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1 Introduction

It is known that when graph topics are investigated, it imsiat there is a lot of study in literature. One of them is
suborbital graphs. The first study to give the relation betwgraphs and permutation groups is in [1]. That is, the
connection between transitive groups and graphs is intedland used to give new insight into some known results. In
[1], the structures of directed and undirected graphs weayaed and applied to primitive groups. Later in [2]
suborbital graphs were gave for actionfofon extended rational number $@tU {co}. Authors explained imprimitive
action and also showed generalized Farey graph and codnest In [3], authors mentioned permutation groups,
transitivity, primitivity and applications to graph thgor

In these paperg — 14], authors examined some properties of suborbital graptthéonormalizer of o(N) in PSL(2,R)

and also discussed the structure and signature of the naemarhey found a certain part of the total order of
ramification of[H(N) over its normalizer. They characterized all circuits in suborbital graph for the normalizer of
I'o(N). Edge and circuit conditions on graphs were obtained. Maredhe results are quite successful. They considered
the action of a permutation group on a set in the spirit of te®ty of permutation groups, and graph arising from this
action in hyperbolic geometric terms. In addition that authexamined some relations among elliptic elements, itércu

in graph for the normalizer ofp(N) in PSL(2,R) and the congruence equations arising from related grotupnact
Especially in[15— 20], they choseN = 2°p?, N = 3fp? and p > 3 prime number wherer = 0,1,..8, 8 = 0,1,2,3.
Hence authors gave the conditions to be a forest for noreraltonsequently, fox = 293# p? the following result has
been reached:

a B Circuits Conditions
0,2,4,6 | 0,2 triangle p = 1(mod3)
1,3,5,7 | 0,2 | quadrilateral | p=1(mod4)
0,2,4,6 | 1,3 hexagon p = 1(mod3)

We can say that in [21] authors studied on the simple groupvknas Monster and gave final form elements of
normalizer. Indeed normalizer is a Fuchsian group whoséddorental domain has finite area, so it has a signature
consisting of the geometric invariants. The signature ewibrking group is extremely important in terms of revealing
invariants. This signature problem is in a way the identitgiscrete group. The main purpose in these studies, is to set
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the foundations of a new method which would help to identify hormalizer much better, which have been subject to
many studies and gaining particular importance since 18rfgo reveal how the producing elements of the normalizer
can be gained by graph method. Therefore, it is by this watyttteasignature problem was transferred to the suborbital
graphs and a new approach was tried to be achieved.

In [22— 38 authors examined some properties of suborbital graphsh®mtodular group, congruence subgroups,
extended modular group, invariance group, Fricke groupwita group, the simple groupBSL(2,q), Atkin-Lehner
group, Picard group; 2 and/"3 which are the group generated by the second and third povi¢he @lements of the
modular group, respectively. Furthermore[28] the dimensional of the graphs has been increased by sejeptup
SL(3,Z). In short, in these studies obtained circuit and forestid&ssnecessary and sufficient conditions for being self
paired edge were provided. They investigated connectsdariesiborbital graphs and studied combinatorial strustafe
some Fuchsian groups and search genus for these groupsu@kecall calculate was made in upper half plane or
Poincare disc model.

In [39— 41] authors emphasized some properties of directed graph&dorlécke groups. They said that the regular
maps corresponding to the principal congruence subgroubdgecke groups. Additionally, they related the sizes of the
Petrie polygons on these maps and used Fibonacci numbers.

As the last word in these studi¢42 — 45 digraphs give rise to a special continued fraction which ralate to a
continued fraction representation of any rational numbés. obviously that authors described a new kind of contthue
fraction. The fraction arises from a subgroup of the Faregpbr And they also studied the analogues of certain
properties of regular continued fractions in the contepe@ally, in[45] there is the chromatic numbers of the suborbital
graphs for the modular group and the extended modular giichgy verify that the chromatic numbers of the graphs are
2 and 3.

