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Abstract: In this paper, we aim to review suborbital graphs and also give an example to an extension of directed graphs.
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1 Introduction

It is known that when graph topics are investigated, it is seen that there is a lot of study in literature. One of them is

suborbital graphs. The first study to give the relation between graphs and permutation groups is in [1]. That is, the

connection between transitive groups and graphs is introduced and used to give new insight into some known results. In

[1], the structures of directed and undirected graphs were analyzed and applied to primitive groups. Later in [2]

suborbital graphs were gave for action ofΓ on extended rational number setQ∪{∞}. Authors explained imprimitive

action and also showed generalized Farey graph and connectedness. In [3], authors mentioned permutation groups,

transitivity, primitivity and applications to graph theory.

In these papers[4−14], authors examined some properties of suborbital graphs forthe normalizer ofΓ0(N) in PSL(2,R)

and also discussed the structure and signature of the normalizer. They found a certain part of the total order of

ramification ofΓ0(N) over its normalizer. They characterized all circuits in thesuborbital graph for the normalizer of

Γ0(N). Edge and circuit conditions on graphs were obtained. Moreover, the results are quite successful. They considered

the action of a permutation group on a set in the spirit of the theory of permutation groups, and graph arising from this

action in hyperbolic geometric terms. In addition that authors examined some relations among elliptic elements, circuits

in graph for the normalizer ofΓ0(N) in PSL(2,R) and the congruence equations arising from related group action.

Especially in[15− 20], they choseN = 2α p2, N = 3β p2 and p > 3 prime number whereα = 0,1, ..8, β = 0,1,2,3.

Hence authors gave the conditions to be a forest for normalizer. Consequently, forN = 2α3β p2 the following result has

been reached:

α β Circuits Conditions

0,2,4,6 0,2 triangle p≡ 1(mod3)

1,3,5,7 0,2 quadrilateral p≡ 1(mod4)

0,2,4,6 1,3 hexagon p≡ 1(mod3)

We can say that in [21] authors studied on the simple group known as Monster and gave final form elements of

normalizer. Indeed normalizer is a Fuchsian group whose fundamental domain has finite area, so it has a signature

consisting of the geometric invariants. The signature on the working group is extremely important in terms of revealing

invariants. This signature problem is in a way the identity of discrete group. The main purpose in these studies, is to set
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the foundations of a new method which would help to identify the normalizer much better, which have been subject to

many studies and gaining particular importance since 1970sand to reveal how the producing elements of the normalizer

can be gained by graph method. Therefore, it is by this way that the signature problem was transferred to the suborbital

graphs and a new approach was tried to be achieved.

In [22− 38] authors examined some properties of suborbital graphs for the modular group, congruence subgroups,

extended modular group, invariance group, Fricke group, Hurwitz group, the simple groupsPSL(2,q), Atkin-Lehner

group, Picard group,Γ 2 andΓ 3 which are the group generated by the second and third powers of the elements of the

modular group, respectively. Furthermore in[28] the dimensional of the graphs has been increased by selecting group

SL(3,Z). In short, in these studies obtained circuit and forest. Besides necessary and sufficient conditions for being self

paired edge were provided. They investigated connectedness of suborbital graphs and studied combinatorial structures of

some Fuchsian groups and search genus for these groups. Of course, all calculate was made in upper half plane or

Poincare disc model.

In [39− 41] authors emphasized some properties of directed graphs for the Hecke groups. They said that the regular

maps corresponding to the principal congruence subgroups of Hecke groups. Additionally, they related the sizes of the

Petrie polygons on these maps and used Fibonacci numbers.

As the last word in these studies[42− 45] digraphs give rise to a special continued fraction which arerelate to a

continued fraction representation of any rational number.It is obviously that authors described a new kind of continued

fraction. The fraction arises from a subgroup of the Farey graph. And they also studied the analogues of certain

properties of regular continued fractions in the context. Specially, in[45] there is the chromatic numbers of the suborbital

graphs for the modular group and the extended modular group.They verify that the chromatic numbers of the graphs are

2 and 3.

Using general ideas in the study of[1], this paper is an extension of suborbital graphs on 3-dimensional upper half space.

2 Bianchi Groups and their congruence subgroups

Definition 1. Let d be a square-free natural number. Consider the imaginary quadratic number fieldQ(
√

d), d < 0 and

let Od be its ring of integers. The groupsΓd := PSL(2,Od) = SL(2,Od)/{±I} are called Bianchi groups.

