional areaAb, flexural
rigidity EI, constant lengthl , massmb and densityρ . The beam thickness is assumed to be small compared to its length
so that the effects of shear deformation and rotary inertia can be ignored. It is notable that various dynamic models have
been proposed to represent the dynamics of rotating beams (e.g.[12-15]). In these models different approaches, leading
to various results, are utilized to account for the axial displacement and centrifugal force. The mathematical model used
here to describe the dynamics of the above beam system is a special case of the single mode model introduced in the work
of Hamdan and El-Sinawi [16]. Therefore, the governing ordinary differential equations of the beam system are defined
as follows.

(β1+β8q2)q..+

[

(β7−Cβ3)cosψ +
1
2
(β5cosψ)q2

]

θ ..+
[

β 2β2− (Cβ4−β6+β1cos2 ψ)
.

θ
2
]

q (1)

+β8q
.
q2

+2β 2β9q3+CdT
.
q= 0.

[

C0+(Cβ4−β6+β1cos2 ψ)q2
] ..

θ +cosψ
[

β7−Cβ3+
1
2β5q2

] ..
q+(β5cosψ)q

.
q2

+2(Cβ4−β6−β1cos2 ψ)q
.
q

.
θ = ε

(

T
mbl2

−CdR
.

θ
) (2)

which

β1 =
∫ 1

0 φ2dξ , β2 =
∫ 1

0 φ ′′2dξ , β3 =
∫ 1

0 φdξ , β4 =
∫ 1

0 (
∫ ξ

0 φ ′2dη)dξ , β5 =
∫ 1

0 φ(
∫ ξ

0 φ ′2dη)dξ
β6 =

∫ 1
0 ξ (

∫ ξ
0 φ ′2dη)dξ , β7 =

∫ 1
0 ξ (

∫ ξ
0 φdη)dξ β8 =

∫ 1
0 (
∫ ξ

0 φ ′2dη)2dξ , β9 =
∫ 1

0 φ ′2φ ′′2dξ
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where, prime denotes a derivative with respect to the dimensionless arc length variableξ = s
l . Note that the case= 0is

used to indicate that the net driving torque, take for example the bracketed term in the right hand side of Eq.2, is zero
and will be referred to as the unperturbed system while the case 6= 0(net driving torque not equal to zero) will be referred
to as the perturbed system.

The degree of freedom in this dynamical system is the dimensionless modal beam tip lateral flexural deflectionq = v
l

(seeFig.6) and the overall rigid body rotationθupwhich is an ignorable coordinate.

However, solving Eq.1 and Eq.2 analytically is more difficult since they have to be solved intwo stages. In the first stage,
one has a starting torque. The results of this step should be taken and substituted as initial conditions to the second stage
in which one has a zero or a different specified torque. To facilitate analytical analysis of the governing model in Eq.1
and Eq.2 for such systems, a coordinate transformation, which takesadvantage of the fact thatθ is an ignorable
coordinate, is usually used to replaceθ̇by an angular momentum variable of the system[17].

First by defining the following constants.

K1 = β1, K2 = β8, K3 = (β7−Cβ3)cosψ , K4 =
1
2

β5cosψ , K5 = β 2β5

K6 =Cβ4−β6+β1cos2 ψ , K7 = 2β 2β9

Therefore, we can write Eq.1 and Eq.2 more briefly

(K1+K2q2)q̈+(K3+K4q2)θ̈ +(K5−K6θ̇ 2)q+K2qq̇2+K7q3+CdTq̇= 0 (3)

c0+ k6q2)
..
θ +(k3+ k4q2)

..
q+2k4q

.
q

.

(q)
2
+ 2k6q

.
q

.
θ = ε(

T
mbl2

−CdRθ̇ ) (4)

After the following substitution

B=C0+K6q2 and D = K3+K4q2 (5)

into Eq.4, the above dynamic model becomes

(K1+K2q2)q̈+(K3+K4q2)θ̈ +(K5−K6θ̇ 2)q+K2qq̇2+K7q3+CdTq̇= 0 (6)

d
dt
(Bθ̇ +Dq̇) = ε(

T
mbl2

−CdRθ̇ ) (7)

where B and D are given in Eq.5. Moreover, if

Pθ = Bθ̇ +Dq̇ (8)

Eq.(7) becomes

d
dt
(Pθ ) = ε(

T
mbl2

−CdR(
Pθ −Dq̇

B
)). (9)

Note thatT = dH
dt .