Using general ideas in the study[df, this paper is an extension of suborbital graphs on 3-difnaakupper half space.

2 Bianchi Groups and their congruence subgroups

Definition 1. Let d be a square-free natural number. Consider the imagimaradratic number fiel@(+/d), d < 0 and
let Oy be its ring of integers. The groupg := PSL(2,04) = SL(2,04)/{+I} are called Bianchi groups.

This class of groups is of interest in many different areasidmber theory they naturally come up in the study of L-
functions and elliptic curves. Bianchi groups can be cargid as the generalization of the classical modular group
[ :=PSL2,01) = PSL2,Z). Ford € {—1,-2,—3,—7,—11} the ringsOy are Euclidean rings and the corresponding
Bianchi groups are called Euclidean Bianchi groups. EeeélidBianchi groups have similar properties to the modular
group. The structure of the modular group is well understéad exampld is isomorphic to the free product of the
cyclic groupsZ; andZs, and has a presentatidi = (x,y|x*> = (xy)® = 1), wherex:z— z+1 andy:z — f%. In
addition that Picard was the first one who studied the griup= PSL(2,0_1) = PSL(2,Z]i]) whereZ]i] Gaussian
integer, in 1883 and this group is known as the Picard grospsAo be expected, these are much closer in properties to
the modular group than in the non-Euclidean cases.

Bianchi groups are discrete subgroup$&L(2,C). The elements oPSL(2,C) act via linear fractional transformation
on the extended complex plane and hence, using the Poincatens®n, on upper half 3-space
H3 = {(zt) € Cx R | t > 0}. We know thatPSL(2,C) = Isom" (H?3), the orientation preserving subgroup of the full
isometry group off®. The quotients oHI® by the actions of the groug@SL(2,04) are then hyperbolic orbifolds of finite
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hyperbolic volume the Bianchi orbifolds.

Bianchi groups have attracted a great deal of attentionfoottheir intrinsic interest as discrete groups and alsdHeir
applications in hyperbolic geometry, topology and numhebty.

In number theory they have been used to study the zeta funsatibbinary Hermitian forms over the rin@¥. They are
of interest in the theory of Fuchsian groups and the reldtedry of Riemann surfaces. The Bianchi groups can be
considered as the natural algebraic generalization ofl&ssical modular groupSL(2,Z).

Now we will give two lemmas.
Lemma 1.The Bianchi grougy is a finitely presented group.

The number of conjugacy classes of finite subgrougg @ finite. It is in fact possible to compute a set of represiarda
for the Iy conjugacy classes of finite subgroups.

Lemma 2. (i) -1 contains all possible types of finite subgroups,
(iiy r_,containsZsy, Z3, Dy, Ay butno S,
(i) r_scontainsZy, Z3, 3, Aq but no Dy,
(iv) -7 containsZy, Z3, S3 but no A and Dy,
(v) I_11 containsz,, Z3, A4 but no § and Dy,
where dihedral group B, symmetric group $ alternating group A and cyclic groupZn, := Z/mZ order m.

It is well known from in literature that the above lemmas aeeywimportant. Because they give also some information
about torsion free subgroups of finite index/gf

Number theoretic interest in the Bianchi groups has cedterienarily on the congruence subgroups and the congruence
subgroup property. There has also been a considerable amfowork on quadratic forms with entries @y and their
relation to Iy. If o is an ideal inOy then the principal congruence subgroomdo, l4(o) consists of those
transformations iffy corresponding to matrices BL(2, Oy4) congruent tatlmodao.

[4(0)={£T:T € SL2,04), T = Imodo}.

[4(o) can also be described as the kernel of the natural thisygnapL(2,04) — SL(2,04/0) modulo+I. Thus each
principal congruence subgroup is normal and of finite indexongruence subgroup is a subgroup which contains a
principal congruence subgroup. Notice that in the Euclidesgses each ideal is principal and a formula in M. Newman
allows us to compute the index of a principal congruence sulyg Namely ifa € Oy, d € {—1,—-2,—3,—7,—11} then

Mg Ma(a)| =plal® Mpja(1— é) wherep runs over the primes dividing andp = 1 if a|2 or p = 1 otherwise.