This class of groups is of interest in many different areas. In number theory they naturally come up in the study of L-

functions and elliptic curves. Bianchi groups can be considered as the generalization of the classical modular group

Γ1 := PSL(2,O1) = PSL(2,Z). For d ∈ {−1,−2,−3,−7,−11} the ringsOd are Euclidean rings and the corresponding

Bianchi groups are called Euclidean Bianchi groups. Euclidean Bianchi groups have similar properties to the modular

group. The structure of the modular group is well understood. For exampleΓ1 is isomorphic to the free product of the

cyclic groupsZ2 andZ3, and has a presentationΓ1 = 〈x,y|x2 = (xy)3 = 1〉, wherex : z−→ z+ 1 andy : z−→ − 1
z. In

addition that Picard was the first one who studied the groupΓ−1 = PSL(2,O−1) = PSL(2,Z[i]) whereZ[i] Gaussian

integer, in 1883 and this group is known as the Picard group. As is to be expected, these are much closer in properties to

the modular group than in the non-Euclidean cases.

Bianchi groups are discrete subgroups ofPSL(2,C). The elements ofPSL(2,C) act via linear fractional transformation

on the extended complex plane and hence, using the Poincare extension, on upper half 3-space

H3 = {(z, t) ∈ C×R | t > 0}. We know thatPSL(2,C) = Isom+(H3), the orientation preserving subgroup of the full

isometry group ofH3. The quotients ofH3 by the actions of the groupsPSL(2,Od) are then hyperbolic orbifolds of finite
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hyperbolic volume the Bianchi orbifolds.

Bianchi groups have attracted a great deal of attention bothfor their intrinsic interest as discrete groups and also fortheir

applications in hyperbolic geometry, topology and number theory.

In number theory they have been used to study the zeta functions of binary Hermitian forms over the ringsOd. They are

of interest in the theory of Fuchsian groups and the related theory of Riemann surfaces. The Bianchi groups can be

considered as the natural algebraic generalization of the classical modular groupPSL(2,Z).

Now we will give two lemmas.

Lemma 1.The Bianchi groupΓd is a finitely presented group.

The number of conjugacy classes of finite subgroups ofΓd is finite. It is in fact possible to compute a set of representatives

for theΓd conjugacy classes of finite subgroups.

Lemma 2. (i) Γ−1 contains all possible types of finite subgroups,

(ii) Γ−2 containsZ2, Z3, D2, A4 but no S3,

(iii) Γ−3 containsZ2, Z3, S3, A4 but no D2,

(iv) Γ−7 containsZ2, Z3, S3 but no A4 and D2,

(v) Γ−11 containsZ2, Z3, A4 but no S3 and D2,

where dihedral group D2, symmetric group S3, alternating group A4 and cyclic groupsZm := Z/mZ order m.

It is well known from in literature that the above lemmas are very important. Because they give also some information

about torsion free subgroups of finite index ofΓd.

Number theoretic interest in the Bianchi groups has centered primarily on the congruence subgroups and the congruence

subgroup property. There has also been a considerable amount of work on quadratic forms with entries inOd and their

relation to Γd. If σ is an ideal in Od then the principal congruence subgroupmodσ , Γd(σ) consists of those

transformations inΓd corresponding to matrices inSL(2,Od) congruent to±Imodσ .

Γd(σ) = {±T : T ∈ SL(2,Od),T ≡ Imodσ}.

Γd(σ) can also be described as the kernel of the natural this mapψ : SL(2,Od) −→ SL(2,Od/σ) modulo±I . Thus each

principal congruence subgroup is normal and of finite index.A congruence subgroup is a subgroup which contains a

principal congruence subgroup. Notice that in the Euclidean cases each ideal is principal and a formula in M. Newman

allows us to compute the index of a principal congruence subgroup. Namely ifα ∈ Od, d ∈ {−1,−2,−3,−7,−11} then

|Γd : Γd(α)|= ρ |α|3 ∏p|α(1− 1
p2 ) wherep runs over the primes dividingα andρ = 1 if α|2 or ρ = 1

2 otherwise.

We can give applications forPSL(2,O−1), so we will obtain an extension of suborbital graphs.

Theorem 1.The action of PSL(2,O−1) onΠ :=Q(
√
−1)∪{∞} is transitive.

Proof.We can show that the orbit containing 0 isΠ . If x
y ∈ Π , then as(x,y) = 1, there existα,β ∈ Z[i] with αy−βx= 1.

Then the element




α x

β y


 of PSL(2,O−1) sends 0 tox

y.
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Lemma 3.The stabilizer of0 in PSL(2,O−1) is the set

PSL(2,O−1)0 := Γ−1,0 =

{


1 0

λ 1


 | λ ∈ Z[i]

}
.