Next a coordinate transformation from the?̇ and q coordinates toPθ andq coordinates is carried out by substituting

θ̇ =
Pθ −Dq̇

B
. (10)
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In Eq.6 and Eq.7, performing the long mathematical manipulations and retaining up to third-order terms, the transformed
equations are

(S0+S1q
2)q̈+S4qq̇2+(S7−S8P

2
θ )q+S9Ṗθ q2+S10q

3+S14Ṗθ +CdT(S15+S16q
2)q̇= 0. (11)

Ṗθ = ε(
T

mbl2
−CdR(

Pθ − (K3+K4q2)q̇
(C0+K6q2)

)) (12)

where

S0 =C2
0K1−K2

3C0, S1 = 2K1K6C0+C2
0K2−K2

3K6−2K3K4C0,
S4 = K2

3K6−2C0K3K4+K2C2
0, S7 = K5C2

0, S8 = K6, S9 =C0K4+K3K6 ,
S10= K7C2

0 +2K5K6C0, S14=C0K3, S15=C2
0, S16 = 2K6C0.

(13)

It is noteworthy thatS0, S1 , . . . , S16 depend on the assumed mode of vibration and the system parametersC,Ψ andµ .

3 Unperturbed system

In this paper, what we mean by the unperturbed motion of the system is that system is assumed to rotate freely with
zero net driving torque (right hand side of Eq.(12) is zero).In the present work, for simplicity of analysis, we take the
rotational dissipationCdR, as well as the bending dampingCdTto be zero and the external applied torqueT to be the smooth
half-sine-wave.

T =

{

TAsin
(

πt
ts

)

if 0 ≤ t ≤ ts
0 i f t ≥ ts

}

(14)

Substituting forCdR= 0 and Eq.14 into Eq.12 and integrating the resulting equation from 0 tots leads to the following
expression for the unperturbed motion angular momentum parameterPθ .

Pθ =
2TAts

π mbl2
= Constant (15)

with units S−1.ThusṖθ= 0 and Eq.(11) after setting CdT= 0, dividing by S0 and rearranging becomes

q̈+(
S7

S0
−

S8

S0
P2

θ )q+
S1

S0
q2q̈+

S4

S0
qq̇2+

S10

S0
q3 = 0. (16)

As expressed in the later chapter, the interest in this paperis with that the first mode of vibration which is supposed to
dominate the dynamics of the rotating beam. So, the constantcoefficients(S0, S1, S4, S7, S8, S10) are evaluated based on
this first mode vibration assumption.

In order to lighten the mathematical computation, we can rewrite Eq.16with new definition for the constants as follows.

q̈+ω2
1q+d1q

2q̈+d2qq̇2+d3q3 = 0 (17)

where

ω2
1 =

S7

S0
−

S8

S0
P2

θ d1 =
S1

S0
d2 =

S4

S0
d3 =

S10

S0
. (18)

An approximate solution of Eq.1 is in the form of

q(t) = A1cosωt +A3cos3ωt (19)
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and the initial conditions take the form of

q(0) = Aq̇(0) = 0. (20)

It is noteworthy that there are two different modes of vibration according to table1 as follows

Table 1: Values of variables in Eq. for the two modes.

Mode ω1 d1 d2
1 1 1 1
2 0 1 1

.

As it was previously noted, in this case study we just analyzethe first mode of vibration and for simplicity, we change the
appearance of the first mode of vibration into the following form

d2

dt2
w(t)+w(t)+w(t)2

(

d2

dt2
w(t)

)

+w(t)

(

d
dt

w(t)

)2

+w(t)3 = 0. (21)

Also, we have changed the appearance of the boundary conditions in the form of

W(0) = A= 1, D(w(0)) = 0. (22)

4 Basic ideas

4.1 The basic idea of homotopy perturbation method

Consider the following equation
A(u) − f (r) = 0 , r (23)

With the boundary condition of

B

(

u,
∂u
∂n

)

= 0; r ∈ Γ (24)

whereA is a general differential operator,B denotes to the boundary operator,f (r) is a given analytical function,Γ is the
boundary of domainΩ and ∂u

∂n refers to the differentiation along the normal drawn outwards fromΩ . The operator A can
be divided into two parts: a linear partL and a nonlinear part N [18-19]. Therefore, Eq.23can be rewritten as follows

L(u)+N(u)− f (r) = 0. (25)

In the case that the nonlinear Eq.23has no small parameter, we can construct the following Homotopy