We can give applications fd*SL(2,0_1), so we will obtain an extension of suborbital graphs.
Theorem 1.The action of PS(2,0_1) on 1 := Q(v/—1) U {0} is transitive.
Proof.We can show that the orbit containing O¥s If )5, € I, then agx,y) =1, there existr, B € Z[i] with ay— Bx = 1.

a X
Then the elemen By of PSL(2,0_1) sends 0 tcg.
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Lemma 3.The stabilizer 0D in PSL(2,0_1) is the set

10
PSL(Z, 071)0 = r,l’o = { (/\ 1) | A€ Z[I]}

Proof. The stabilizer of a point irf] is a infinite cyclic group. As the action is transitive, stetair of any two points are
conjugate. Hence it is enough to examine the stabilizer off8L(2,0_1).

0 ab 0 0 b 0
T = = and so = .Thenb=0,d=1andasletT=1,a=1. Therefor&e=A ¢
1 cd 1 1 d 1

10 10
Zl[i]. ThusT = A1) Indeed this shows that the $86L(2,0_1)¢ is equal t0< 11 >

Definition 2. PSL(2,0_1)°(N) := "% (N) = {T € PSL(2,0_1) |b=0(modN), N € Z[i]}.

It is clear that_; o < I'Pl(N) < I_1. We may use an equivalence relatisrinduced on/1 by I_;. Now let Es’g enl.

Corresponding to these, there are two matrices

* T * X
T = , Toi=
*S * Y

in I_1 for which Ty (0) = g T,(0) = g Thereforeg ~ 3 if and only if

_1 S —r * X * SX—TYy 0
= Y €% (N).

Thereforesx— ry = 0(modN) and therry — sx= 0(modN).

3 Directed graphs

Definition 3. LetG be a graph and a sequencg s, ..., Vi of different vertices. Then form v— v, — ... — v —> vy,
where k> 2 and k positive integer, is called a directed circuitGh

Definition 4. Let (I_1, [T) be transitive permutation group. Thén, acts onl1 x [T by © : _1 x (M x M) — I x I1,
O(T,(a1,02)) = (T(01),T(02)), where Te I_1 andasi, a; € I1. The orbits of this action are called suborbitals/af;.

Now we investigate the suborbital digraphs for the acfionon 1. We say that the subgraph of vertices form the block
X
0] := [ﬂ - {)—/ €M | x=0(modN), y=1(modN }
is denoted byn == Z(2, %) where(u,N) = 1.

Theorem 2. There is an edgéS — g in Zy,y if and only if there exists a uni € Z[i] such that x= £kur (modN),

y = £kus(modN) and ry— sx= kN.
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Proof. Suppose that there exists an ee[gqe—> g € Zn,u. Hence there exist sonfec< _; such that sends the pdD, %)

to the pair(%, ). ClearlyT(0) = £ andT({) = X. ForT(2) = 252 we have thaf} = £ and 35 = %. Then there exist
the units ko,k1 € Z[i] such thatb = kor, d = kgs and aN + bu = k1%, cN + du = K3y. So, we can write

ab ON Kol K1X

= . Finally, taking withk = Kok, we get thatx = £kur (modN), y = +kus(modN). And
cdl L1 koS Ky y g oK1, we g (modN), y (modN

also from the determinany — sx= kN is achieved.

Conversely, we can take the plus sign. Therefore there axist Z[i] such thatx = kur+ aN, y = kus+ cN. If we

ab ON Kr X

chooseb = kr andd = ks, then we findk = ub+aN andy = ud+cN. SoT (0, Y) = = . Since
u cd)\1u KSYy

—K(ry—sxX) =N we getad—bc=1andT € I_;. Henceg — ;—(/ in Zn.u. Similarly, minus sign case may shown.