Proof.The stabilizer of a point inΠ is a infinite cyclic group. As the action is transitive, stabilizer of any two points are

conjugate. Hence it is enough to examine the stabilizer of 0 in PSL(2,O−1).

T




0

1


=




a b

c d






0

1


=




0

1


 and so




b

d


=




0

1


. Thenb= 0,d = 1 and asdetT= 1, a= 1. Thereforec= λ ∈

Z[i]. ThusT =




1 0

λ 1


. Indeed this shows that the setPSL(2,O−1)0 is equal to

〈



1 0

1 1



〉

.

Definition 2. PSL(2,O−1)
0(N) := Γ 0

−1(N) = {T ∈ PSL(2,O−1) |b≡ 0(modN), N ∈ Z[i]}.

It is clear thatΓ−1,0 < Γ 0
−1(N) < Γ−1. We may use an equivalence relation≈ induced onΠ by Γ−1. Now let

r
s
,
x
y
∈ Π .

Corresponding to these, there are two matrices

T1 :=



⋆ r

⋆ s


 , T2 :=



⋆ x

⋆ y




in Γ−1 for whichT1(0) =
r
s
, T2(0) =

x
y

. Therefore
r
s
≈ x

y
if and only if

T−1
1 T2 =




s −r

⋆ ⋆





⋆ x

⋆ y


=



⋆ sx− ry

⋆ ⋆


 ∈ Γ 0

−1(N).

Thereforesx− ry ≡ 0(modN) and thenry− sx≡ 0(modN).

3 Directed graphs

Definition 3. LetG be a graph and a sequence v1,v2, ...,vk of different vertices. Then form v1 −→ v2 −→ ...−→ vk −→ v1,

where k> 2 and k positive integer, is called a directed circuit inG.

Definition 4. Let (Γ−1,Π) be transitive permutation group. ThenΓ−1 acts onΠ ×Π byΘ : Γ−1× (Π ×Π)−→ Π ×Π ,

Θ(T,(α1,α2)) = (T(α1),T(α2)), where T∈ Γ−1 andα1,α2 ∈ Π . The orbits of this action are called suborbitals ofΓ−1.

Now we investigate the suborbital digraphs for the actionΓ−1 on Π . We say that the subgraph of vertices form the block

[0] :=
[0

1

]
=
{x

y
∈ Π | x≡ 0(modN), y≡ 1(modN)

}

is denoted byZN,u := Z(0
1,

N
u ) where(u,N) = 1.

Theorem 2. There is an edge
r
s
−→ x

y
in ZN,u if and only if there exists a unitκ ∈ Z[i] such that x≡ ±κur (modN),

y≡±κus(modN) and ry− sx= κN.
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Proof.Suppose that there exists an edge
r
s
−→ x

y
∈ ZN,u. Hence there exist someT ∈ Γ−1 such that sends the pair(0, N

u )

to the pair( r
s,

x
y). ClearlyT(0) = r

s andT(N
u ) =

x
y. ForT(z) = az+b

cz+d we have thatbd = r
s and aN+bu

cN+du = x
y. Then there exist

the units κ0,κ1 ∈ Z[i] such that b = κ0r, d = κ0s and aN + bu = κ1x, cN + du = κ1y. So, we can write


a b

c d






0 N

1 u


 =




κ0r κ1x

κ0s κ1y


. Finally, taking withκ = κ0κ1, we get thatx ≡ ±κur (modN), y ≡ ±κus(modN). And

also from the determinantry− sx= κN is achieved.

Conversely, we can take the plus sign. Therefore there exista,c ∈ Z[i] such thatx = κur+ aN, y = κus+ cN. If we

chooseb= κr andd = κs, then we findx= ub+aN andy= ud+ cN. SoT(0, N
u ) =




a b

c d






0 N

1 u


 =




κr x

κs y


. Since

−κ(ry− sx) = N we getad−bc= 1 andT ∈ Γ−1. Hence
r
s
−→ x

y
in ZN,u. Similarly, minus sign case may shown.

Theorem 3.ZN,u contains directed hyperbolic triangles if and only if thereexists a unitκ ∈Z[i] such thatκ2u2−κu+1≡
0(modN) andκ2u2+κu+1≡ 0(modN).

Proof. We suppose thatZN,u contains a directed hyperbolic triangle. Since the transitive action, the form of the directed

hyperbolic triangle can written like this
0
1
−→ N

u
−→ N

s
−→ 0

1
.