H (v, p) = (1− p) [L(v)−L(u0)]+ p[A(v)− f (r)] = 0 (26)

where,
v(r, p) : Ω × [0,1]→ R (27)

In Eq.26, p∈ [0,1] is an embedding parameter andu0 is the first approximation that satisfies the boundary condition. We
can assume that the solution of considered equation can be obtained as a power series in p, in this manner

v=
n

∑
i=0

pivi = v0+ pv1+ p2v2+ p3v3+ . . . . (28)
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And the best approximation for solution is

u= lim
p→1

v= v0+ v1+ v2+ v3+ v4+ . . . . (29)

When Eq.26corresponds to Eq.23and Eq.29becomes the approximate solution of the considered nonlinear equation. By
increasing the number of series terms in Eq.28, the accuracy of the results will be augmented and they couldbe used as
an exact solution.

4.2 The basic idea of differential transformation method

If f (t) is analytic in the time domainT, then it will be differentiated continuously with respect totime t

ϕ (t,k) =

(

dk f (t)
)

dtk
, ∀t = T (30)

For t = ti thenϕ (t,k), where k belongs to the set of non-negative integers, denoted as the K-domain. Therefore, Eq.30
can be rewritten as follows

F (k) = ϕ (ti ,k) =

[

dk f (t)
dtk

]

t=ti

, ∀t = T (31)

where F(k) is called the spectrum of f(t) att = ti in the K-domain. If f (t) can be represented by the Taylor series, then it
can be represented as

f (t) =
∞

∑
k=0

(

(t − ti)k

k!

)

.F (k) . (32)

Eq.32is called the inverse transform ofF(k). Then, according to the symbol D which is denoting the differential transform
process and its combination by Eq.31and Eq.32, we obtain

f (t) =
∞

∑
k=0

(

(t − ti)k

k!

)

.F (k)≡ D−1F (k) . (33)

From the above definitions, it is easy to obtain the basic mathematical operations of DTM in Table 2 as

Table 2: Basic transformation for simple functions by DTM.

Time definition Transformed function
w(t) = α.u(t)±β .v(t) W(k) = α.U (k) ±β .V (k)

w(t) = (dmu(t))/(dtm) w(k) = (k+m)!
k! U (k+m)

W(t) = u(t)v(t) W(k) =
k
∑

l=0
U (l) .V (k− l)

w(t) = tm
W(k) = δ (k−m) =

{

1 if k= m
0 if k 6= m

w(t) = exp(t)
W(k) = 1

k!

w(t) = sin(ω t +α) W(k) =
(

ωk

k!

)

sin
(

kπ
2 +α

)

W(t) = cos(ω t +α) W(k) =
(

ωk

k!

)

cos
(

kπ
2 +α

)
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To end up, using the differential transform [20], a differential equation in the domain of interest can be transformed into
an algebraic equation in the k domain and f(t) can be obtainedby the finite-term Taylor series expansion plus a remainder
as

f (t) =
∞

∑
k=0

(

(t − ti)k

k!

)

.F (k)+RN+1(t) (34)

4.3 Variation iteration method

To clarify the basic ideas of VIM, we consider the following differential equation

Lu+Fu= g(t) (35)

whereL is a linear operator,F is a nonlinear operator andg(t) is a heterogeneous term. According to VIM, we can write
down a correction function as follows

un+1(t) = un(t)+
∫ t

0
λ (Lun(τ)+Fũn(τ)−g(τ))dτ (36)

whereλ is a general Lagrangian multiplier which can be identified optimally via the variational theory. The subscriptn
indicates thenthapproximation andu’n is considered as a restricted variation [21-23], i.e.,δun= 0.

5 Applications

5.1 Homotopy perturbation method

Considering Eq.1, according to the HPM, the homotopy, Eq.35 is gained as follows

H( f , p) = (1− p)(
d2

dt2
w(t)+w(t))+ p(

d2

dt2
w(t)+w(t)+w(t)2

(

d2

dt2
w(t)

)

+w(t)

(

d
dt

w(t)

)2

+w(t)3)H( f , p)

= (1− p)(
d2

dt2
w(t)+w(t))+ p(

d2

dt2
w(t)+w(t)+w(t)2

(

d2

dt2
w(t)

)

+w(t)

(

d
dt

w(t)

)2

+w(t)3). (37)

On the basis of HPM theory, we assume f(η) in the form of

w(t) = w0 (t)+pw1 (t)+p2w2 (t)+p3w3 (t)+ . . . (38)