Theorem 3.2y, contains directed hyperbolic triangles if and only if thesésts a unik € Z[i] such thak?u? — ku+1=
0(modN) andk?u? + ku+ 1= 0(modN).

Proof. We suppose thafy , contains a directed hyperbolic triangle. Since the trauesaction, the form of the directed

hyperbolic triangle can written like this
0 N N 0

170 s T

As the edge condition in above the theorem, we have to begedvor the second ed@¢—> % thatiss—u = k and
s= +ku?(modN). Then we havas = +k2u?(modN). Thereforerk?u? 4+ ks= 0(modN) andks— ku= k2 = +1 are
obtained. Hence there are two cases. The first casexfa? + ks = 0(modN) andks = ku— 1. The second case is
kU2 4 ks= 0(modN) andks= ku+ 1. Finally we may say that fa € Z[i] these equations?u? — ku+ 1= 0(modN)
andk?u? + ku+ 1= 0(modN) are satisfied.

Conversely, we can solve these equations only with speaiaditons. Let k € Z[i] be a unit such that
k?U? — ku+ 1= 0(modN). Above the theorem implies that there is a directed hypéatrangle

Og)N*> N HO
u 1 1

1 u—<

in Zyu. Similarly, we can find another directed hyperbolic trianfgir ku? + ku-+ 1= 0(modN), in this case

u u+ i

(—)—>N—> N —>(—)
1 1

X

|n ZN’u.
Now we get example for this equatiafu? + ku+ 1= 0(modN).

Example 1Let N = 2+ 3i. If we takeu = 1 — i, then this equation-2ik? + (1—i)k + 1 = Omod(2 + 3i) is achieved for
Kk =i. Hence we get this directed hyperbolic triangle as

0 243 243 0

1 19 12 1

in Zo43i 1-i. And also, it is clear tha@+ 3i,1—i) = 1 andry — sx= kN.
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Similarly, we take another equation. Liét= 13. Again we choosa = —3, then %2+ 3k + 1 = 0mod(13) is held if and

only if Kk = 1. So, directed triangle is
13 13 0

1773 777 1
in Zl3’,3.

Fig. 1: Circuits inZy 3 1—j andZ;3 3.

Ku¥l —kN

Corollary 1. The transformationy := ) which is defined by means of the congruexti® T ku-+1=

KAPEKUEL g
KN

0(modN is an elliptic element of order 3. Obviously that get 1, 2 = | and tr(y) = F1. Moreover, it is easily seen

0 N 5 0 N N 3 0 N 0
that = , = = , = —
v 1 u v 1 v u ufi v 1 v ufi 1
kut1l —kN
Corollary 2.The transformatiom := | 2.2, ., 1 KU has det) = —1 and tr(n) = +1. Itis clearly that the mam
kN -

0 N N N N N N N
is not elliptic element. Besides, =1y n ul = uzl |’ n? ul = ur L | nd ul = ur 2|’
K 2K 3k

N N N N
n4 ( ) = ( 3 ) - ( ) = ( F , where n> 0 positive integer and /Fibonacci numbers. It is known
u UF = u UFr ==

Fni1K

thatlp=0,F =1, Ry o =F+F1and alsdimp e FnFil = 1*—2£ Hence, two directed paths in hyperbolic 3-dimensional
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upper half space as follows

1 L 2 3 Fn
U=« U= 3¢ U 3¢ U 5 U$Fn+1K

N N N N N N
m — —

are obtained.

Example 2Let N = 155 andu = 13. We consider first case. If we take= —1 then we have this directed path

0 155 155 185 185 185 155
1 138 " 18+1  13+3  13+5F  13+§ " 134351

and if we takeN = 2 —i andu = 1 thenk = i. So we obtain this directed another path as follow

(_) 2—i 2—i . 2—i . 2—i . 2—i . 2—i
1 1 1-1 1_% 1-2 1_3"" 1_\/32_71'
I

T3 T

>
~

Fig. 2: Directed paths iZy5513 andZs_; 1.
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