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Abstract: In this paper, we give some categorical objects of racks suchas product, pullback and equalizer objects.
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1 Introduction

A rack [3] is a set with a non-associative binary operation satisfying two rack conditions. The theory of racks is
connected to the group theory. This relation leads to the functorConj : Grp → Rack between the categories of racks and
of groups which admits a left adjoint functorAs: Rack→ Grp ; see [4], [7] for more details.

The earliest work on racks is due to Conway and Wraith [3] which is inspired by the conjugacy operation in a group and
focuses in the special case of racks, called quandles; but they also were aware of the generalization. In the literature,
racks are also called “automorphic sets” [2], “crystals” [8] and “(left) distributive quasigroups” [10].

In this study, we firstly recall the definitions and some examples for racks. Most of them appear in [7]. Afterwards, we
give some categorical properties of racks which are the constructions of product, pullback and equalizer objects. These
categorical objects are defined by the universal property diagrams in [1], [9] and examined for more specific categories
such as category of crossed modules of racks and (modified) categories of interest in [5], [6].

2 Racks

We recall some notions from [7] which will be used in sequel.

Definition 1. A rack R is a set with a binary operation satisfying:

(R1) For all a,b∈ R, there exists a unique c∈ R such that:

c⊳ a= b,

(R2) For all a,b,c∈ R, we have:
(a⊳ b)⊳ c= (a⊳ c)⊳ (b⊳ c).

A rack which aditionally satisfies the idempotency condition:

r ⊳ r = r

is called a “quandle” (for allr ∈ R).
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Definition 2. A “pointed” rack R is a rack equipped with a fixed element1∈ R such that (for all r∈ R):

1⊳ r = 1 and r⊳ 1= r.

Remark.We only work with the pointed racks in the rest.

Definition 3. Let R and S be two (pointed) racks. A rack morphism is a map:

f : R→ S

such that:
f
(

r ⊳ r ′
)

= f (r)⊳ f
(

r ′
)

(and f(1) = 1)

for all r, r ′ ∈ R.

Thus we get the category of (pointed) racks denoted byRack.

Some examples of racks are:

(1) The trivial rackTn of ordern is the set{0,1,2, ...,n−1} with the rack operation (for allx,y∈ Tn):

x⊳ y= x.

The infinitive trivial rackT∞ is the setZ equipped with the same operation.
(2) The dihedral rackDn is the set{0,1,2, ...,n−1} with the rack operation:

x⊳ y= 2y− x modn

for all x,y∈ Dn and the infinitive dihedral rackD∞ is the setZ equipped with:

x⊳ y= 2y− x

for all x,y∈ Z.
(3) The cyclic rackCn of ordern is the set{0,1,2, ...,n−1} with the rack operation:

x⊳ y= x+1 modn

for all x,y∈Cn, while the infinitive cyclic rack is the setZ equipped with:

x⊳ y= x+1

for all x,y∈ Z.
(4) Given a groupG, we may define a rack structure onG by setting (for allg,h∈ G):

g⊳ h= h−1gh.

This rack is called the “conjugation” rack ofG and denoted byConjG. This construction provides a functor:

Conj : Grp → Rack.

(5) We may define a different rack structure onG by setting (for allg,h∈ G):

g⊳ h= hg−1h.
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that is called “core” rack. However this construction is notfunctorial.
(6) LetP andRbe two racks, then the cartesian product:

P×R= {(p, r) | p∈ P, r ∈ R}

has a rack structure with:
(p, r)⊳

(

p′, r ′
)

=
(

p⊳ p′, r ⊳ r ′
)

for all (p, r),(p′, r ′) ∈ P×R.

Definition 4. Let R be a rack and X be a set. We say that X is an R-set when there are bijections(·r) : X → X for all r ∈ R
such that:

(x · r) · r ′ =
(

x · r ′
)

·
(

r ⊳ r ′
)

,

for all x ∈ X and r, r ′ ∈ R.

Definition 5. Let R,S be two racks. We say that S acts on R by automorphisms when there is a (right) rack action of S on
R and:

(r ⊳ r ′) ·s= (r ·s) ⊳ (r ′ ·s)

for all s∈ S and r, r ′ ∈ R.

The following notion is likely to be semi-direct product of groups:

Definition 6. If there exists a (right) rack action of R on S, the “hemi-semi-direct product” S⋊R⊂ S×R is the rack
defined by the rack operation:

(s, r) ⊳
(

s′, r ′
)

=
(

s· r ′, r ⊳ r ′
)

for all (s, r),(s′, r ′) ∈ S⋊R.

Definition 7. For a given rack R, a non empty subset S⊆ R is called a subrack if s⊳ s′ ∈ S for all s,s′ ∈ S.

3 Categorical properties of racks

In this section we give the constructions of product, pullback and equalizer objects for the category of racks.

Theorem 1.The category of racks has products.

Proof.Let P andR be two racks. Define:

P×R= {(p, r) | p∈ P, r ∈ R} .

We already know thatP× R is a rack. Also it is easy to verify that the projection mapsp1 : P× R → P and
p2 : P×R→ R are rack morphisms.