Now, after substituting Eq.38 into Eq.37 and some simplification and rearranging them which were based on powers of
p-terms, we have

P0 : w0(t)+
d2

dτ2 w0(t) (39)

p1 :
d2

dt2
w1(t)+w1(t)+w0(t)

[

d
dt

w0(t)

]2

+w0(t)
2
[

d2

dt2
w0(t)

]

(40)

p2 : 3w0(t)
2w1(t)+2w0(t)

[

d
dt

w0 (t)

][

d
dt

w1 (t)

]

+
d2

dt2
w2 (t)+w0(t)

2
[

d2

dt2
w1 (t)

]

+2w0(t)w1 (t)

[

d2

dt2
w0 (t)

]

+w2 (t)+w1 (t)

[

d
dt

w0 (t)

]2

(41)
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p3 : w1
(

t2)
[

d2

dt2
w0 (t)

]

+3w0(t)+w1(t)
2+w2(t)

[

d
dt

w0 (t)

]2

+3w0(t)
2w2 (t)+2w0(t)w2 (t)

[

d2

dt2
w0 (t)

]

+2w0(t)w1 (t)

[

d2

dt2
w1 (t)

]

+2w0(t)

[

d
dt

w0 (t)

][

d
dt

w2 (t)

]

+w0(t)
2
[

d2

dt2
w2 (t)

]

+w3(t)+
d2

dt2
w3 (t)

+2w1(t)

[

d
dt

w0 (t)

][

d
dt

w1 (t)

]

+w0 (t)

[

d
dt

w1 (t)

]

(42)

By continuing the above process, higher accuracy will be obtained. Solving Eq.39 to Eq.42with considering appropriate
initial conditions which means the right hand side of the initial conditions should be equal to zerothat is
{w(t = 0) = 0,w′ (t = 0) = 0} for the afore-mentioned equations with the exception of Eq.39 which for this case we
should consider the main boundary condition, Eq.22. Therefore, we will have

w0(t) = cos(t) (43)

w1(t) =−
1
8

sin(t)(t − cos(t)sin(t)) (44)

w2 (t) =
1

256
cos(t)+

3
64

cos(t)2sin(t)t +
9

256
sin(t)t −

1
128

cos(t)t2+
5
64

cos(t)5−
21
256

cos(t)3 (45)

Therefore, in regard to the given explanations, w(t) will be achieved as follows

{w(t) = lim
p→1

w0 (t)+p.w1 (t)+p2.w2 (t)+p3.w3 (t)+ . . .} (46)

Eventually, we have

w(t) =
4345
4096

cos(t)−
1
8

sin(t)(t − cos(t)sin(t))+
15
256

cos(t)2sin(t)t +
9

256
sin(t)t −

1
128

cos(t)t2+

941
6144

cos(t)5−
21
256

cos(t)3−
103
1536

cos(t)7−
25
512

cos(t)4sin(t)t +
1

12288
(40+108t2)cos(t)3 (47)

+
1

12288
(−837−6t2)cos(t)+

1
12288

(4t3−234t)sin(t).

As it is obvious, solution of terms varies periodically and in each step more accuracy has been gained. So,ω(t) can be
charted in Fig.7 as follows

5.2 Variational iteration method

In order to solve Eq.21 with the boundary conditions of Eq.22 utilizing VIM, we construct a correction function as
follows

wn+1(t) = wn(t)+
∫ t

0
λ

(

d2

dτ2 wn(τ)+wn(τ)+wn(τ)2
(

d2

dτ2 wn(τ)
)

+wn(τ)
(

d
dτ

wn(τ)
)2

+wn(τ)3

)

dτ (48)

It is notable that recently a new method has been introduced in order to find lagrange multiplier which needs less
computational work in comparison to the previous method as follows

To start, it is necessary to separate the linear part of the main differential equation which in this case study is Eq.(21),
afterwards this is the best time to take its Laplace transform. For the next step, we should utilize
the first term of Derivative Laplace Transform Theoremand equals it to(−1)n wheren denotes to the highest order of
derivative of the linear part of our equation. Then with taking inverse Laplace transform and substitution (A-B) instead of
the variant of our answer which A and B refer to the integral variant of our correction function and the top range of
integral, respectively. It is easy to understand the afore-mentioned procedure in accordance to these formulae.
The Lagrangian multiplier can therefore be computed in the form of
(1) Separating the linear part of the equation⇒ d2

dt2
w(t)+w(t)

c© 2018 BISKA Bilisim Technology



NTMSCI 6, No. 1, 59-75 (2018) /www.ntmsci.com 69

Fig. 7: The result of HPM forω(t) in the time domain between 0≤ t ≤ 6.