As the edge condition in above the theorem, we have to be provided for the second edgeNu −→ N
s , that iss−u= κ and

s≡±κu2(modN). Then we haveκs≡ ±κ2u2(modN). Therefore∓κ2u2+κs≡ 0(modN) andκs−κu= κ2 = ±1 are

obtained. Hence there are two cases. The first case is−κ2u2 + κs≡ 0(modN) and κs= κu− 1. The second case is

κ2u2+κs≡ 0(modN) andκs= κu+1. Finally we may say that forκ ∈ Z[i] these equationsκ2u2−κu+1≡ 0(modN)

andκ2u2+κu+1≡ 0(modN) are satisfied.

Conversely, we can solve these equations only with special conditions. Let κ ∈ Z[i] be a unit such that

κ2u2−κu+1≡ 0(modN). Above the theorem implies that there is a directed hyperbolic triangle

0
1
−→ N

u
−→ N

u− 1
κ
−→ 0

1

in ZN,u. Similarly, we can find another directed hyperbolic triangle forκ2u2+κu+1≡ 0(modN), in this case

0
1
−→ N

u
−→ N

u+ 1
κ
−→ 0

1

in ZN,u.

Now we get example for this equationκ2u2+κu+1≡ 0(modN).

Example 1.Let N = 2+3i. If we takeu= 1− i, then this equation−2iκ2+(1− i)κ +1≡ 0mod(2+3i) is achieved for

κ = i. Hence we get this directed hyperbolic triangle as

0
1
−→ 2+3i

1− i
−→ 2+3i

1−2i
−→ 0

1

in Z2+3i,1−i. And also, it is clear that(2+3i,1− i) = 1 andry− sx= κN.
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Similarly, we take another equation. LetN = 13. Again we chooseu=−3, then 9κ2+3κ +1≡ 0mod(13) is held if and

only if κ = 1. So, directed triangle is
0
1
−→−13

3
−→−13

4
−→ 0

1

in Z13,−3.

Fig. 1: Circuits inZ2+3i,1−i andZ13,−3.

Corollary 1. The transformationψ :=




κu∓1 −κN

κ2u2∓κu+1
κN −κu


 which is defined by means of the congruenceκ2u2∓κu+1≡

0(modN) is an elliptic element of order 3. Obviously that detψ = 1, ψ3 = I and tr(ψ) =∓1. Moreover, it is easily seen

thatψ




0

1


=




N

u


, ψ2




0

1


 := ψ




N

u


=




N

u∓ 1
κ


, ψ3




0

1


 := ψ




N

u∓ 1
κ


=




0

1


.

Corollary 2.The transformationη :=




κu±1 −κN

κ2u2±κu−1
κN −κu


 has detη = −1 and tr(η) = ±1. It is clearly that the mapη

is not elliptic element. Besides,η




0

1


=




N

u


, η




N

u


 =




N

u∓ 1
κ


, η2




N

u


=




N

u∓ 1
2κ


, η3




N

u


 =




N

u∓ 2
3κ


,

η4




N

u


=




N

u∓ 3
5κ


,...,ηn




N

u


=




N

u∓ Fn
Fn+1κ


, where n≥ 0 positive integer and Fn Fibonacci numbers. It is known

that F0= 0, F1= 1, Fn+2=Fn+Fn+1 and alsolimn→∞
Fn

Fn+1
= 1−

√
5

2 . Hence, two directed paths in hyperbolic 3-dimensional
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upper half space as follows

0
1
−→ N

u
−→ N

u∓ 1
κ
−→ N

u∓ 1
2κ

−→ N

u∓ 2
3κ

−→ N

u∓ 3
5κ

...−→ N

u∓ Fn
Fn+1κ

are obtained.

Example 2.Let N = 155 andu= 13. We consider first case. If we takeκ =−1 then we have this directed path

0
1
−→ 155

13
−→ 155

13+1
−→ 155

13+ 1
2

−→ 155

13+ 2
3

−→ 155

13+ 3
5

...−→ 155

13+
√

5−1
2

and if we takeN = 2− i andu= 1 thenκ = i. So we obtain this directed another path as follow

0
1
−→ 2− i

1
−→ 2− i

1− 1
i

−→ 2− i

1− 1
2i

−→ 2− i

1− 2
3i

−→ 2− i

1− 3
5i

...−→ 2− i

1−
√

5−1
2i

.

Fig. 2: Directed paths inZ155,13 andZ2−i,1.
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[17] Beşenk M.,Signature cycles and graphs, Lambert Academic Publishing, Saarbrücken, Germany, (2012).
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