Now we will check the universal property. LetT be any rack andα : T → P, β : T → Rbe two rack morphisms. Then we
need to prove that there exists a unique rack morphism:

ϕ : T → P×R
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such that makes following diagram commutes:

T

α

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤

β

!!❇
❇❇

❇❇
❇❇

❇❇
❇❇

❇❇
❇❇

❇❇
❇

∃!ϕ

��
P P×Rp1
oo

p2
// R

(1)

Define:
ϕ : T → P×R

t 7→ ϕ (t) = (α (t) ,β (t)) .

ϕ is a rack morphism since:
ϕ (t ⊳ t ′) = (α (t ⊳ t ′) ,β (t ⊳ t ′))

= (α (t)⊳ α (t ′) ,β (t)⊳ β (t ′))
= (α (t) ,β (t))⊳ (α (t ′) ,β (t ′))
= ϕ (t)⊳ ϕ (t ′)

for all t, t ′ ∈ T. Furthermore we get:

p1ϕ (t) = p1 (α (t) ,β (t))

= α (t)

and

p2ϕ (t) = p2 (α (t) ,β (t))

= β (t)

for all t ∈ T that proves the commutativity of (1).

Considerϕ ′ with the same property asϕ , i.e. the following conditions hold:

p1ϕ ′ = α
p2ϕ ′ = β .

Define(p, r) ∈ P×Rby ϕ ′ (t) = (p, r) . We get:

p1ϕ ′ (t) = α (t)⇒ p1 (p, r) = α (t)

⇒ p= α (t)

and

p2ϕ ′ (t) = β (t)⇒ p2 (p, r) = β (t)

⇒ r = β (t)
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for all t ∈ T which yields:

ϕ ′ (t) = (p, r)

= (α (t) ,β (t))

= ϕ (t)

and proves thatϕ is unique.

Theorem 2.The category of racks has pullbacks.

Proof.Let f : P→ T andg : R→ T be two rack morphisms. Define:

P×T R= {(p, r) | f (p) = g(r)}

which is a subrack ofP×R; see [5]. Then we get the following commutative diagram:

P×T R

p1

��

p2 // R

g

��
P

f
// T

Let Q be any rack with two rack morphismsα : Q→ P andβ : Q→ R where the following diagram commutes:

Q

α

��

β // R

g

��
P

f
// T

Then there must be a unique rack morphism:

ϕ : Q→ P×T R

that makes the following diagram commutative:

Q

α

��

β

$$

∃!ϕ

  ❆
❆

❆
❆

❆
❆

❆

P×T R

p1

��

p2
// R

g

��
P

f
// T

(2)
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namely:

p1ϕ = α
p2ϕ = β .

For this aim, define:
ϕ : Q → P×T R

q 7→ ϕ(q) = (α(q),β (q)).

Thenϕ is a rack morphism since:

ϕ (q⊳ q′) = (α (q⊳ q′) ,β (q⊳ q′))
= (α (q)⊳ α (q′) ,β (q)⊳ β (q′))
= (α(q),β (q))⊳ (α(q′),β (q′))
= ϕ(q)⊳ ϕ(q′)

for all q,q′ ∈ Q. Furthermore we get:

p1ϕ (q) = p1 (α(q),β (q))
= α(q)

p2ϕ (q) = p2 (α(q),β (q))
= β (q)

for all q∈ Q that proves the commutativity of (2).

Considerϕ ′ with the same property asϕ , i.e. the following conditions hold:

p1ϕ ′ = α
p2ϕ ′ = β .

Define(p, r) ∈ P×T R by ϕ ′(q) = (p, r). We get:

p1ϕ ′ (q) = α (q) ⇒ p1(p, r) = α (q)
⇒ p= α (q)

p2ϕ ′ (q) = β (q) ⇒ p2 (p, r) = β (q)
⇒ r = β (q)

for all q∈ Q which yields:

ϕ ′(q) = (p, r)

= (α (q) ,β (q))

= ϕ(q)

and proves thatϕ is unique.

Theorem 3.The category of racks has equalizers.

Proof.Let f ,g : P→ R be two rack morphisms. Define the set:

Q= {p∈ P | f (p) = g(p)} .
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Q is a subrack ofP since:
f (p⊳ p′) = f (p)⊳ f (p′)

= g(p)⊳ g(p′)
= g(p⊳ p′)

for all p, p′ ∈ P.

Also the inclusion morphismu : Q→ P is a rack morphism since:

u(p⊳ p′) = p⊳ p′

= u(p)⊳ u(p′)

for all p, p′ ∈ Q. Furthermore for allp∈ Q, we have:

( f u) (p) = f (p)

= g(p)

= (gu)(p)

and get:

f u= gu.

Let T be any rack with a rack morphismv : T → P where:

f v= gv.

Then there must be a unique rack morphism:

φ : T → Q

such that the following diagram commutes:

Q �

� u // P
f //
g

// R

T

∃!φ

OO

v

??������������

(3)

We can say thatv(t) ∈ Q since:

f (v(t)) = g(v(t))

for all t ∈ T. Defineφ by φ (t) = v(t) for all t ∈ T. Then we get:

uφ(t) = uv(t)

= v(t)

for all t ∈ T that satisfiesuφ = v and proves the commutativity of (3).
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Considerφ ′ with the same property asφ , i.e.uφ ′ = v. Defineq∈ Q by φ ′ (t) = q. We get:

uφ ′ (t) = v(t)⇒ u(q) = v(t)

⇒ q= v(t)

for all t ∈ T which yields:

φ ′ (t) = q

= v(t)

= φ (t)

and proves thatϕ is unique.
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