(2) Taking its Laplace transform⇒ s2L{w(t)} +L{w(t)} = 1. SoL{w(t)}(s2+1) = 1 then we haveL{w(t)} = 1
1+s2

thereforew(t) = L−1
{

1
1+s2

}

= sin(t)

(3) In as much asλ = lim
t→τ−t

w(t), finally λ is obtained in the following form

λ = sin(τ − t) (49)

As a result, we obtain the following iteration formula

wn+1(t) = wn (t)+

t
∫

0

λ

(

d2

dt2
wn (τ)+wn(τ)+wn(τ)2

[

d2

dt2
wn (τ)

]

+wn (τ)
[

d
dt

wn (τ)
]2

+wn(τ)3

)

dτ. (50)

Now we start with an arbitrary initial approximation that satisfies the initial condition

w0(t) = Acos(t) (51)

On the basis of Eq.50, we have

w1 (t) = w0 (t)+

t
∫

0

(−sin(−τ + t)

(

d2

dt2
w0 (τ)+w0(τ)2

[

d2

dt2
w0 (τ)

]

+w0 (τ)
[

d
dt

wn (τ)
]2

+w0(τ)3

)

dτ. (52)

Substituting Eq. (51) into Eq. (52) and after some simplification, we have

w1(t) =
9
8

cos(t)−
1
8

t sin(t)−
1
8

cos(t)3 (53)

And so on.

In the same manner, the rest of the components of the iteration formula can be obtained. Therefore, the diagram ofω(t)
is illustrated in Fig.8 as
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Fig. 8: The result of VIM forω(t) in the time domain between 0≤ t ≤ 6.

5.3 Differential transformation method

With regard to the explanation of differential transformation Method which was discussed completely in section 4.2, Eq.21
can be solved as follows

(k+1)(k+2)W(k+2)+W(k)+
k

∑
k1=0

k1

∑
L=0

W(L)W(k1−L)(k+1− k1)(k+2− k1)W(k+2− k1)

+
k

∑
k1=0

k1

∑
L=0

W(L)(k+1− k1)(k1−L+1)W(k1−L+1)W(k+1− k1) (54)

+
k

∑
k1=0

k1

∑
L=0

W(L)W(k1−L)W(k− k1) = 0.

Then, we should take differential transform from the boundary conditions in the form ofD{w(t = 0)} = D{1} and
D
{

d
dt w(t)

∣

∣

t=0

}

= D{0} so, we have

W(0) = 1 and W(1) = 0, (55)

In this step, we dedicate some values to K which are from 2 to 6 (because according to the Eq.(55) we have the amounts
of W(k) fork= 0 and 1) then by using maple package, we obtain these equations

W(2) =−
1
2

(56)

and

W(3) =W(4) =W(5) =W(6) =W(7) = 0 (57)
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Fig. 9: The result of VIM forω(t) in the time domain between 0≤ t ≤ 6.

then

W(8) ==
1

896
. (58)

With respect to the above equations, we can definew(t) as follows:

w(t) =
8

∑
k=0

W(k).tk (59)

Therefore, we have:

w(t) = 1−
1
2

t2+
1

896
t8 (60)

Finally, the chart of thew(t)by DTM is depicted in Fig.9 as follows. Obviously, DTM is not asuitable method to solve
these kinds of equations. Therefore, another analytical approach is required to overcome this difficulty such as MDTM as
follows

5.4 Modified differential transformation method

As regards Fig.9. DTM is not accurate for solving this problem so it should be improved by little changes in solution
procedure which is named MDTMor MSDTM. Briefly, the story of MDTM or MSDTM is the same as DTM but here,the
solution domain is detached into small pieces and boundary conditions are applied for each of these small pieces of domain
then these proceedings together can prevent a sudden rise inthe specified domain. With regard to the afore-mentioned
explanations, the solution procedure is done as follows.

w0(t) = 1−
1
2

t2+
1

896
t8 (61)

and w0.5(t = 0) = 0.875004 and w0.5(t = 1) =−0.499930 (62)

For the next step w1.0(t = 0) = 0.501612 and w1.0(t = 1) =−0.986016 (63)

Afterthat w1.5(t = 0) =−0.07267 and w1.5(t = 1) =−1.22054 (64)

Then w2.0(t = 0) =−0.61244 and w2.0(t = 1) =−0.872408 (65)
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Fig. 10: The solution of Eq.21 resulted by MDTM.

The other values are computed in the form of

w2.5(t = 0) =−0.92594 andw2.5(t = 1) =−0.376913, (66)

and w3.0(t = 0) =−0.98977 and w3.0(t = 1) = 0.12157 (67)

So w3.5(t = 0) =−0.80438 and w3.5(t = 1) = 0.61968 (68)

A f terwards w4.0(t = 0) =−0.37424 and w4.0(t = 1) = 1.08339 (69)

Then w4.5(t = 0) = 0.218356 and w4.5(t = 1) = 1.18731 (70)

Forthenextstep w5.0(t = 0) = 0.716692 and w5.0(t = 1) = 0.784768 (71)

Then w5.5(t = 0) = 0.981847 and w5.5(t = 1) = 0.274777 (72)

Eventually w6.0(t = 0) = 0.991848 and w6.0(t = 1) =−0.234724 (73)

Now, the solution procedure is done completely. Therefore,the diagram ofω(t) has been achieved in Fig.10 as

5.5 Graphical results

According to the obtained formulae from the previous parts of this paper, a comparison amongst the achieved solutions by
HPM,VIM and MDTM is yielded in Fig.11 as follows Eventually,the error charts of the mentioned methods are illustrated
in Fig.12 as And also the above graphical results are shown intable3 as follows
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Fig. 11: A comparison amongst MDTM, VIM, HPM and numerical solution.

Fig. 12: The computational error ofw(t)in the specified domain resulted by HPM,VIM and MDTM.
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Table 3: Obtained numerical values and errors forw(t)in the specified domain.

t Numeric HPM VIM MDTM The
Error of
HPM

The
Error of
VIM

The
Error of
MDTM

0 1 1 1 1 0 0 0
0.5 0.87500480 0.87342313 0.87344892 0.87500437 0.00158166 0.00155588 0.00000043
1 0.50162102 0.49433444 0.49600557 0.50161223 0.00728657 0.00561544 0.00000875
1.5 0.07260543 0.08371294 0.07936376 0.07267108 0.01110750 0.00675831 0.00006564
2 0.61223450 0.62077682 0.62629234 0.61244206 0.00854232 0.01405784 0.00020755
2.5 0.92732018 0.94736007 0.96436965 0.92594631 0.02003988 0.03704946 0.00137380
3 0.99295063 1.03511220 1.01747393 0.98977396 0.04216160 0.02452329 0.00317666
3.5 0.80860942 0.82864765 0.82013868 0.80438519 0.02003822 0.01152925 0.00422423
4 0.37851282 0.37591470 0.40225586 0.37424330 0.00259811 0.02374304 0.00426952
4.5 0.21532634 0.23896539 0.18224813 0.21835681 0.02363904 0.03307821 0.00303046
5 0.70943825 0.72077476 0.69595767 0.71669247 0.01133650 0.01348058 0.00725421
5.5 0.96554062 0.97549322 1.03982953 0.98184710 0.00995260 0.07428890 0.01630648
6 0.97180256 1.10238841 1.08513912 0.99184812 0.13058584 0.11333656 0.02004556

Due to Fig.12 and Table.3, the maximum errors of HPM, VIM and MDTM in the specified domain are approximately
%13, %11 and%2, respectively. Therefore, it is notable that amongst the three mentioned analytical methods, the achieved
solution by MDTM is considered approximately as the real answer of the presented problem.

6 Conclusions

The research undertaken in this paper is devoted to the nonlinear vibrations of an inextensible rotating beam fixed with a
setting angle to a rigid hub. Moreover, the free vibration ofthis rotating beam under a determined starting torque usingthe
transformed equations has been investigated thoroughly. Therefore by assuming a prescribed starting torque instead of a
prescribed overall motion, the beam deflection influence on the rigid body motion and vice versa which means the effect
of rigid body motion on the beam deflection was acquired. Afterwards, three analytical methods were utilized in order
to obtain the vibrational frequency of the mentioned beam and the outcomes have been compared with numerical results
in order to check their precision and accuracy. It is noteworthy that the obtained results by MDTM, VIM and HPM have
been showed graphically and compared together to get the most suitable and precise solution. Eventually, on the basis of
the obtained results from Table.3 and Fig.12, it is clear that amongst all of the applied analytical methods, MDTM is very
applicable in this special case.
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